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 Abstract - Feature Pyramid Network (FPN) is one of the best 
object detection algorithms in the current object detection field, 
which uses convolutional neural network (CNN) to detect different 
scaled objects in an image. However, FPN’s feature fusion method 
ignores the influence of the consecutive feature, which hinders the 
information flow. In this paper, we proposed an end-to-end image 
detection model called CFN (Consecutive Feature Network) to 
overcome this problem and speed up the detection process. Under 
the premise of equal accuracy, the novel feature fusion method we 
propose can detect faster than other methods. In the feature fusion 
module, features from consecutive layers with different scales are 
merged instead of compartmental layers, which will be fed to the 
classification and regression subnet to predict the final detection 
results. On the PASCAL VOC 2007 test, without any data 
augmentation training skills, our proposed network can achieve 
77.1 mAP (mean average precision) at the speed of 3.9 FPS (frame 
per second) on a single Nvidia 1080Ti GPU. Code will be made 
publicly available. 
 

 Index Terms – Object detection, deep convolutional neural 
network, feature fusion, multi-level feature. 
 

I.  INTRODUCTION 

With the arrival of the era of the big data and the greatly 
improved hardware computing capabilities, object detection 
based on deep convolutional neural networks (DCNN) has 
achieved significant advances in recent years. The current 
DCNN detectors of state-of-art can be divided into two 
categories: (1) the two-stage approach, including R-CNN [1], 
SPP-net [2], Fast R-CNN [3] and Faster R-CNN [4], and (2) the 
one-stage approach, including YOLO [5], YOLOv2 [6] and 
SSD [7]. In the two-stage approach, a series of candidate object 
boxes is first generated, and then they are further sent to predict 
the corresponding category and perform bounding box 
regression. The two-stage approach has been achieving 
dominant detection accuracy on most of the challenging 
benchmarks, including PASCAL VOC [8] and MSCOCO [9]. 
While one-stage approach uses the idea of regression, that is to 
say, given the input image, the bounding boxes and the 
corresponding categories of the targets can be returned at 
multiple positions in the image without requiring the generation 
of those candidate object boxes. The main advantage of this 
method is its high detection speed. However, its detection 
accuracy is usually not as good as the two-stage detector. 

From accuracy perspective, recently, multi-level feature 
maps are attached to both the two-stage approach and the one-
stage approach to improve the detection accuracy. The one-
stage Single Shot MultiBox Detector (SSD) [7] is the first 
network architecture to combine predictions from multi-level 

feature maps with different resolutions to naturally handle 
objects of various sizes. Subsequently, Deconvolutional Single 
Shot Detector (DSSD) [10] merges the low-level feature maps 
and the high-level feature maps which are generated by a new 
deconvolutional module to produce fused feature maps for 
predictions. Compared with SSD, DSSD improves the 
detection accuracy by almost 4 mAP. Similarly, two-stage 
Feature Pyramid Network (FPN) [11] merges low-resolution, 
semantically strong features with high-resolution, semantically 
weak features via a top-down pathway and lateral connections. 
But these connections bring a larger amount of calculations, 
which harms detection speed. 

In addition, some two-stage methods try to add another 
prediction branch to improve the detection accuracy. He et al. 
[12] add a branch for predicting an object mask in parallel with 
the existing branch for bounding box recognition, effectively 
achieving accurate object detection and semantic segmentation. 
Although the correctness of the region proposals and the effect 
of object detection have been slightly improved, it will bring 
high computational complexity and slow down the detection 
speed. 

From speed perspective, the two-stage approach is lack of 
competitiveness compared with the one-stage approach, which 
is largely due to two large fully connected layers for per RoI 
(Region of Interest) classification and regression. In recent 
years, there are some works on fully convolutional networks 
and depthwise separable networks, including R-FCN (Region-
based Fully Convolutional Networks) [13], Xception [14], 
MobileNet [15] and MobileNetV2 [16], which greatly enhance 
the detection speed. However, the detection accuracy is their 
deficiency. 

In our opinion, considering real-time applications in 
industry, we intend to improve the feature fusion method of 
FPN and speed up the process of two-stage detectors under the 
premise of ensuring certain accuracy. In this paper, we design a 
novel two-stage object detection framework, called CFN, 
which utilizes our new consecutive feature fusion method to 
predict object bounding box and corresponding category. As 
shown in Fig. 1, the latter feature map performs element-wise 
summation by convolution and up-sampling operations with the 
previous feature map’s convolution operation. On one hand, 
this consecutive feature fusion method can increase the richness 
of the feature expression, and on the other hand, the relationship 
between the previous and latter feature map can be closer and 
strengthen the flow of information. The experimental results 
show that our proposed model is superior to other methods 
under the premise of equal detection accuracy. 



The rest of the paper is organized as follows. Section II 
introduces related object detection methods and related 
technologies involved. The proposed consecutive feature 
network architecture is described in Section III in detail. 
Section IV gives the experimental results and discussion. The 
last section concludes the paper. 

II. RELATED WORK 

A.  Traditional Hand-Crafted Approach 
Early object detection methods are mainly based on the 

sliding window and consist of three procedures: 1) using sliding 
windows of different sizes to convolve with the original image 
as candidate regions; 2) extracting the feature expression of 
candidate regions by hand-engineered features; 3) classifying 
using the trained classifier. As one of the most famous methods, 
Viola and Jones [17] proposed the face detection method based 
on haar-like feature and adaboost classifier, which achieves 
effective detection accuracy with high efficiency. Then, Dalal 
[18] proposed to use image histograms of oriented gradient 
(HOG) to extract features for pedestrian detection. After that, 
Felzenszwalb [19] proposed a multi-scale deformable part 
module (DPM) based on HOG and support vector machine 
(SVM) for performance extension. However, with the 
development of modern deep convolutional neural network, 
object detectors like R-CNN [1] show dramatic improvements 
in accuracy, which can be mainly divided into the two-stage 
approach and one-stage approach. 

B.  Two-Stage Approach 
The dominant model in modern object detection is based on 

a two-stage approach. The first stage generates a series of 
candidate object proposals that may contain objects from the 

whole image pyramid space, such as Selective Search [20], 
EdgeBoxes [21], and the second stage classifies the candidate 
object proposals from the first stage into object categories or 
background and locates the accurate object regions by 
classification network and regression network. Region Proposal 
Network (RPN) [4] upgraded the first stage and generated the 
candidate object proposals by using network features instead of 
extra feature extraction, which achieved end-to-end training 
and test. Following RPN, numerous extensions, such as 
Deformable Convolutional Networks [22] and FPN [11], have 
been proposed to increase the detection accuracy by enhancing 
the transformation capacity of CNN model and exploiting 
inherent multi-scale, pyramidal hierarchy of deep convolutional 
networks respectively. On the other hand, for the purpose of  
improving the detection performance of the second stage, Dai 
et al. [13] proposed to use the position-sensitive score maps 
generated by a fully convolutional network to replace the fully 
connected network after the RoI (Region of Interest) pooling 
layer, which accelerated the real-time detection process to some 
extent. Subsequently, some research works are conducted on 
modifying the convolution mode in recent years. Xception [14] 
presented to use depthwise separable operation (a depthwise 
convolution followed by a pointwise convolution) to replace the 
regular convolution in the backbone convolutional neural 
network architecture, which drastically increase the speed of the 
deep convolutional neural network. 

C.  One-Stage Approach 
Object detection research also strives to increase the speed of 

detection. Considering the high efficiency, one-stage detector 
arises spontaneously, which pays more attention to the real-time 
performance of network model. YOLO (You Only Look Once) 
[5] simplifies object detection as a regression problem, which 
directly predicts the object bounding boxes and the 
corresponding class probabilities without proposals generation. 
Benefit from this method, YOLO can run object detection at a 
very high speed but the accuracy is not satisfactory enough. 
YOLOv2 [6] is the enhanced version of YOLO and it improves 
the YOLO by removing the fully connected layers and adoptes 
anchor boxes like the RPN. Similarly, combining the regression 
idea of YOLO and the anchor mechanism of RPN [4], SSD [7] 
further improves detection performance by producing 
predictions of different scales from multiple feature maps. In 
order to improve SSD’s detection accuracy, especially for small 
objects, Fu et al. [10] propose the DSSD method, which 
introduces additional context via deconvolution layers into 
object detection. 

In conclusion, the one-stage detectors have made good 
progress, but their accuracy still trails that of two-stage 
detectors. The goal of this paper is to improve the detection 
performance of FPN [11] and design a better two-stage detector 
called Consecutive Feature Network through better consecutive 
feature fusion method. 

III. NETWORK ARCHITECTURE 

Having achieved significant advances in computer vision 
challenges, deep CNN model with multiple layers has shown 
great power in object detection. As shown in Fig. 1, this section 

 
 

Fig. 1 Our proposed consecutive feature network model 
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describes our proposed object detection framework. Where 
res2, res3, res4 and res5 are the blocks of the deep residual 
network (ResNet) [23]. Besides, P2, P3, P4 feature maps are 
generated by our feature fusion method respectively, and P5 
feature map is the convolutional result of res5 block. We first 
introduce the backbone CNN for feature extraction in section 
III.A. Then in section III.B, we elaborate the proposed 
consecutive feature fusion module in detail. Finally, the 
predictions are made independently at all levels that combines 
high-level semantic information and low-level local 
information, and we supervise losses at these layers in section 
III.C. 

A.  Backbone CNN 
Recent research reveals that the neural network depth plays 

a crucial role in computer vision task, such as classification, 
object detection, segmentation, etc. But deeper stacked neural 
networks are more difficult to train, which is the result of 
vanishing/exploding gradients. In order to make full use of the 
benefit of deep expression, our model is built on the deep 
residual network (ResNet) [23] framework. As shown in Fig. 2, 
the main difference between plain network and ResNet is the 
shortcut connection. 

Until recently, the majority of neural networks consisted of 
linear sequence layers, such as VGG [24]. As depicted in Fig. 
2(a), each layer computes a function 𝐹𝐹  and the output 𝑥𝑥𝑛𝑛  of 
the 𝑛𝑛-th layer is expressed as follow 

( )1;−=n n nx F x W                                 (1) 
Here, 𝑊𝑊𝑛𝑛 is the weight parameters of the layer. 

However, ResNet consist of a sequence of residual units. As 
shown in Fig. 2(b), the output 𝑥𝑥𝑛𝑛 of the 𝑛𝑛-th residual unit in a 
ResNet is expressed as follow 

( )1 1;− −= +n n n nx x F x W                            (2) 
Here, 𝐹𝐹(𝑥𝑥𝑛𝑛−1;𝑊𝑊𝑛𝑛) denotes the residual, which is computed by 
weight parameters 𝑊𝑊𝑛𝑛. 

It has been evidently observed that ResNet has superiority 
over traditional plain network in training, which can be 
explained by the further gradient flow within the network. In 
order to prove this, consider the 𝑛𝑛-th and 𝑚𝑚-th residual units 
where n>m. Through (2) and recursion, we can get following 
formula 
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Here,  𝑖𝑖 denotes the index of residual units. 
Furthermore, if the loss is 𝑙𝑙, we can use the chain rule of 

calculus and express the partial derivative of 𝑙𝑙 with respect to 
the output 𝑥𝑥𝑚𝑚 of the 𝑚𝑚-th layer. 
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Next, we will find 
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Then, we can see that the latter is relevant to the depth 𝑛𝑛. And 
the former is independent of the depth 𝑛𝑛, which won’t hinder 
the gradient flow from deep unit to shallow unit. Therefore, we 
exploit ResNet-50 framework as our backbone CNN. 

B.  Feature Fusion Module 
In general, the deep neural network structure is composed of 

a stack of convolutional layers, which reduces the memory 
usage in the spatial dimension by down-sampling pooling. At 
the same time, it drastically increases the dimensions of feature 
channels to ensure classification accuracy. After all, the deep 
convolutional neural network can increase the diversity of high-
level semantic expression. Therefore, during the design of the 
feature fusion module, we should take into account the 

 
 

Fig. 2 (a) Layer in a plain network. (b) Residual unit 
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Fig. 3 Our proposed feature fusion module 
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matching problem of the spatial dimensions of feature maps and 
the dimensions of feature map channels. 

As depicted in Fig. 3, the latter 𝑛𝑛 + 1-th layer is half of the 
spatial dimension of the 𝑛𝑛 -th layer, on the contrary, the 
dimension of feature channels is twice that of it. Thus, when the 
number of feature channel does not match, we can change the 
channel dimension by 1 × 1 convolutional layer. On one hand, 
1 × 1 convolutional layer can reduce the channel dimension, 
and on the other hand, it can reduce the connection parameters 
and computational complexity. Then, we use deconvolution 
layer with a stride of 2 to upsamle the 𝑛𝑛 + 1-th layer’s spatial 
resolution after 1 × 1  convolution. Finally, the upsampled 
feature map is merged with the corresponding former feature 
map that goes through a 1 × 1 convolutional layer to reduce 
channel dimensions by element-wise summation. In table I, the 
fused feature maps are shown in detail. Compared with FPN’s 
top-down and compartmental connection mode, our 
consecutive connection mode enhances the information flow 
and makes the detection speed faster. Our experiment shows 
that our proposed consecutive feature fusion method is better 
than that of FPN. 

C.  Multi-Level Supervised Learning 
Generally, the deep layers have stronger semantic 

information and the shallow layers have higher resolution local 
information. In this section, we combine deep layers and 
shallow layers for object detection. For the feature maps 
merged in section 3.2, they will be sent to R-CNN subnet for 
predictions simultaneously. In the R-CNN series, the R-CNN 
subnet refers to the class-specific classification network and the 
bounding box regression network, thus, the whole network 
losses are composed of four parts, including RPN’s 
classification loss and bounding box regression loss, R-CNN 
subnet’s classification loss and bounding box regression loss 
respectively. Finally, the whole network multi-task losses are 
supervised as follow 

_ _ _ _

=

= + + +

∑

∑

p
p

p p p p
p

L l

rpn cls rpn bbox rcnn cls rcnn bbox
 (6)  

Where 𝑝𝑝 denotes the merged feature map. 

In next section, the implementation details are presented by 
contrasting experiments. 

IV. EXPERIMENT AND ANALYSIS 

Our model is trained on the collection of PASCAL VOC2007 
trainval and PASCAL VOC2012 trainval that has 20 object 
categories, and then evaluates the results on the PASCAL 
VOC2007 test which has 4952 images. We implement our 
network by well-known open-source deep learning library 
Caffe. The backbone ResNet-50 model is pretrained on the 
ILSVRC classification dataset. And then we finetune our 
proposed model by stochastic gradient descent (SGD) with 
learning rate of 10−4, and the learning rate decays by a factor 
of 0.1 every 50000 steps. We train 160000 iteration on a single 
Nvidia 1080Ti GPU.  

A.  The Training and Test Results 
The training loss curve is shown in Fig. 4.  From training loss 

curve, it can be seen that the training loss converges at 60000 
iterations, only a slightly little jitter. But the test performance 
of 60000 iterations’ caffe model is far inferior to that of 160000 
iterations’ caffe model. The main reason is that it’s not enough 
to fit other data when the loss decreases to the convergence 
point exactly. So it requires further convergence and 
approximation, and the final test experiment is based on 160000 
iterations’ caffe model. Besides, we evaluate the object 
detection accuracy by mean average precision (mAP) and the 
detection details on PASCAL VOC2007 test dataset are shown 
in the following table II. In fact, the training dataset plays a 

TABLE II 
THE DETECTION RESULTS ON PASCAL VOC 2007 TEST DATASET 

mAP aeroplane bicycle bird boat bottle bus car cat chair cow 

77.1 85.9 83.2 77.0 67.4 59.9 85.1 86.1 89.1 58.0 81.5 

table dog horse motorbike person plant sheep sofa train tv  

71.0 87.9 84.6 82.8 78.5 49.3 75.7 77.5 87.1 73.9  

 
 

 
Fig. 4 The training loss curve 
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significant role in detection performance. When we trained only 
on VOC2007 trainval dataset, the detection accuracy is 6 mAP 
lower than our model. Thus, we can see that without data 
augmentation training skills, the detection accuracy of our 
model is predominant. 

B.  Inference Time 
In this section, we compare several two-stage object 

detection methods with ours. As shown in table III, except that 
the detection result of Faster R-CNN model based on VGG [24] 
comes from the original paper, the other two experimental 
results are conducted on a single Nvidia 1080Ti with Intel(R) 
Core(TM) i7-6850k CPU @ 3.60GHz. Besides, the mAP and 
FPS results are averaged after many tests. Obviously, our CFN 
model outperforms more accurate than Faster R-CNN model by 
nearly 4 mAP, but the speed is slightly slower, which is the 
result of complicated multi-level supervised learning. In the 
case where our CFN model is almost as accurate as the FPN 
model, our model detects 15 percent faster than FPN model, 
which benefits from the lower amount of computation that our 
proposed consecutive feature fusion method brings. 

C.  The Influence of Multi-Level Supervision 
Generally, combining the deep and shallow layers can bring 

improvement of detection accuracy. In this section, we do 
ablation study on whether reducing level influences the 
detection or not and what effect it brings. As shown in table IV, 
we can see that the detection performance based only on single 
level is far inferior to that of our all levels’. Furthermore, 
compared with multi-level without res6 which denotes the 
pooling result of the res5, our model based on all levels also 
outperforms more accurate than it. These comparisons indicate 
that the multi-level supervision plays a significant role in 
detection performance and our multi-level feature is superior to 
single-level feature for object detection. 

V. CONCLUSION AND FUTURE WORK 

We propose a novel two-stage network architecture for 
object detection, which exploits our new consecutive feature 
fusion method to predict object bounding box and 
corresponding category. And the proposed network utilizes the 
rich feature expression capability of deep convolutional neural 
network and combines semantic information with multi-level 

feature maps. The final experimental results show that our 
network model is superior to Faster R-CNN model and FPN 
model in detection accuracy aspect and detection speed aspect 
respectively. In conclusion, our proposed model achieves 
competitive detection accuracy and speed in object detection. 
In future work, we are going to further improve our detection 
speed with the help of depthwise separable convolution, which 
is widely used in mobile and embedded applications. And we 
hope that our proposed feature fusion method can be extended 
to other computer vision tasks, such as semantic segmentation, 
etc. 
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