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ABSTRACT
Using dropout in Visual Question Answering (VQA) is a common
practice to prevent overfitting. However, in multi-path networks,
the current way to use dropout may cause two problems: the co-
adaptations of neurons and the explosion of output variance. In
this paper, we propose the coherent dropout and the siamese dropout
to solve the two problems, respectively. Specifically, in coherent
dropout, all relevant dropout layers in multiple paths are forced
to work coherently to maximize the ability of preventing neuron
co-adaptations. We show that the coherent dropout is simple in
implementation but very effective to overcome overfitting. As for
the explosion of output variance, we develop a siamese dropout
mechanism to explicitly minimize the difference between the two
output vectors produced from the same input data during training
phase. Such mechanism can reduce the gap between training and
inference phases and make the VQA model more robust. Extensive
experiments are conducted to verify the effectiveness of coherent
dropout and siamese dropout. And the results also show that our
methods can bring additional improvements on the state-of-the-art
VQA models.

KEYWORDS
Visual Question Answering, Coherent Dropout, Siamese Dropout
ACM Reference Format:
Zhiwei Fang, Jing Liu, Yanyuan Qiao, Qu Tang, Yong Li, Hanqing Lu. 
2018. Enhancing Visual Question Answering Using Dropout. In 2018 ACM 
Multimedia Conference (MM ’18), October 22–26, 2018, Seoul, Republic of 
Korea, Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.). 
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3240508.3240662

1 INTRODUCTION
In VQA, a system is required to automatically generate natural
language answers to totally free-form, open-ended textual questions
about unconditional images. This is a challenging task since it
needs not only the comprehensive understanding of both structural
language information and non-structural image information but
also learning semantic knowledge from them and reasoning among
them. In recent few years, VQA has attracted a lot of attention: a
number of benchmarks have been released for VQA [4, 7, 9, 10, 18,
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Figure 1: Single-path network and multi-path network. D
denotes dropout layer and FC denotes fully-connected layer.
In multi-path VQA model, we propose the corrent dropout
and siamese dropout to improve the final performance. In
coherent dropout, the dropout masks of different layers are
forced the be the same. In siamese dropout, two outputs
are produced by a siamese model with dropout layers and
the difference between them is minimized by the siamese
dropout loss.

23, 25, 32, 33, 38, 39] and a variety of methods have been proposed
[2, 3, 5, 8, 16, 22, 24–26, 31, 33, 35, 36]. Many of the state-of-the-art
methods usually adopt a similar architecture: a convolutional neural
network (CNN) [11, 19, 27, 30] for image encoding; a recurrent
neural network (RNN) [6, 13, 14] for question encoding; a module
for multi-modal feature fusion and a decoder for answer prediction
[34]. Since attention mechanism is essential in VQA, the attention
module is also often included in the architecture. Thus in VQA
model, there are many cases of feature map reuse and there usually
exist multiple paths between input and output. Such multi-path
architecture is the current main stream in VQA.

VQA model is heavily data-dependent [1, 10, 15], and the deep-
learning-based models usually suffer serious overfitting. In order
to alleviate this problem, many researchers introduce dropout [28]
technique into their model to improve the generalization perfor-
mance [2, 5, 8, 16, 22, 35, 36]. In these methods, the dropout is used
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in a simple way: where a feature is expected to be used, a dropout
layer is placed there first. This results in that there usually exists
a dropout layer in the front of each path, as is shown in Fig.1 (b).
However, in multi-path networks, using dropout in such way may
cause some problems.

The first problem is the co-adaptations. Co-adaptation of neurons
is the inner reason to cause overfitting of neural networks [12, 28].
It indicates such a case where several neurons always depend on
each other to fit a noise pattern. And dropout is proposed to prevent
such complex co-adaptations on the training data [12]. On each
presentation of each training case, the hidden units are randomly
omitted from the network, so a hidden unit cannot rely on other
hidden neurons. Generally speaking, in single-path feed-forward
neural networks (Fig.1 (a)), dropout can work well because a neural
layer (e.g. fully-connected layer) is connected to only one dropout
layer, thus there can not be any conflicts between any two dropout
layers. But in multi-path networks, the ability of dropout to prevent
co-adaptations may be weakened or damaged, if the dropout layers
are used in an unsuitable way. Take the reuse of question feature in
VQA as an example (Fig.1 (b)). The question feature is used twice:
one for visual spacial attention module and the other for answer
decoder module, in two paths, respectively. In each path, the output
of RNNs is firstly fed into a dropout layer D1 or D2. In general, D1
and D2 work independently and their outputs are different. Now
we consider two neurons n1 and n2 in the output layer of RNNs.
Suppose that in D1, n1 is omitted while in D2, n2 is omitted, then
in each of the two paths, n1 and n2 can not depend on each other
because only one of them has a nonzero gradient and it’s impossible
to optimize both of them at the same time. Since current dropout
layer doesn’t directly omit the neurons but their output features,
D1 and D2 will back propagate the gradient of n2 and n1 to RNNs,
respectively. If we take D1 and D2 together as a “black box” and
see from the point of RNNs, we will find that none of n1 and n2 are
omitted and they can still be optimized simultaneously. This will
decrease the independence of neurons and increase the possibility
of overfitting.

Another problem is the explosion of the output variance. Namely,
for the same input, a model with dropout layers will produce dif-
ferent outputs in different time. This because the dropout masks
are changing every time in each forward pass. For VQA model, the
variance can enlarge the gap between training and inference phases
and make the model sensitive to input noises [29]. For example,
assume that the output variance is very high, then for a given in-
put, the outputs of its two forward passes can be very different;
if one output gives the correct answer and the other one should
provide the wrong answer in a high probability. This is not what
we want. Current methods usually assume that this problem can
be implicitly handled if we force the outputs to fit a fixed target
attached to the specific input question during training. But in VQA,
such assumption may not be so effective because the ground-truth
answer for given input image and question is not unique [4]. This
results in that the target for a specific question during training is
not fixed but sampled from a set of ground-truth labels [8, 16, 35].
Hence in VQA, using dropout can make the problem even serious.

In order to enhance the VQA model, in this paper, we propose
the coherent dropout and the siamese dropout to solve the above two
problems.

For co-adaptations of neurons, the reason is that in multi-path
networks, the multiple dropout layers share the same input feature
vector but work independently. Thismay cause a lot conflicts among
the dropout masks of different dropout layers. In coherent dropout,
we force the dropout layers work coherently to reduce the conflicts.
Specifically, during training, the dropout layers which share the
same input must use the same randomly sampled dropout masks.
In such case, if a neuron is omitted in one layer, then it must be
omitted in all the relevant dropout layers. This can ensure that in
backward pass, there is no gradient for this neuron. The equivalent
form of coherent dropout is placing the dropout layer in the root
path instead of the branch path. In our experiments, we demonstrate
that with just a little modification by converting common dropout
to coherent dropout, the state-of-the-art methods can achieve better
performances.

As for the explosion of output variance, the core idea behind
siamese dropout is to explicitly minimize the distance of outputs.
During training, we first keep another identical copy of the VQA
model. The two models share the same weights and inputs in each
iteration, but use different dropout masks. Then between their
outputs, we append a new constrain which forces the distance
between them to be as small as possible (See Fig.1 (b)). We show
that the siamese dropout constrain can effectively decrease the
variance of outputs caused by dropout and reduce the gap between
training and inference phases.

Finally, with the proposed techniques on dropout, the VQA mod-
els can become more generalized and can go deeper in several
modules, especially the question encoding module. Compared with
CNN encoder for image, the question encoder (RNNs) is usually
very shallow. Simply stacking multiple RNNs in question encoder
often suffers serious overfitting. In this paper, with the help of
residual connection and coherent dropout, we demonstrate that
the power of question encoder can be improved by simply stacking
more RNNs.

To summarize, the main contributions of this study is three-fold:
Firstly, we proposed a simple but effective coherent dropout to im-
prove the ability of dropout to prevent overfitting in VQA model.
Secondly, we develop a siamese dropout mechanism to handle the
high output variance of VQA model during training. Finally, based
on the coherent dropout and residual contributions, we develop a
deeper and more powerful question encoder by stacking multiple
RNNs. We conduct extensive experiments to demonstrate the effec-
tiveness of our methods. The results show that with the proposed
techniques, the performances of current state-of-the-art methods
such as BottomUp [2], MCB [8] and MUTAN [5] can be further
improved.

2 RELATEDWORK
2.1 Dropout
Dropout is thought to be an effective way to prevent overfitting,
especially for deep neural networks. It is proposed by Hinton et al.
in [12, 28]. The key idea is to randomly drop units from the neu-
ral network during training. They think this can prevent the co-
adaptations of neurons. Co-adaptation is a concept from the theory
of the role of sex in evolution [21] and the motivation of dropout is
also from it [28]. Hinton et al. believe that such process of dropout
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Figure 2: Structures of different dropouts. In incoherent dropout (a), outputs are dropped out while the neurons can still get
gradient. In coherent dropout (b), all dropout layers share the same dropout mask and the dropping of neurons is totally
controlled by the mask. (c) is the equivalent form of coherent dropout which is used in implementation.

can force the neurons learn something without the dependence
on other neurons, which can be also explained as a kind of model
ensemble. They demonstrate that using dropout in input layers
and in hidden layers can both improve the neural model signifi-
cantly. In this paper, we also follow such interpretation of the effect
of dropout in [12, 28] to explain the motivation of our coherent
dropout.

Now dropout has been widely used in various kinds of neural
networks such convolutional neural networks [19, 27] and recurrent
neural networks [37]. Current powerful CNNs are usually fully-
convolutional networks [11, 30] without any fully-connected layer
as hidden layer, thus they seldom use dropout. Some classical CNNs
such as [19, 27] have several hidden fully-connected layers and need
to use dropout to prevent overfitting. In these CNNs, since there
are only one single path from input to output, the dropout layers
can work independently and do not affect each other. However, in
VQA model, it is very common that a feature is used by several
modules and thus there are usually multiple paths with dropout,
which may cause dropout can not work independently. This is the
reason why we study dropout in VQA model in this paper.

2.2 Dropout in VQA
Dropout is widely used in VQA models to prevent overfitting
[5, 8, 16, 22, 35, 36]. For example, MCB[8], Fukui et al. place a
dropout layer on top of their Compact Bilinear Pooling (CBP) mod-
ule to weak the side effects of the high-dimensional output of CBP.
Besides, they also use dropout layers in and after the LSTM encoder.
Similarly, Ben-younes et al. use dropout technique in the proposed
Multimodal Tucker Fusion Layer of MUATN model [5]. In these
models, the dropout is placed in a simple way: when one module
needs to use a feature, then the model designer places a dropout
layer before the module, which will cause the similar case in Fig.1
(b). There are also some methods that do not include any dropout
layers, such as [2]. However, in [2], Anderson et al. have to adopt
model ensemble to prevent overfitting while the number of models
for ensemble is quite big – 30 models for best performance! As a

contrast, MCB[8] uses 7 models for ensemble, MUTAN [5] uses 5.
Different from the methods above, in this study, we demonstrate
that if a VQA model introduces dropout in a coherent way, then it
can achieve a higher performance. Coherent dropout is simple but
effective.

3 APPROACH
In this section, we first describe the details of formulation of coher-
ent dropout and siamese dropout. Then we discuss how to use the
coherent dropout to design a deeper and more powerful question
encoder.

3.1 Coherent Dropout
Assume that there is a hidden layer (e.g. a fully-connected layer)
with a set of neuronsW = {w1,w2, ...,wi , ...,wN } where wi is
the weight vector of the ith neuron. Without loss of generality, we
assume that the bias term is contained in wi . Then the output y
of the hidden layer is fed into multiple dropout layers in multiple
paths. Let l ∈ {1, 2, ...,L} index the dropout layers and z(l ) is the
output vector of lth dropout layer. Since the current dropout layer
is implemented to drop out the output data instead of the neurons
[28], then for a given input vector x , z(l ) is computed by:

y = f (Wx)

z(l ) =m(l ) ∗y
(1)

where ∗ denotes the Hadamard product, f is any activation function
such as siдmoid or ReLU andm(l ) is the dropout mask which is
sampled from a bernoulli distribution Ber (p). Generally speaking,
when the number of neuronsN is big, the probability ofm(l ) =m(n)

(l ,n ∈ L, l , n) is pretty close to 0. Then the ith element of z(l ) can
be described:

m
(l )
i ∼ Ber (p)

yi = f (wix)

z
(l )
i =m

(l )
i yi

(2)
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Now consider the co-adaptation of two neuronswi ,w j ∈W . We
know that if two neurons are no optimized simultaneously, then
there is not co-adaptation between them. During the backward pass
of neural networks, the gradient ofwi can be computed by:

∂J

∂wi
=

L∑
l=1

{
∂J

∂z
(l )
i

∂z
(l )
i
∂yi

∂yi
∂wi

}
=
∂yi
∂wi

L∑
l=1

{
∂J

∂z
(l )
i

m
(l )
i

} (3)

where J is the objective function. Firstly, from Equation 2, we can
see that for single-path network (i.e., L = 1), dropping out output
data is equivalent to dropping out neurons, because when L = 1,
the gradient of ith neuron is controlled by the dropout maskmi .
However, such equivalence relation does not exist in the case of
multi-path networks. Equation 3 implies that even if there are
no co-adaptations between two neurons in each of the dropout
layer (i.e., there are at last one 0 in {m

(l )
i ,m

(l )
j },∀l), it is also very

possible that both of the two neurons can get non-zero gradient and
thus be optimized simultaneously, When L > 1, if the ith neuron

is expected to be omitted, there must be
∑L
l=1

{
∂J

∂z(l )i
m

(l )
i

}
= 0.

Usually, such condition is hard to be met if the dropout layers work
independently.

But in our coherent dropout (Fig.2(b)), the dropout layers do not
work independently but share the same dropout mask during one
forward pass, which can be described as:

m(l ) =m(n),∀l ,n ∈ [1,L]

m
(l )
i =m

(n)
i ,∀l ,n ∈ [1,L], i ∈ [1,N ]

(4)

Letm(1) = ... = m(L) = m, then the gradient of neuron wi is as
follow:

∂J

∂wi
=
∂yi
∂wi

L∑
l=1

{
∂J

∂z
(l )
i

m
(l )
i

}
=mi

∂yi
∂wi

L∑
l=1

∂J

∂z
(l )
i

(5)

Equation 5 implies that, in coherent dropout, the neuron’s gradients
are controlled by the dropout mask. In another word, coherent
dropout is more efficient to prevent the complex co-adaptations in
multi-path neural networks.

In VQA model, there are many places where coherent dropout
can be adopted. For example, both question feature and image
feature are at least used twice in attention module and feature-
fusion module. In multi-glimpse attention mechanism, there also
exists such case that a feature is used to product multiple attention
maps. In [31], the mixed feature of textual and visual information is
also used by multiple classifiers to predict the correct answer. And
some non-linear layers such as the gated tanh layer [2] in VQA is
also in multi-path structure. In Section 3.3, we further explore the
way to adopt the coherent dropout into question encoder to make
it deeper and more powerful.

In implementation, the coherent dropout is yet very simple.
There is no need to actually control the masks of multiple dropout

Figure 3: Structure of siamese dropout for VQA.M andM ′ de-
notes the main bodies of two weight-shared VQAmodel. FC
and FC ′ denotes two weight-shared fully-connected layers.
SDL means the siamese dropout loss and it can be applied
on different feature vector such as the output (SDL1) or the
mixed feature (SDL2). Due to the existence of dropout, the
outputs of the twomodels are not the same and the variance
is controlled by our siamese dropout loss.

layers. The only thing you need to do is placing a dropout layer in
root path and removing the ones in branch paths, which is shown in
Fig.2 (c). In the following experiment section, we will demonstrate
that with just such simple modification of network structure, the
performance can be improved significantly.

3.2 Siamese Dropout
The output variance in VQA model can not be ignored. We pro-
pose a siamese dropout mechanism to explicitly control such vari-
ance during training. The structure of siamese dropout is shown
in Fig.3. Consider we have a VQA model Mθ that takes as input
(Q, I ) whose target label is A, where θ denotes the parameters. Let
ℓ (Mθ (Q, I ),A) be the loss value for the sample triplet (Q, I ,A).
During training, we keep an identical copy of original model Mθ
as M′

θ , i.e., the two networks share the same parameters θ . For
each of the two model, there is a loss for the output :

o =Mθ (Q, I )

l = ℓ (o,A)

o′ =M
′

θ (Q, I )

l ′ = ℓ
(
o′,A

) (6)

where l , l ′ are the loss values of Mθ ,M
′

θ , respectively. Then the
overall loss function can be given:

L =
1
2 (l + l

′) + γSDL(o,o′) (7)

where γ is the loss weight factor and SDL(o,o′) is the siamese
dropout loss, which is given by:

SDL(o,o′) =
1
n

∥ tanh(o) − tanh(o′) ∥2 (8)
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Figure 4: Residual Stacked GRUs with Coherent Dropout
(RSGCD). D denotes dropout layer. + denotes element-
wise sum. W.E. stands for word embedding. Our question
encoder of RSGCD consists of several modules of Residual
GRU with Coherent Dropout (RGCD) which are stacked se-
rially. The coherent dropout makes it robust to overfitting
and the residual connections prevent gradient vanishing.

where n is the length of o and tanh is used to limit the scale of the
output vector. Since the siamese dropout loss will always be 0 if
there are no any dropout layers in the model, the aim of Equation
8 is to minimize the variance caused by dropout.

We also notice that the siamese dropout loss can be adopted not
only on the final output vector, but also on some other feature maps
produced by hidden layers. The motivation is that even though
the input units of a hidden layer are randomly dropped out, the
learned representation should also be stable. Let {v1, ...,vK } is a
set of such suitable feature maps, then the overall loss function can
be extended as:

Lext =
1
2 (l + l

′) +

K∑
i=1

[γiSDL(vi ,v
′
i )] (9)

where γi is the loss weight factor for SDL(vi ,v
′
i ).

Although the siamese dropout leads to the increase of compu-
tation (additional one forward pass), it can explicitly decrease the
output variance caused by dropout. And its effect is significant. We
demonstrate that the siamese dropout can effectively decrease the

gap between training and inference phases and provide additional
improvements to VQA model.

3.3 Stacked-Residual GRUs
In VQA, the amount of textual data is very limited. Although there
may be hundreds of thousands of question-answer pairs in dataset,
the length of questions are usually very small, typically less than 15,
let alone some of the words are wh-phrases (e.g. what kind of, where
is the, etc.) without clear semantics. Thus designing a powerful
question encoder is very essential to visual question answering. In
some other area such as Image Caption, stacking multiple RNNs
is usually effective. However, in VQA, such stacking method is
not significant, or even causes bad effect. The reason may be the
overfitting of question encoder on the limited textual training data.

In this section, we will utilize our coherent dropout and residual
connections to design a deeper stacked RNNs question encoder. We
choose GRU as the implementation of RNN and design a deep GRU
structure termed as Residual Stacked GRUs with Coherent Dropout
(RSGCD) which is illustrated in Fig.4. RSGCD consists of several
modules of Residual GRU with Coherent Dropout (RGCD) which are
stacked one by one. The input of RSGCD is the output features of
word embedding and then fed into the following RGCD modules
serially. In each RGCDmodule, the input is first processed by a GRU
and then a dropout layer. We use the sum of input and the output
of dropout layer as the final result of a RGCD module. Note that the
dropout layer in RGCD needs to be before the element-wise sum
operation to make sure that it is coherent dropout. Placing dropout
layer after the sum operation results in twice dropouts for input
features, which is equivalent to a incoherent dropout. On the other
hand, the residual connections are also essential for RSGCD because
when we stack more GRUs, the problems of gradient vanishing
becomes serious. The residual can act as a high-way for gradient
propagation which connects GRU’s input and output feature maps.
In RGCD, the GRUs are expected to learn the residual transformation
rather than common transformation. We demonstrate that with the
coherent dropout, the RSGCD can reach 3 or more GRUs and bring
more improvement to VQA models. We believe that the RSGCD
is instructive for the using of coherent dropout in models with
complex skip-connections.

4 EXPERIMENT
4.1 Dataset
VQA-v1. The VQA-v1 dataset [4] consists of∼200K images from the
MS-COCO dataset [20] with approximately 3 questions per image
and 10 answers per question. All questions are divided into three
categories by the type of their answers: “Yes/No”, “Number” and
“Other” but their answers are not strictly limited by the question
types (e.g., the answers for “Yes/No” questions may not have to be
{yes, no}, the ground-truth may also be “I don’t know” or some other
words). There are three splits in VQA-v1: train (∼248K questions),
val (∼122K questions) and test (∼244K questions). The ground truth
answers are available only for training and validation sets while the
evaluation for testing set can be only done on server of the dataset.

VQA-v2. The VQA-v2 dataset [10] is the extended version of
VQA-v1 dataset [4]. It doubles the number of questions and makes
themmore balanced. Namely, in order to improve the importance of
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Table 1: The overall accuracies of models under different configuration about coherent dropout and siamese dropout. G-tanh
denotes the gated tanh [2]. SDL denotes the siamese dropout loss.

Method Accuracy
Yes/No Number Other Overall

A Baseline 83.25 36.89 51.17 61.39

B
Baseline-Dropout 82.7 36.27 50.27 60.4
Baseline+Coherent G-tanh 83.12 35.42 51.61 61.73
Baseline+Coherent Dropout 83.31 37.27 52.83 62.28

C

Baseline+SDL@(output) 83.18 37.22 52.62 62.12
Baseline+SDL@(mixed_feature) 83.03 36.88 52.78 62.11
Baseline+SDL@(output+mixed_feature) 83.27 36.82 52.88 62.24
Baseline+SDL@(output+mixed_feature+q_feature) 83.28 37.05 52.88 62.27
Baseline+SDL@(output+mixed_feature+v_feature) 83.32 36.85 52.82 62.23

D Baseline+Coherent Dropout+SDL@(output+mixed_feature) 83.88 37.92 53.32 62.82

visual images in VQA, each question in this dataset is asked about
two images with two different answers. There are ∼443K questions
in train split, ∼214K questions in val split and ∼453K questions in
test split.

EvaluationMetric. In evaluation, the algorithm is only allowed
to product one natural language answer for one question. We use
the accuracy metric proposed in [4] to evaluate the performances
of models which can be described as:

min(1, #humans that provided that answer

3 ) (10)

In this metric, once the presented answer matches a ground truth
answer, then it gets 1

3 . But the score can not be larger than 1 even
if the matching times are more than 3.

4.2 Experimental Setup
Our baseline model structure is similar to that in [31] with two
modifications: (1) Before each linear layer (including the ones in the
gated tanh module [2]), we insert a dropout layer. (2) The hidden
size of GRU is set to 300 rather than 512. When given a question
and an image, they are first embedded into a question feature and
a image feature map by RNNs and CNNs, respectively. Then the
question feature and image feature are fed into an attention module
to produce the visual attention. The attended image feature and
question feature are merged by Hadamard product and produce the
mixed_feature. Finally, the mixed_feature is used by the classifiers
to predict the answers.

We use the Adamax [17] optimizer to optimize our VQA model.
The learning rate is fixed as 7e-3 and no weight decay is used.
We use a batch size of 128 to train the model for 100 epochs. All
experiments (except for the ones in Table 4) are conducted on VQA-
v1 dataset: the models are trained on train split and tested on val
split. Before training, we collect the top 3000 frequent answers of
train split as the answer vocabulary. In this paper, all dropout layers
use the same dropout ratio of 0.5.

4.3 Experiments on Coherent Dropout
In order to demonstrate the effectiveness of the coherent dropout,
we compare the model performances with/without our coherent
dropout. The results are listed in A,B blocks of Table 1. In addition to
the baseline configuration (denoted by Baseline), there are another
three models:

• Baseline - Dropout: All dropout layers in Baseline are
removed.

• Baseline + Coherent G-tanh: We move the dropout layers
in the two branch paths of the gated tanh (G-tanh) [2]module
to the root path, which is termed Coherent G-tanh.

• Baseline + Coherent Dropout: All dropout layers in base-
line model are replaced by coherent dropout.

Firstly, we notice that without dropout, the Baseline - Dropout
model suffers overfitting and is much poorer than Baseline model.
This implies that dropout is effective on preventing overfitting.
Secondly, when the dropout is partially (Baseline + Coherent
G-tanh) and then fully Baseline + Coherent Dropout replaced
by coherent dropout, the performance keeps increasing step by
step. And the final accuracy of Baseline + Coherent Dropout is
much higher than Baselinemodel, which proves that our coherent
dropout can benefit VQA model a lot.

The similar conclusion can also be seen from the accuracy curves
during training, which are illustrated in Fig.5. In the curves, Base-
line + Coherent Dropoutmodel outperforms all the other models
while the Baseline - Dropout gets into overfitting at very begin-
ning epochs. It is noteworthy that during epochs from 40 to 100, the
performances of Baseline andBaseline + Coherent G-tanh start
to decrease, while the accuracy of Baseline + Coherent Dropout
is still at a high level and very stable. This implies that coherent
dropout is more powerful to prevent overfitting in multi-path net-
works.
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Figure 5: Comparison of the accuracies on validation set dur-
ing training.

4.4 Experiments on Siamese Dropout
Table 1, block C lists the experimental results on siamese dropout.
“SDL@(x)” stands for a siamese dropout loss (SDL) which is com-
puted from the feature map x . Here we choose 5 typical feature
maps in VQA model:

• output: the final output probability vector.
• mixed_feature: the output of the multi-modal feature fusion
module.

• q_feature: the question feature produced by question en-
coder, usually LSTM or GRU.

• v_feature: the image feature produced by CNNs.
Firstly, we evaluate the performance of SDL on single feature

map. When compared with Baseline model, we can see that both
SDL@(output) and SDL@(mixed_feature) perform better, which
demonstrates the effectiveness of our siamese dropout. Then we
test the model with both of the two siamese dropout losses and the
results (SDL@(output+mixed_feature)) show that the accuracy can
be further improved. However, the improvements of SDL@(output)
and SDL@(mixed_feature) are partially superposed. This may be
because both of the two siamese dropout losses are doing the same
thing: reducing the output variance. We also notice that, when
adding q_feature and v_feature to SDL, the increase is not signifi-
cant. The reason may be due to that there are few dropout layers
before those two feature maps.

Table 2: The testing accuracies on the conditions whether
the dropout is closed or open in inference phase. “Mod.”:
Model; “Acc.”: Accuracy; “Dro.St.”: Dropout Status in infer-
ence phase.

Mod.

Acc. Dro.St.
closed open

Baseline 61.39 57.34
Baseline+SDL 62.12 60.01

In order to explicitly demonstrate that our siamese dropout can
decrease the output variance, we record the values of the output dis-
tance 1

n ∥ o −o′ ∥2 in each epoch, and the result curves are in Fig.6.
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Figure 6: The comparison of the output variance between
models with/without siamese dropout.

61.44 61.73
62.12

60.88

56.11

54

55

56

57

58

59

60

61

62

63

0.001 0.01 0.1 1 10

A
cc

ur
ac

y 
(%

)

γ

Figure 7: The influence of the loss weight factor γ on the
performance of siamese dropout.

The curves imply that the effect of siamese dropout is significant:
In Baseline model, the distance between the two outputs keeps
increasing while in Baseline+SDL, it is still controlled at a very
low level. We further conduct experiments to explore whether the
decrease of output variance can reduce the gap between training
and inference phase and the results are listed in Table 2. In this table,
each model is evaluated twice with different dropout status: closed
or open. If dropout is closed, then it acts as an identity layer which
is our usual practice. If dropout is open, then it will act as in training
phase and conduct randomly dropping out even if it is in inference
phase. Consider an idealistic case that the siamese dropout loss
is optimized to 0, and then the results of the two dropout status
will be the same. Thus difference between performances in the
two dropout status can represent the gap of training and inference.
As we can see that in Baseline model, the gap is 4.01% while in
Baseline+SDL, it is only 2.11%. This demonstrates that our siamese
dropout can effectively reduce the gap and make VQA model more
robust.
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In addition, we also discuss the influence of the loss weight factor
γ in Equation 7 (see Fig.7). The results show thatγ should not be too
big or siamese dropout loss may cause bad effects. In the overall loss
function, the siamese dropout loss is supposed to act as an auxiliary
role, or it may lead the optimization to the wrong direction.

4.5 Ablation Analysis

Table 3: The overall accuracies when using different com-
binations of the three techniques. CD:coherent dropout;SD:
siamese dropout; RSGCD: residual stackedGRUswith coher-
ent dropout.

No. CD SD RSGCD Accuracy(%)

1 61.39
2 ✓ 62.28
3 ✓ 62.12
4 ✓ 62.11
5 ✓ ✓ 62.79
6 ✓ ✓ 62.55
7 ✓ ✓ 62.67
8 ✓ ✓ ✓ 63.01

In this paper, we propose three techniques about dropout: coher-
ent dropout, siamese dropout, and RSGCD. In Table 3, we compare
the performances of models with one or several of the three tech-
niques. Here, the siamese dropout uses the same configuration of
SDL@(outperforms) and the RSGCD includes three stacked GRUs.
Note that the dropout in RSGCD encoder is always the coherent
dropout, i.e., in No.4 and No.7, only the dropout in RSGCD is coher-
ent while the other is incoherent. From experiments of No.1-4, we
can see that any of the three techniques can bring much improve-
ment to baseline model, which demonstrates their effectiveness.
And the results of No.5-7 show that although the effects of the
three techniques can not be linearly superposed, the performance
of the combination of two techniques is also higher than that of
single one. This implies that there are complementarity among the
siamese dropout, coherent dropout and RSGCD. Thus as shown
in No.8, the best model can be obtained by using all of the three
techniques. And the final improvement is also significant: 1.62%
higher than baseline model.

4.6 Effect on State-of-the-art Methods
In order to verify the effectiveness of the proposed methods, we
adopt our coherent dropout, siamese dropout and RSGCD question
encoder into the state-of-the-art methods and the results are shown
in Table 4. For MCB† [8], we use coherent dropout, SDL@(output)
and RSGCD encoder with 3 LSTMs. For MUTAN [5], since it doesn’t
provide single model performance on test split, we train the model
by ourselves 1 without Visual Genome [18] dataset. For MUTAN†,
we use coherent dropout, SDL@(output) and RSGCD encoder with
4 GRUs. For BottomUp†, we use coherent dropout, SDL@(output +
1The code is in open access on https://github.com/Cadene/vqa.pytorch provided by
the authors of MUTAN.

Table 4: The improvements brought by our method on the
state-of-the-art methods. † denotes the model uses coher-
ent dropout, siamese dropout and RSGCD. “Ver.” stands for
which dataset is used to train the model.

Accuracy
Method Ver. Yes/No Number Other Overall

MCB[8] v1 82.30 37.20 57.40 65.40
MCB† v1 83.20 37.60 58.00 66.10

MUTAN[5] v1 84.08 40.00 54.82 65.23
MUTAN† v1 85.16 40.17 56.60 66.54

BottomUp[2, 31] v2 82.20 43.90 56.26 65.32
BottomUp† v2 83.37 45.40 57.79 66.92

mixed_feature) and RSGCD with 4 GRUs. We notice that for each
of the state-of-the-art approaches, our methods can still enhance
the model and improve the performance.

5 CONCLUSION
In visual question answering, many models use dropout to pre-
vent overfitting. We notice that in multi-path networks, the current
way to use dropout can cause two problems: the co-adaptations
of neurons and the increase of output variance. In order to pre-
vent co-adaptations, we propose the coherent dropout which is
simple in implementation but effective on preventing overfitting.
As for controlling the output variance, we develop a siamese dropout
mechanism in training, which can explicitly minimize the output
variance and reduce the gap between training and inference phase.
We also explore how to utilize the coherent dropout to design a
deeper question encoder and find that the residual stacked GRUs
with coherent dropout structure is very flexible to stack more GRUs.
We conduct extensive experiments to prove the effectiveness of
the proposed methods and verify that our approach can also bring
additional improvements on the state-of-the-art methods.
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