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a b s t r a c t 

Many scene text detection approaches generate foreground segmentation maps to detect the text in- 

stances. In these methods, usually all the pixels within the bounding box regions of the text are equally 

treated as foreground during the training process. However, different from the general object segmen- 

tation problem, we argue that not all the pixels across the text bounding box region contribute equally 

for locating the text instance. Specifically, some in-box not-on-stroke pixels even degrade the detection 

performance. Moreover, for the segmentation based methods with a regression step applied to predict 

the corresponding bounding box on each pixel, not all the pixels need to be fully trained to predict fore- 

ground texts. Therefore, in this paper, we propose Elite Loss, which is intended to down-weight the con- 

tributions of the in-box not-on-stoke pixels while paying more attention to the on-stoke pixels. Further- 

more, we design a segmentation-based method to validate the effectiveness of the proposed Elite Loss. 

Extensive experiments demonstrate that our methods achieve the state-of-the-art results on all three 

challenging datasets, with the F-score of 0.855 on ICDAR2015, 0.425 on COCO-Text, and 0.819 on MSRA- 

TD500. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Scene text detection has attracted more and more attention

for its important role in many computer vision tasks. It aims at

localizing the text with bounding boxes of words or text lines.

Various methods have been proposed to tackle this problem [1–5] .

The main challenges of scene text detection are the large variety

of texts in scales, layouts, fonts, and orientations, as well as the

cluttered background which is easily confused with text. Tradi-

tional text detection approaches are mostly bottom-up [6–8] . Lots

of hand-craft features are designed to distinguish text from back-

ground regions. But these methods perform poorly on complex

scenes. 

Recently, many deep learning based methods are proposed to

detect texts. Some methods are evolved from general object de-

tection methods like SSD [9] or Faster RCNN [10] . They utilized the

reference boxes to detect text, such as TextBoxes [11] , TextBoxes ++
[12] , SegLink [1] , RRPN [5] , R 

2 CNN [13] , RRD [14] FSTN [15] ,

etc. These methods shows some improvement over traditional
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pproaches, but they cannot deal with the multi-oriented texts

ell, as discussed in [4] . 

Another category of deep learning based methods are inspired

y FCN [16] , which is widely used in various segmentation tasks.

hang et al. [17] and He et al. [18] used FCN to locate raw text

egions, but they need complicated post-processing steps. Lyu

t al. [19] uses corners and position-sensitive segmentation maps

o segment each text instances. Liu et al. [20] proposed MCN, in

hich they designed the Markov Clustering Network to group

he segmented foreground pixels into text instances. Recently,

ome methods such as EAST [2] and Direct Regression [4,21] are

roposed. They regress a bounding box on each pixel’s location,

n an end-to-end way. We call these methods segmentation based

ethods because they detect text in a segmentation-like style. 

The segmentation based methods detect the text instances by

ixel-wise predictions. However, due to the lack of fine-grained

ext segmentation annotations, they usually assume all the pixels

nside the text’s bounding box as foreground. This is different from

he general object segmentation task, where the sub-regions in the

arget segmentation map have consistent counters with the origi-

al objects. We consider that the use of the raw ground truth in

he segmentation step is a trade-off caused by the lack of ground

ruth segmentation maps of text strokes. However, this leads to

he optimization error in the backward propagation process of the

https://doi.org/10.1016/j.neucom.2018.12.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.12.009&domain=pdf
mailto:chaoyang.zhao@nlpr.ia.ac.cn
https://doi.org/10.1016/j.neucom.2018.12.009
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Fig. 1. (a, b):A training image and its label map. (c): The output score map of a segmentation based method after the first iteration. Those pixels on the text stroke have 

larger confidence on the feature map, indicating they are easier to be learned and better to be located. (d,e): The effective receptive field of the pixel on the score map at 

the location of point A, after training (d) without Elite Loss (e) with Elite Loss. 
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etworks. Fig. 1 (c) shows an output score map of a segmentation

ased detector [2] after the first iteration when it is being fine-

uned from ImageNet-pretrained models. It can be seen that the

etector has high activations on the stroke areas and relatively

ow activations on the smooth areas outside the strokes. Obviously,

he pixels on the in-box outside-stroke areas cannot be easily dis-

inguished from the outside-box background pixels for the simi-

ar appearance. This means that pixels on the strokes capture the

ost distinctive characteristics of the text and thus they are easy

o learn, comparing to the pixels on the smooth outside-stroke re-

ion. For example, from Fig. 1 (a–c), it can be seen that the pixel A

as a stronger response at its corresponding location on the score

ap than the pixel B after the first iteration. 

This paper takes example for the category of segmentation

ased methods which are with an additional regression step [2,4] ,

o further inspect the above phenomenon. These methods perform

he classification and bounding box regression on each pixel of the

utput segmentation maps to detect the text instances. Each pixel

utputs one text instance bounding box if it is classified as posi-

ive. We can conclude that the pixels of the score map are the ba-

ic elements for the detection task and act independently of each

ther. In this paper, we call these basic elements as predicting units

o better describe their roles. These methods treat all the predict-

ng units of the same corresponding text instance equally. In this

ase, the total training loss of all the predicting units of the text in-

tance may be easily dominated by those in-box not-on-stroke pre-

icting units, for they usually have high loss value. However, the

ssential on-stroke predicting units are less considered, for they

sually have small loss value. Meanwhile, since many of the not-

n-stroke predicting units tend to have similar appearances with

redicting units on the background (e.g., the unit at the location of

ixel B in Fig. 1 ), forcing the network to distinguish the hard not-

n-stroke predicting units as foreground may lead to many false

etections on the background region. 

From another view, for the predicting units of the same cor-

esponding text instance, their tasks are duplicated. That is they

re all able to find the same text instance independently. Thus it

s unnecessary to cost much on those not-on-stroke but hard pre-

icting units. The detector should focus on predicting units that

epresent the text instance better to learn a robust text detector. 

It is worth to note that the not-on-stroke but hard predict-

ng units are not the same as the hard samples chosen from all

raining samples in the hard example mining [22] or bootstrap-

ing [23] procedure that should be considered more to benefit the

erformance. The hard predicting units here are the positive sam-

les which are relatively hard but unnecessary to learn. These not-

n-stroke but hard predicting units can also be regarded as units

ith noise labels in a sense, because their appearance is similar to

he background and it is unreasonable to consider them the typical

ositive samples during training. 

b  
As analyzed above, we consider the on-stroke predicting units

apture the instinct characteristics of text regions, so we call them

s elite predicting units. In this paper, we propose a new loss re-

eighting strategy to train the detector. We re-weight the classi-

cation losses of the prediction units to automatically lower the

ot-on-stroke but hard predicting units’ contributions to the loss

uring training. This helps the detector to focus on learning bet-

er features to correctly classify the elite on-stroke predicting units

n the foreground. We call this reweighed loss as Elite Loss , for

he reason that it focuses more on those elite predicting units

i.e., the on-stroke prediction units), and pays less attention to the

oisy predicting units, i.e. not-on-stroke predicting units. The Elite

oss is flexible in its specific forms and it is effective. It improves

ur self-built baseline detector significantly and reaches the new

tate-of-art on various benchmarks. In Fig. 1 , we use the method

f [24] to show the difference about effective receptive fields of

he same pixel of score map at the location of point A with and

ithout the Elite Loss. We can conclude that the Elite Loss makes

he effective receptive field more concentrated. This is beneficial to

he pixel-wise classification task, since the surrounding noises are

argely suppressed. 

The contributions of this paper are listed as follows: 

• We propose the Elite Loss in segmentation based text detection

networks which have a regression step, by down-weighting the

contributions of the in-box not-on-stoke pixels to improve the

training performance. 

• To demonstrate the effectiveness and the flexibility of Elite Loss,

we design two specific forms of Elite Loss and evaluate them in

the task of text detection. 

• With the Elite loss integrated into the segmentation based text

detector which has a regression step, we achieve state-of-the-

art results on various datasets. 

. Related work 

ask specific loss functions. For the general object detection, Focal

oss [25] is proposed to handle the class-imbalance problem by fo-

using hard examples and down-weight the easy examples. Differ-

ntly, Elite Loss is to handle the imprecise labels of text instance’s

redicting units. It down-weights the not-on-stroke examples that

re unnecessary or even may degrade the detector’s performance.

or the robust estimation task, Huber Loss [26] also down-weights

he hard-to-learn samples, which is regarded as outliers for Hu-

er Loss. We also consider these in-box hard samples outside the

trokes would harm the performance. But Elite Loss is for classifi-

ation loss functions while Huber Loss is for regression functions. 

cenetext detection. Scene Text Detection has been studied for

 long time. Traditional text detection methods are mainly

ased on connected components, such as Stroke Width Transform
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(SWT) [6] and Maximally Stable Extremal Regions (MSER) [27,28] ,

or sliding-window [29,30] and use a bottom-up strategy, with

complex post-processing steps. 

In recent years, many deep learning based text detection meth-

ods are proposed. Some methods are evolved from general ob-

ject detection methods, like SSD [9] or Faster RCNN [10] . Repre-

sentative methods are TextBoxes [11] , TextBoxes ++ [12] , RRD [14] ,

SegLink [1] , RRPN [5] , R 

2 CNN [13] . These methods set some anchor

boxes to detect objects, which is not suitable for detecting multi-

oriented text instances, as discussed in [4] . Therefore they usually

need complex designing to detect multi-oriented texts, leading to

high computation complexity. 

Other methods are based on FCN [16] . They usually implement

the text detection by classifying each pixel into text or background,

like [17,18] . But most of them need complex post-processing steps

to locate each text instance. Wu et al. [31] introduce the border

class and classify each pixel into three classes to reduce the com-

plexity of post-processing steps. Deng et al. [32] predict the linking

relationships between each pixel with its neighborhood pixels,

apart from the two-class classification task. Liu et al. [20] de-

sign the Markov Clustering Network to group the segmented

foreground pixels into text instances. Lyu et al. [19] predict

position-sensitive segmentation maps rather than two-class maps.

They also detect text corners and then combine the two tasks

to get the final text boxes. Recently, methods like EAST [2] and

DirectRegression [21,33] are proposed, which combine two-class

pixel-wise classification and regression step to predict the corre-

sponding bounding box for each positive pixel. The segmentation

based text detection methods can detect multi-oriented texts

better. The proposed Elite Loss is designed for the segmentation

based methods with a regression step. It can alleviate the problem

caused by the lack of fine-grained segmentation annotations, as

mentioned in the introduction section. 

3. Elite Loss for scene text detection 

The Elite Loss is proposed for the segmentation based detec-

tors, in which each pixel is a predicting unit. It is intended to

force the training on the on-stroke predicting units and discard

the in-box not-on-stroke predicting units which are unnecessary

and may harm the detector. We first present the definition of Elite

Loss, which is evolved from the existing classification loss func-

tion for text detection, in Section 3.1 . Then Section 3.2 gives a dis-

cussion on the specific rules on distinguishing the predicting units

that should be paid more attention and those should be down-

weighted. Sections 3.3 and 3.4 give two forms of Elite Loss based

on different distinguishing rules. 

3.1. Definition of Elite Loss 

Elite Loss aims to re-weight the regular predicting units that

involved in the segmentation loss computation process. 

The current state-of-the-art segmentation based text detectors

usually regard each predicting unit equally during training. Tak-

ing the cross-entropy loss as an example, the segmentation loss

function of one image can be expressed as: 

LI = 

U n ∑ 

u =1 

l(p u , g u = −1) + 

T ∑ 

t=1 

U t,p ∑ 

u =1 

l(p u , g u = +1) (1)

where T is the number of text objects, U n is the number of predict-

ing units that are matched to none of the text objects, U t, p is the

number of predicting units that are matched to the text object in-

dexed by t, p u ∈ [0, 1] is the confidence score of the predicting unit

u , which is predicted by the network, g u ∈ {−1 , +1 } is the class

label for u , and l ( ·) is the cross-entropy loss. 
As discussed above, we consider the in-box not-on-stroke pre-

icting units of the text instance as less important ones and down-

eight them to encourage the network to pay more attention to

he elite on-stroke ones. By assigning a weight coefficient to each

redicting units, we get the Elite Loss (or more exactly, Elite Cross

ntropy Loss): 

I = 

U n ∑ 

u =1 

w u l(p u , g u = −1) + 

T ∑ 

t=1 

U t,p ∑ 

u =1 

w u l(p u , g u = +1) . (2)

n Elite Loss, within the in-box regions, the elite predicting units

hould have higher weights than the non-elite ones. Moreover,

he out-of-box predicting units should have full weight ( w u = 1),

ecause all these predicting units are correctly labeled in a

easonable way and they should be fully trained. 

.2. Selection of Elite predicting units 

The text detection datasets usually have no fine-grained text

troke segmentation labels. Thus weak-supervised methods for dis-

inguishing the text strokes and outside-stroke areas are needed.

e can either directly define the text stroke regions based on

euristic rules, or locate them adaptively through the confidence

n the output segmentation maps. 

Hence, we propose two forms of the Elite Loss according to two

ifferent kinds of elite weight generation. One is the Adaptive Elite

oss and the other is the Heuristic Elite Loss. 

.3. Adaptive Elite Loss 

Because the not-on-stroke predicting units usually share sim-

larities with the background, they tend to have low confidence

cores. Thus the confidence score of each predicting unit, output

y the network during the training process, is a good indicator

f elite or non-elite. Therefore, we design the Adaptive Elite Loss

sing the predicted confidence score as the weight w u of each

redicting unit’s loss l u : 

 u = 

{
p λu if g u =1 , 

1 otherwise. 
(3)

here w u ∈ [0, 1] is the elite weight to be multiplied with l u and λ
ontrols the extent of down-weighting for the non-elite predicting

nits. The predicting units without being matched to any ground

ruth (i.e. the in-box not-on-stroke ones) have the full weight, for

hey have no regression target if classified as positive. 

We can down-weight the contributions of non-elite predicting

nits through Eq. (3) directly. However, this operation does harm

o the text instances of whom all the assigned predicting units

howing bad confidence scores. To avoid this problem, we normal-

ze the weights by the maximum value of the confidence score of

ll predicting units that are matched to the same text object: 

p ∗u = max 
i 

(p i | T arget(u ) = T arget(u i )) , (4)

 u = 

{
( p u 

p ∗u 
) λ if g u =1 , 

1 otherwise. 
(5)

here Target ( x ) represents the index of text box which the predict-

ng unit x is assigned to. Eq. (5) guarantees that the elite predicting

nits have large enough weight. 

Moreover, when the maximum confidence score of all predict-

ng units for some text instance is too low, the confidence score is

ess relevant to the “eliteness” of these predicting units. To guaran-

ee that that text object is not lost, we set a barrier based on Eq.

5) : 
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Fig. 2. The generation process of the heuristic form of Elite Loss. 
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Fig. 3. The architecture of EAST + . 
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 u = 

{ 

( p u 
p ∗u 

) λ if g u = 1 , p ∗u > θ , 

θ if g u = 1 , p ∗u < = θ, 

1 otherwise. 

(6) 

here θ ∈ [0, 1] is the barrier threshold. Text objects with max-

mum predicting unit confidence less than θ have all predicting

nits with elite weight of θ . The reason why we set their weights

ith θ rather than 1 is to keep the distribution of focused samples

ominated by elite predicting units, which usually share the same

haracteristics. 

iscussion. The Adaptive Elite Loss does not perfectly locate

he stroke areas. Intuitively, as discussed above, the pixels on the

trokes of the text share the same characteristics. Only these pixels

hould be classified as elite predicting units. Moreover, the pixels

n the in-box background regions, i.e. the not-on-stroke pixels,

re to some extent easily-confused with that on the out-box back-

round regions, so it should be classified as background. However,

n the other hand, this rule might not be the best choice. Training

he detector with some background pixels near the strokes may

dd the robustness of the model as a form of data augmentation.

uring the training process, more pixels near the strokes should

e easy and easy to train, for they share similar receptive fields. In

daptive Elite Loss, these pixels’ weights are adaptively up-scaled

uring the training process. Detailed experimental results in

ection 5.2 show that the background pixels around the strokes

ndeed improve the performance. 

.4. Heuristic Elite Loss 

Matthew D. Zeiler [34] demonstrated that the lower layers

f the convolutional neural network respond to the low-level

eatures like edge/color conjunctions or corners. Based on this

opular work, we design the Heuristic Elite Loss utilizing the

utput feature map of conv1 layer of ResNet-50, donating C . The

eneration process of Heuristic Elite Loss is shown in Fig. 2 . 

Specifically, we conduct the following steps in the normaliza-

ion stage to transform the multi-channel feature maps into the

ingle-channel elite weight map, which are formalized as Eqs. (7) –

 9 ). Firstly, we normalize each channel of the feature map to the

ange of [0,1], by dividing the maximum value of the correspond-

ng channel ( Eq. (7) ). Then we generate the raw weight map by

alculating the maximum value at each location across all chan-

els. We re-scale the value of raw weight map by mapping the

ange [0.5, 1] to [0, 1] ( Eq. (8) ). Finally, we set the weight of out-

f-the-box pixels as 1 for we only down-weight the in-box not-on-

he-stroke pixels ( Eq. (9) ). The formulas of this procedure are: 

 

∗
c,i, j = Sigmoid 

(
C c,i, j 

max i, j C c,i, j 

− 0 . 5 

)
, (7) 

 i, j = 2 · Relu 

(
max 

c 
C ∗c,i, j − 0 . 5 

)
, (8)
 i, j = 

{
N i, j if g i, j =1 , 

1 otherwise. 
(9) 

here C ∗ is channel-wise normalized feature map of C, N is the

enerated elite weight map, Sigmoid and Relu is the sigmoid and

ectified linear operation of the neural network, and w i, j is the

lite weight. 

Fig. 2 shows that the elite map generated using this heuristic

ethod generally reflects the phenomenon that the pixels on the

trokes of the text have relatively larger weights than the pixels on

he background in the bounding boxes, though the weight map is

ot perfectly consistent with the text texture and has large values

t some in-box background locations. 

. Elite Loss on segmentation based text detector 

We choose EAST [2] as the representative method of segmen-

ation based text detectors and demonstrate the effectiveness of

lite Loss. EAST adopts FCN to generate a pixel-level text score

ap representing the presence of text and geometry maps en-

oding the word ’s bounding boxes. In EAST, the pixels in the

hrunken bounding boxes are regarded as foreground. As shown

n Fig. 3 three modifications are conducted to enhance the original

mplementation and we call the new baseline as EAST + . Firstly, we

hoose ResNet-50 [35] as the base network. Secondly, when evalu-

ting on the image with large-input size (i.e., 768 × 768 in the ex-

eriment section), we put 2 additional downsampling modules and

 upsampling modules after the final stage of the base network to

nlarge the receptive field. Thirdly, we adopt the dice loss instead

f the balanced cross-entropy loss to train the text classifier, and

urther, we replace it with the object-size balanced dice loss. Fi-

ally, we utilize smoothed-L1 loss with a normalization term to

egress the RBOX. 
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Table 1 

Comparing different forms of Elite Loss on MSRA-TD500. AEL: Adaptive Elite Loss. 

HEL: Heuristic Elite Loss. 

Method Recall Precision F-score 

EAST + 0.6980 0.7910 0.7410 

AEL + EAST + 0.7210 0.8330 0.7730 

HEL + EAST + 0.7137 0.8093 0.7586 

Reverse AEL + EAST + 0.6990 0.7830 0.7390 

Dirichlet AEL + EAST + 0.7124 0.8348 0.7687 

Canny HEL + EAST + 0.6780 0.7910 0.7300 

Table 2 

Varying λ and θ of Adaptive Elite Loss on MSRA-TD500. 

θ λ Recall Precision F-score 

0.001 2 0.6876 0.8094 0.7436 

0.1 2 0.6930 0.8390 0.7590 

0.3 2 0.6936 0.8292 0.7553 

0.1 1 0.7210 0.8330 0.7730 

0.1 0.5 0.7110 0.8200 0.7620 

1 0 0.6980 0.7910 0.7410 
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The Elite Loss can be easily integrated into Dice Loss. Dice Loss

has the form of: 

DL = 1 −
∑ N 

i p i g i ∑ N 
i p 2 

i 
+ g 2 

i 

(10)

We can find that Dice Loss also treats all the positive predicting

units equally. To adjust the contribution of each predicting unit dy-

namically with their contributions to the detector, we use the Elite

Loss to re-weight the units in Dice Loss, which we name as Elite

Dice Loss: 

DL = 1 −
∑ N 

i p i g i w i ∑ N 
i p 2 

i 
w i + g 2 

i 
w i 

(11)

where w i is the same as in Eq. (2) 

Training details. We train EAST + using ADAM optimizer over 4

GPUs for 16 epochs. We randomly crop image patches of fix size to

form a larger mini-batch. The patch size is set differently accord-

ing to the different text sizes of each dataset. And the learning rate

starts from 1e-4 and it is multiplied by 0.94 after every 8 epochs.

Besides the multi-scale data augmentation, we do not adopt any

other form of data augmentation strategies unless noted. 

The Elite Loss assigns a scaling factor for the loss of every

positive predicting unit. It practically takes effect when the net-

work is in the back-propagation stage. The training loss should not

back-propagate through the computed weight, because the training

process encourages to down-scale every unit’s weight. 

5. Experiment 

In this section, we do extensive experiments on three public

benchmark datasets to verify the effectiveness of our Elite Loss. 

5.1. Datasets 

The ICDAR 2015 [36] dataset is from the Challenge 4 (Incidental

Scene Text challenge) of the ICDAR 2015 Robust Reading Competi-

tion. The dataset includes 10 0 0 images for training and 500 images

for testing, with text labeled at the word level. Most text objects

are rotated and some are blurred. The results are evaluated using

the evaluation tools of ICDAR 2015 [36] . 

The COCO-Text [37] dataset is a large text detection dataset, con-

sisting 43,686 images for training and 20,0 0 0 images for testing.

All images are from MS-COCO dataset. The text objects vary in ori-

entation and appearance with the background cluttered. We report

the standard evaluation result of COCO-Text, including performance

on English and non-English as well as legal and illegal texts. 

The MSRA-TD500 [38] dataset is the first standard dataset that

focuses on oriented text. It has 300 images for training and 200

images for testing. All text objects are annotated at line-level,

which means each annotated bounding box covers multiple words

in the same line. The evaluation protocol is described in [38] . 

5.2. Ablation study 

In Section 3 , we give two forms of Elite Loss, which are Adap-

tive Elite Loss (AEL) and Heuristic Elite Loss (HEL). Table 1 com-

pares these two forms of Elite Loss and some variations of them on

MSRA-TD500. The texts of MSRA-TD500 are multi-oriented. Since

MSRA-TD500’s training set is too small to optimize the network,

we add 400 images from HUST-TR400 dataset [39] into the train-

ing data, which is the common practice [2] . We train the detector

with 512 × 512 sampled image crops and test it using the input im-

age with the short side resized to 512. Other settings are the same

as that in Section 4 . The experimental results of this section are

reported on the test set of the MSRA-TD500 benchmark. 
Table 1 shows that both adaptive and heuristic forms of Elite

oss can improve the EAST + by a significant margin. The AEL is

uch better than the HEL. We think there are two main causes.

irstly, the HEL is actually based on the hand-craft rule, which usu-

lly is a sub-optimal solution. For example, the weight map of HEL

as large values on some smooth in-box regions in Fig. 2 . Secondly,

he AEL locates the elite predicting units in an adaptive way based

n the output confidence score maps. This strategy is more reason-

ble and more promising to achieve better results. Thus we choose

o use the AEL in the following experiments. 

In Table 1 , we also tried the contrary strategy that is aimed

o focus on classifying the hard predicting units that are outside

he strokes correctly, and down-weight the easy examples. This is

imilar to the OHEM [22] method which pays more attention to

ard examples. By replacing the p with 1 − p and p ∗ with 1 − p ∗ in

q. (6 ), we get the Reverse Adaptive Elite Loss. The precision of

AST + with Reverse Elite Loss drops 0.01 point, compared with

he EAST + . This demonstrates that forcing the not-on-stroke pre-

icting units to be correctly classified comes with false alarms on

he background. The Dirichlet Adaptive Elite Loss, which is the bi-

arization of Adaptive Elite Loss with a threshold of 0.5, also leads

o an improvement over the baseline EAST + . However, the recall

f Dirichlet Adaptive Elite Loss is lower than the Adaptive Elite

oss. Thus the form of soft weights of Adaptive Elite Loss is more

uitable to represent the importance of each pixel than the form

f hard weights of the Dirichlet version. We also use the com-

uted edge detection results by Canny edge detector as the pre-

icting units’ weight to form Canny Heuristic Elite Loss. According

o Table 1 , the result degrades seriously in both precision and re-

all, because only using the edge pixels limits the effective number

f positive samples. 

We also explore the effects of different settings of λ and

of Eq. (6) on AEL’s performance, as shown in Table 2 . The

yper-parameter λ controls the extent of the down-weighting

or the non-elite predicting units. When λ = 0 , Elite Loss gen-

rates full-weight for all predicting units, which is the same as

he original loss functions. With increasing λ, less elite predict-

ng units are focused on, and non-elite predicting units are further

own-weighted. 

The hyper-parameter θ sets a barrier for those text instances

ith all corresponding predicting units hard to be trained. A con-

iderably small value means that the “hard text instances” may be

ess considered, and a much higher value causes that, the elite loss

ill have less impact. 
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Fig. 4. The evolution of output score maps and elite weight maps during the training process of EAST + . The network tends to have high activations on stroke pixels. 
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Table 3 

Results on ICDAR 2015. EAST ∗+ : EAST + Pretrained using MLT dataset. MS: multi- 

scale testing. AEL: Adaptive Elite Loss. 

Method Recall Precision F-score 

AEL + EAST ∗+ (MS) 0.8209 0.8922 0.8551 

AEL + EAST ∗+ 0.8040 0.8826 0.8415 

AEL + EAST + 0.7670 0.8845 0.8228 

EAST + 0.8035 0.8291 0.8161 

Lyu et al. [19] (MS) 0.7970 0.8950 0.8430 

FSTN [15] 0.80 0 0 0.8860 0.8410 

RRD [14] (MS) 0.80 0 0 0.8800 0.8380 

TextBoxes ++ [12] (MS) 0.7850 0.878 0.829 

R 2 CNN [13] (MS) 0.7968 0.8562 0.8254 

He et al. [21] (MS) 0.80 0 0 0.8500 0.8200 

DirectRegression [4] (MS) 0.8200 0.80 0 0 0.8100 

EAST [2] (MS) 0.7833 0.8327 0.8072 

WordSup [40] (MS) 0.7703 0.7933 0.7816 

RRPN [5] 0.8217 0.7323 0.7744 

SSTD [33] 0.7300 0.80 0 0 0.7700 

MCN [20] 0.80 0 0 0.7200 0.7600 

SegLink [1] 0.7310 0.7680 0.7500 

Yao et al. [3] (MS) 0.5869 0.7226 0.6477 

Zhang et al. [17] (MS) 0.4309 0.7081 0.5358 

Table 4 

Results on COCO-Text. AEL: Adaptive Elite Loss. 

Algorithm Recall Precision F-score 

AEL + EAST + 0.331 0.5957 0.4253 

EAST + 0.340 0.5175 0.4103 

TextBoxes ++ [12] (MS) 0.5670 0.6087 0.5872 

Lyu et al. [19] (MS) 0.324 0.619 0.425 

EAST [2] 0.324 0.5039 0.3945 

SSTD [33] 0.310 0.4600 0.3700 

WordSup [40] (MS) 0.309 0.4520 0.3680 

Yao et al. [3] (MS) 0.271 0.4323 0.3331 

Baselines from [37] 

A 0.233 0.8378 0.3648 

B 0.107 0.8973 0.1914 

C 0.047 0.1856 0.0747 

w  

E  

A  

i  

e  

e  

T  

T  

b  

T

p

 

From Table 2 , it can be concluded that without the AEL

 i.e. λ = 0 , θ = 1 ), the baseline EAST + only achieves F-score of

.741. With varying θ and λ, 0.032 points gain in F-score is

chieved. It can be seen that with λ changing from 1 to 2, the

ecall drops sharply because less positive samples are considered

n the training process. With θ changing from 0.1 to 0.001, the

recision drops by 0.0296. The reason may be that the maximum

eight for the predicting units of hard text instances is too high

ccording to Eq. (6) . Moreover, with θ changing from 0.1 to 0.3,

he precision drops slightly when more predicting units of the hard

ext instances are considered. 

Fig. 4 shows the evolution of the elite weight map of AEL dur-

ng the training process. The train set consists of only one image

o demonstrate the effect of AEL during training. We can conclude

rom Fig. 4 that the AEL focus the network’s attention to the pixels

hat are easier to learn, which potentially helps to train a better

ext detector. 

.3. Comparison with state-of-the-arts 

We evaluate the Adaptive-Elite-Loss-equipped EAST + on vari-

us benchmarks to demonstrate its superiority. We train our model

n the training set of each benchmark, and test the model on

ach corresponding test set. In this section, we use the best hyper-

arameter setting of λ and θ tuned in Section 5.2 , and keep them

xed through all the following experiments. That is λ = 1 and

= 0 . 1 . 

EAST + runs at around 40 ms per image on an NVIDIA Titan X

Pascal) GPU with the input image size of 512 × 512, which is effi-

ient. Since Elite Loss takes effect at training time, it does not cost

dditional time for testing the algorithm. 

For ICDAR 2015, the network is trained on 512 × 512 resolution

n the combination of ICDAR2015 and ICDAR2013 [41] training set,

hich has 1229 images in total. We evaluate the network using the

mage’s original size. As seen from Table 3 , the EAST + with Elite

oss achieves the state-of-the-art performance with the F-score

f 0.8228. EAST + with Elite Loss outperforms the original EAST

2] and DirectRegression [4] . With the model pretrained on 7.2k

mages from MLT 1 dataset, we outperform FSTN [15] , RRD [14] , Lyu

t al. [19] , and Textboxes ++ [12] . These methods use a subset of

60k images or all of the 860k images from SynthText [42] dataset

or pretraining. With the multi-scale testing, we achieve the new

tate-of-the-art of 85.51 F-score. We note that the Elite Loss down-

eights the effects of the in-box not-on-stroke predicting units,

hich are easily confused with the background. This leads the text

etector to have high precision, which is important for the multi-

cale testing to improve the recall with the side-effect of precision

rop. 

For COCO-Text, the network is trained on 512 × 512 resolution

nd test with the image’s short length resized to 512. Note that
1 http://rrc.cvc.uab.es/?ch=8 . 

S  

a  

t  
e only use the legal text labels for training. As shown in Table 4 ,

AST + outperforms the original EAST [2] by a large margin. The

daptive Elite Loss further improves the F-score to 0.4253, which

s comparable to the state-of-the-art. This indicates that Elite Loss

nables the detector to focus on learning better features for the

lite predicting units on the large and cluttered training dataset.

extboxes ++ [12] outperforms other methods by a large margin.

he reason may be that text instances are labeled as axis-aligned

ounding boxes in COCO-Text, even for the highly inclined texts.

hus the general-object-detection-based method Textboxes ++ 

erforms better. 

For MSRA-TD500, we adopt the same setting as in

ection 5.2 except that we train on image patches of 768 × 768

nd test on images with short side resized to 768. Table 5 shows

hat the larger test size only improves less than 0.01 F-score

http://rrc.cvc.uab.es/?ch=8
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Table 5 

Results on MSRA-TD500. AEL: Adaptive Elite Loss. MS: multi-scale testing. 

Algorithm Recall Precision F-score 

AEL + EAST + (MS) 0.771 0.873 0.819 

AEL + EAST + 0.699 0.887 0.782 

EAST + 0.726 0.809 0.765 

He et al. [21] (MS) 0.910 0.810 0.860 

RRD [14] (MS) 0.730 0.870 0.790 

MCN [20] 0.79 0.88 0.83 

FSTN [15] 0.771 0.876 0.820 

Lyu et al. [19] (MS) 0.762 0.876 0.815 

SegLink [1] 0.860 0.700 0.770 

EAST [2] (MS) 0.873 0.674 0.761 

Yao et al. [3] 0.753 0.765 0.759 

RRPN [5] 0.820 0.680 0.740 

He et al. [4] (MS) 0.770 0.700 0.740 

Zhang et al. [17] (MS) 0.67 0.83 0.74 

Yin et al. [43] 0.63 0.81 0.71 

Table 6 

Results of Elite Loss applied on DirectRegression [4] on MSRA-TD500. 

DirectRegression-ReIm: The DirectRegression implemented by ourself. AEL: 

Adaptive Elite Loss. HEL: Heuristic Elite Loss. MS: multi-scale testing. 

Method Recall Precision F-score 

DirectRegression (MS) 0.7700 0.70 0 0 0.7400 

DirectRegression-ReIm (MS) 0.7913 0.7159 0.7517 

HEL + DirectRegression-ReIm (MS) 0.7698 0.7593 0.7646 

AEL + DirectRegression-ReIm (MS) 0.7793 0.7698 0.7718 
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(AEL + EAST + ) compared to the results in Table 1 . It can be seen

Elite Loss contributes 0.017 on F-score. Moreover, with the high

precision brought by the Elite Loss, multi-scale testing achieves

0.819 on F-score, which is comparable with the current state-of-

the-art. Note that except random cropping, we do not adopt any

other forms of data augmentation or model pre-training on other

text detection datasets, which is used in [15,20,21] . 

Tables 3–5 show that our method achieves the best precision

rate over all methods. This is achieved by down-weight of the con-

tributions of hard not-on-stroke predicting units to the training

loss, for these units are easily confused by the units in the back-

ground. Furthermore, since for each text instance we guarantee at

least one predicting unit has the full-weight, the recall rate is less

influenced. Moreover, this characteristic of Elite Loss makes the

detector achieve the new state-of-the-art with multi-scale testing. 

5.4. Experiments onother segmentation based methods 

DirectRegression [4] is another segmentation based method

with a regression step. The main difference between EAST [2] and

DirectRegression is that EAST predicts text instances of all possi-

ble scales using the neural network, while DirectRegression uses

the network to predict text instances of only one scale (texts with

shorter edge of around 32 pixels) and adopts the multi-scale test-

ing to detect text instances of all scales. Since the code of DirectRe-

gression [4] has not been released, we implement DirectRegression

by ourself. Then we apply Elite Loss on it to validate the generality

of Elite Loss. As shown in Table 6 , both forms of Elite Loss (AEL

and HEL) improve the performance of DirectRegression. Again, AEL

is better. This experiment shows that Elite Loss has good gener-

ality for other segmentation based text detection methods which

have the regression step. 

Discussion. For those segmentation based methods without a re-

gression step, they have to design other procedure to identify the

text instances from each other, including predicting the border pix-

els [14] , predicting the linking relationship with the neighbors of

each pixel [32] , and adopting other hand-crafted post-processing
teps [17] . But these methods require that all in-box pixels must be

lassified as foreground to form the connected areas to detect each

ext instance integrally. It can be concluded that for these methods

one of the pixels should be down-weighted in the classification

oss. Therefore, Elite Loss cannot be directly applied to these seg-

entation methods which do not involve a regression step. 

. Conclusion 

In this paper, we propose the Elite Loss to address the prob-

em that current segmentation labels are unsuitable for the net-

ork to learn, in segmentation based text detection methods. We

ound that for the segmentation based methods which have a re-

ression step, each pixel location on the output feature map is an

ndependent predicting unit. Instead of considering all the predict-

ng units equally, the Elite Loss reweights them with their con-

ributions to the detector’s performance. It forces the detector to

earn better features for the elite predicting units, which are usu-

lly on the strokes and capture the instinct characteristics of text

egions better. The Elite Loss is flexible and effective and it can be

asily integrated into current popular text detectors. We give two

orms of Elite Loss, which are the heuristic form and the adaptive

orm. Extensive experiments on various datasets demonstrate the

ffectiveness of the Adaptive Elite Loss. 
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