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Abstract: This paper studies the moving object detection, i.e., analyzing the amount, position and size of the moving
objects in instance-level, which is meaningful for many computer vision problems. However, the existing methods
are still not satisfying in accuracy, portability and speed. In this paper, we propose a novel framework which detects
moving objects by analysis the consistency of the moving foreground. Instead of directly performing cluster algorithms
on the moving foregound, we take two stages: analyzing the composition according to the local density of the moving
foreground points and locating the targets by regressing some anchors. In this way, the proposed method doesn’t need any
training processes and can be efficiently performed to detect moving objects with arbitrary classes. Besides, we create
our own publicly available dataset PDMOD with sufficient data, general challenges and convictive evaluation protocols
to fill the scarcity of the evaluational datasets.
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1 Introduction

Object detection is a basic problem in computer vision.
Driven by convolutional neural network (CNN) and deep
learning, appearance-based object detection has achieved
great success. Regression based methods[1] , region pro-
posal based methods [2] and tracking methods [3][4] per-
form outstanding result both in public datasets[5, 6] and
practical applications. However, they are data-driven and
inconvenient in generalization as the models need to be
trained again before applying to a new class. Detecting ob-
ject based on motion cues can relieve this problem and is
more feasible compared to appearance-based object detec-
tion in some applications like monitoring at night or track-
ing.
Aiming at detecting moving objects from complex scenes,
many methods have been proposed [7, 8, 9, 10, 11]. Be-
sides, some datasets have been collected and published
[12, 13]. Among these works, a dominant paradigm for
the output of moving object detection is the foreground
masks. These masks consist of pixel-wise labels which
provide a detailed discriminative result telling whether a
pixel belongs to the moving foreground. However, it is
less useful for the following questions like tracking and
instance analysis, as there aren’t any direct outputs indi-
cating how many moving objects in the scenes, where are
them, what are the sizes of them and which pixels belong
to the same moving object, et.al.. Compared to the pixel-
wise labels, these kinds of information are more useful for
many subsequent processes. Thus, to a certain extent, the
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foreground masks obtained by aforementioned methods are
unshaped and extra postprocessing is needed for obtain-
ing the instance-level information of moving objects. We
name this task as Instance-level Moving Object Detection
(IMOD).

Recently, some works are contributed to this problem.
Shen and Lu [14] taked the strategy of detecting objects
based on appearance before classifying the objects’ motion
state, which limits their detection capacity to the target ap-
pearance. They used private data set and only tested their
proposed method’s classfication capacity. Siam et.al.[7]
utilized CNN and deep learning to jointly learn both mo-
tion detection and target region proposal. The framework
is designed and trained specially for vehicle detection in-
stead of all class moving objects. They proposed the KITTI
MOD dataset, whose test set only contains two video se-
quences and 497 annotated moving vehicles in total. As
annotating specific for vehicle and missing the annotation
for other moving objects in scenes, the dataset is only spe-
cific for the evaluation of their method. Besides, Zhou
et.al.[15] detected and located the moving objects based on
motion cues. Their method is based on stereo-vision sys-
tem and requires up to 165 seconds to process each frame.
Besides, quantitative analysis is missing in their experi-
mental results. According to the above analysis, there are
two aspects requirments in IMOD problem: Firstly a high-
efficiency method which should be valid for single-view
and for all class, and secondly a public challenging dataset
for evaluation with convictive evaluational protocols.

To miss the first requirement, we propose a motion cue
based robust framework which adopts the stategy of detect-
ing the moving foreground before pursuing the instance-
level information, as shown in Figure 1. We refer to the
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Figure 1: Visualization of the moving object detection framework.

motion detection works in [11] for moving foreground de-
tection and concentrate on the moving foreground analy-
sis in this work. Directly perform clustering algorithms
on the moving foreground is highly discouraged, as they
are time-consuming and not robust for this problem. We
firstly imitate Alex Rodriguez and Alessandro Laio’s idea
of seaching peaks in density map [17] to efficiently anal-
ysis the foreground composition and obtain the potential
object centers. After that, regression analysis is performed
to accurately locate the edges of the targets. Finally, some
priors are introduced to adjust the confidence scores of the
detecting results. From coarse to fine, the method can be
sped up to 20fps and equipped with better robustness.
To make the results more convictive, a new dataset is pro-
posed, called Pedestrian Dataset for Moving Object De-
tection (PDMOD). It is extended from the pedestrian de-
tection subset of CDnet2014[13] and has sufficient data
and multiple common challenges. Inspired from sin-
gle class object detection, we also create the toolkit
for evaluating moving object detection. The PDMOD
dataset and the evaluation toolkit have been made available
at”https://github.com/HuangJunJie2017/PDMOD”.
The contributions of this work are summarized as follows:

1. we construct a novel framework specific for instance-
level moving object detection. The framework can be
performed efficiently and is valid for arbitrary class
moving object.

2. we create a publicly available dataset (PDMOD)
with sufficient data, multiple common challenges and
convitive evaluation protocol. s

The remainder of this paper is organized as follows. Our
proposed analysis framework based on optical flow is in-
troduced in Section 2 and its effectiveness is verified in
Section 3 by comprehensive experiments. Besides, the pro-
posed new dataset PDMOD and the relatived evaluational
protocols are also introduced in Section 3. Finally, Sec-
tion 4 is devoted to conclusions.

2 Methodology

Our strategy is to segment the motion detection result
into different instances and obtain the instance-level in-
formation of moving objects. To this end, we construct
the processing pipeline as shown in Figure 1. There are

mainly four stages: motion detection, composition analy-
sis, bounding box estimation and postprocessing. In the
following, each procedure in this framework will be intro-
duced in detail.

2.1 Motion Detection

Our moving object detection framework is based on the
EMD[11], which can provide motion detection result {pf}
as well as the optical flow while maintaining real-time
property. We adopt the FN2-css-ft-sd optical flow estima-
tion framework[11] and reduce the iterations of CRA[11]
to 10. In this way, we speed up the EMD algorithm to
25fps.

2.2 Composition analysis

This subsection aims at figuring out how many moving ob-
jects in the scene, and at the same time, using some repre-
sentative points to initially locate them. We consider this as
a clustering problem. By using the image coordinate vector
p = [ x y ]T and the optical flow vector f = [ u v ]T

to construct a four-dimentional feature space, each pixel in
an image is formulated into a point in this feature space.
Inspired by Rodriguez A and Laio A [17], the peak points
in the density maps are used to denote different individuals
as shown in Figure 2.

Figure 2: The local density map of the sample points is
shown in the left. And Some major peaks are illustrated in
the right.

At first, we sparsely sample points and only retain η =
1/100 of the total points, as sampling too much points
contributes little to improve the system’s performance, but
causes a huge amount of computation. The computation
complexity of formular 2 is proportional to the square of
the sample point number. Then, we find out the foreground
sample points {pfs} from all the sample points {ps} utiliz-



ing the foreground masks {pf} provided by EMD [11]:

{pfs} = {ps} ∩ {pf} (1)

Subsequently, the local density ρi [17] of foreground point
i is defined as

ρi =
∑

j:pj∈{pfs}

R(i, j) (2)

where R is a similarity function that used to measure the
contribution of foreground point j to the local density of
foreground point i. R is defined as

R(i, j) = S(fi, fj , λf , σf )S(pi,pj , λp, σp) (3)

where S is a sigmoid function defined as:

S(v1, v2, λv, σv) = 1/(1 + eσv(||v1−v2||1−λv)) (4)

where λ is the cutoff distance and σ is the decay rate. We
use abbreviation Sv1,v2 instead in the following sections.
S is expected to yield 1 when the first norm of the differ-
ence vector is less than the cutoff distance λ and yield 0
otherwise. Before being merged together, the optical flow
feature and the coordinate feature are analyzed respectively
to assign different proper parameters for these two kinds of
feature.
Moreover, the distance δi from points of higher density [17]
is defined as

δi = min
j:ρj>ρi

(||pi − pj ||1) (5)

where only the coordinate distance is taken into account.
As shown in Figure 2, the coordinate distance is sufficient
for figuring out the peaks. Finally, the set of peak points
{pp} is selected by the following criterion:

{pp} = {pfs|ρ > τr ∧ δ > τd)} (6)

where the isolated outliers are excluded by setting a thresh-
old τr for the local density of the foreground points. Each
peak point is considered as the geometric center of an in-
dependent moving object.

2.3 Bounding box estimation
As shown in Figure 2, the peak points obtained by for-
mula (6) are coarse when they are considered as the ge-
ometric centers of the moving objects, due to the sparse
sampling operation and the irregular shape of objects. In
this section, we rely on the estimated peak points to get the
bounding boxes of moving objects, being more accurate
with size and aspect ratio messages.
To this end, as shown in the left of Figure 3, taking each
peak point as the geometric center, we firstly set some an-
chor boxes {b} with different dimensions for reference.
Unlike previous object detection methods [1] who employ
fixed size anchor boxes, we utilize the prior that the size of
a moving object is linear relative to the local density. The
areas span three sizes

{λ
2k
s ρi
η
}, k ∈ {0, 1, 2} (7)
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Figure 3: Visualization of bounding box estimation. The
initial anchor boxes and the selected one are shown in the
left. The refinement operation is illustrated in the middle
and the bounding box result is in the right.

where η is defined in Section 2.2 and used as compensation
for the sampling effect. In addition, the three aspect ratios
are set to:

{λka}, k ∈ {−1, 0, 1} (8)

Then the fitting degrees of the anchor boxes are evaluated
to select the best one. Two aspects are considered during
the scoring process:

1. The minimal anchor enclosing the moving.

2. Smmetrical content within the anchor.

According to these two considerations, two different initial
scores are designed correspondingly: the content score Fc
and the symmetry score Fs:

Fc = (1 + βc)
∑
j:pfs

j∈b

Sfi,fj −
βc
η
bwbh (9)

Where b = [ bx by bw bh ] denotes the anchor box.
bx and by are the coordinates of the top left corner. bw is the
width, and bh is the height. βc is a penalty factor which is
used to introduce the penalty term. In this way, the content
score will peak when an anchor box is just big enough to
completely cover a moving object.
As the used anchor box sizes are scattered, the penalty fac-
tors βc needs to be small enough to avoid that the content
score peaks in a small anchor size. However, this will re-
duce the ability of seperating objects which are moving side
by side. This conflict problem is solved by introducing the
prior that the contents in an anchor box should be central
symmetric, and according to this, the symmetry score is
defined as

Fs =1− 1

2bwbh

∑
j:pfs

j∈b

|Sfj ,fp − Sf̃j ,fp | (10)

where f̃j is the optical flow vector of the symmetry point:

p̃j = 2 · pp − pj (11)

Fs yields near to 1 when the content is highly central sym-
metric and 0 otherwise. The final score of an anchor is
defined as

F = Fc · Fs (12)



where Fs acts as another strong penalty factor. As a result,
the one with the highest F score is selected.
As shown in Figure 3, the selected anchor boxes are usually
slightly bigger than the desired bounding boxes. We shrink
them by searching the content edges: Within the selected
anchor box, a score is appended to each row Qr(i) and
each column Qc(j). The row score Qr(i) is defined as the
maximal similarity between the peak point optical flow and
the pixels’ optical flow in this row.

Qr(i) = max
j:pj∈Ri

Sfj ,fp (13)

where Ri denotes the set of pixels in row i. Similarly, col-
umn score Qc(j) is defined as

Qc(j) = max
i:pi∈Rj

Sfi,fp (14)

By setting a threshold τe to the score curve, the intersec-
tion points which are closest to the anchor center are se-
lected out as the edge of the final result. This operation is
illustrates in Figure 3.

2.4 Postprocessing
Different confidence socres C are attached to the bounding
boxes produced by the aforementioned processes. At first,
we consider the prior that the detecting results are highly
correlated between two consecutive frames. So the initial
confidence socres of detecting results {d}t in frame t are
defined as

Cdi
= 0.3 + 0.7× max

j:dj∈{d}t−1

iou(di,dj) (15)

where iou(di,dj) is the intersection-over-union of two re-
gions di and dj . A high confidence score is attached to the
result which has high overlap with any results in the pre-
vious frame. Otherwise, a low initial score is attached the
result considering it as a outlier or with low localization
accuracy.
Besides, due to the arbitrary shape of moving objects, there
may be more than one peak points corresponding to the
same target. This will cause many false positive results. In
this work, Soft-NMS [18] is performed to adjust the confi-
dence scores. We sort all bounding boxes according to the
score F defined in Section 2.3. The confidences of bound-
ing boxes are adjusted by the following penalty function:

Cdi =

{
Cdi , if iou(di,dl) < τs

Cdi(1− iou(di,dl)Sfi,fl), if iou(di,dl) ≥ τs
(16)

where dl is the bounding boxes with higher F scores than
di in frame t. After performing Soft-NMS [18], the confi-
dence values of most false positive results are reduced to a
low level. Figure 4 illustrates the effect of Soft-NMS algo-
rithm.

3 Experiment

3.1 Dataset
Our proposed method is evaluated on the Pedestrian Detec-
tion Dataset(PDD), which is a subset of CDnet2014 [13].
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Figure 4: The effect of the Soft-NMS algorithm.

Algorithm 1 Moving Foreground Analysis

1: Input: image sequence It, moving foreground masks {pf}t,
optical flow field {f}t;

2: sampling It to obtain sample points {ps}t;
3: utilizing (1) to judge out foreground sample points {pfs}t ;
4: utilizing (2) and (5) calculating ρi and δi respectively;
5: utilizing (6) to judge out the density peak points {pp}t;
6: initializing anchors according to (7) and (8);
7: scoring the anchors according to (12) and selecting the one

with highest score;
8: refining the selected anchor according to Figure 3;
9: initializing the confidence score according to (15);

10: performing Soft-NMS to refine the confidence score;
11: Output: bounding boxes set {d}t and corresponding confi-

dence score set {C}t.

PDD consists of ten video sequences which contain from
1099 to 7400 frames with spatial resolutions varying from
320 × 240 to 720 × 576. There are total 26248 frames
with 14918 valid frames and total 21215 annotations in
the form of rectangle bounding boxes. Different video se-
quences contain various challenging scenarios such as un-
certain number of targets, irregular target shape, inconsis-
tent motion speed inside target, hard shadow, and so on.
Howerver, PDD is annotated specific to pedestrians and
one fifth of them are static targets. We adjust PDD by re-
moving the static annotations whose moving content ac-
counts for less than 20% of the total area. As a result, con-
taining 11653 valid frames and 16205 valid annotations,
the adjusted dataset is dubbed as Pedestrian Dataset for
Moving Object Detection(PDMOD).

3.2 Evaluation Metrics
As a single class object detection problem, we refer to the
evaluation protocols which are introduced in the famous
face detection dataset FDDB[19] and Wider-FACE [20]. In
the first stage, we pay attention to the localization accu-
racy of the bounding box result. The confidence scores are
ignored and all the detecting results are considered. Hun-
garian algorithm[21] is performed to find the best matching
among the detecting results {d}t and the annotations {a}t
in the same frame t. After that, the deteting result and the
annotation in the same match are attached a match score
M, which is equal to the Intersection-over-Union score
iou(d, a) of this match. By setting different IoU thresholds
τiou, the statistical score recallR is calculated by

R(τiou) =
1

Ng

∑
i:di∈{d}

χ(Mi > τiou) (17)
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Figure 5: The bounding box results in some key frames. The yellow bounding boxes illustrate the ground truth annotations
and the red bounding boxes illustrate the detecting results alone with confidence scores.

where χ(x) = 1 if x = true and χ(x) = 0 otherwise. And
the precision P is defined as

P(τiou) =
1

Nd

∑
i:aj∈{a}

χ(Mj > τiou) (18)

In the second stage, we take confidence score into account
and evaluate the detectability by using both ROC curve [19]
and Precision-Recall curve [20]. The ROC curves and the
Precision-Recall curves can tell the whole performance of
the proposed methods.

3.3 Parameter setting

When analyzing composition, we set λf = 10, σf = 0.3,
λp = 25 and σp = 0.15 in formula (3). τr = 3, τd =
30 in formular (6). When estimating bounding boxes, the
parameters are set as λs = 1.618 in formula (7), λa =
1.618 in formula (8), βc = 0.01 in formula (9). During
postprocessing, τs = 0.3 in formula (16).

3.4 Method for comparison

We compare the proposed method with the strategy that
directly performing cluster algorithm CFSFDP [17]: The
density peaks is selected out in the same way as ours. Af-
ter that, each foreground sample point is attached to the
nearest peak to form several clusters. The bounding boxes
are obtained by finding the minimun rectangles that cover
all the points in the same cluster. Finally, the confidence
scores are calculated according to formular (15).

3.5 Qualitative result

Some bounding box results obtained by our proposed
method are illustrated in Figure 5. Though the scenes con-
tain different challenges, comparing the detecting results
(the red bounding boxes) with the ground truths (the yel-
low bounding boxes), the proposed method outputs bound-
ing boxes with high success rate and localization accuracy.
Shadow and repeating detection cause most false positive
results. As shown in the first image of the second row in
Figure 5, there are a few frames which miss ground truth
annotations, which also leads to false positive detections.

3.6 Quantitative result
Figure 6 illustrates theR-τiou curve and the P-τiou curve of
the proposed method and CFSFDP. The proposed method
score 0.96 inR when using a low IoU threshold τiou < 0.3.
There is a 0.04 false negative rate which mostly due to the
occlusion of multiple targets. A P score of 0.553 means
that our proposed method score highly in R at the cost
of a 0.447 false positive rate. Most false positive detect-
ing results come from two respect: detecting the shadow
as the moving object and producing more than one bound-
ing boxes for a single target. When the IoU threshold ex-
ceed 0.3, both R score and P score drop down at a ap-
proximately linear rate. As the R-τiou curve and the P-τiou
curve decays more slowly, the localization accuracy of the
proposed method is more satisfying when compared to that
of directly performing cluster algorithm (CFSFDP). Clus-
ter algorithms have a trend to split the targets, which will
cause a lower localization accuracy.
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Figure 6: The R-τiou curves and the P-τiou curves of our
proposed method and CFSFDP[17].

By setting different IoU threshold τiou values, the P-R
curves and the ROC curves of our proposed method is il-
lustrated in Figure 7. The ceiling of the precision in P-R
curves is caused by that the confidence score didn’t tell any
information about whether a bounding box is well posi-
tioning or whether the target is a shadow or a pedestrian.
According to the P-R curves, the proposed method per-
forms steadily when τiou maintains a low value, but quickly
shrinks to the left bottom of the image when applying a
higher τiou value. This is corresponding to change in the
R-τiou curve plotted in Figure 6. The proposed method
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Figure 7: The Precision-Recall curves and the ROC curves
of the proposed method with respect to different τiou values.

performs more robust than directly performing cluster al-
gorithm as it can attach different confidence scores to the
bounding box results belong to the same target. By con-
trast, when a target is split into several parts, CFSFDP can’t
tell which part is better to be a delegate,.

3.7 Efficiency
We measure the computation time by Matlab on an In-
tel Core i5-7400 3.0GHz PC. Given the foreground masks
and optical flow fields, it takes total 8.75 minutes for our
method to process the PDMOD with 11653 valid frames
and 28473 detecting results. The time consumption of a
single frame (∼45ms) is linear relative to the target num-
ber in the scenes. When compared with other existing
methods[7, 14, 15], the proposed method is the fastest one.
As the foreground targets are processed independently, it
can be further accelerated through GPU parallel process-
ing.

4 Conclusion

Instance level moving object detection is a challenging but
meaningful task. In this paper, we focus on this problem
and propose an efficient strategy which can provide a cer-
tain level accuracy. The poposed framework doesn’t need
any training process and can be efficiently performed to
detect any classes objects as long as they are moving in the
sences. As the proposed method only takes optical flow
as the only cue, the quality of its result rely on the accu-
racy of optical flow estimation to a great extent. Future
works can introduce appearance cues to remove false posi-
tive detections caused by shadow and improve the localiza-
tion accuracy. The proposed modified dataset can show the
performance of instance-level moving object detection to
a considerable height level. However, there are still some
defects: the class of target is single, lack of the sences cap-
tured by non-stationary cameras and so on. Thus, a more
convictive evaluational dataset is needed to be exploited.
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