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a b s t r a c t 

Online interactive behaviors between Web users often make some social media contents go viral. The 

popularity of social media contents can help us understand public interest and attention behind user in- 

teractions, thus popularity prediction of online contents has become a key task in social media analytics 

and can facilitate many applications in different domains. However, it is a difficult task for two main 

reasons. Firstly, popularity can be affected by many factors such as user, text content and time. Secondly, 

social media data is often noisy, which may degrade the performance of the prediction model. To over- 

come these difficulties, in this paper, we design a deep learning based popularity prediction model, which 

extracts and fuses the rich information of text content, user and time series in a data-driven fashion. To 

deal with the noise in social media data, we incorporate attention mechanism to focus on more informa- 

tive parts and suppress noisy ones. Experiments on real world datasets demonstrate the effectiveness of 

our proposed model. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The continuous development of social media contents and the

nteractive behaviors between people often make some user gen-

rated contents spread quickly through the Internet. The popular-

ty of social media contents can help us understand public inter-

st and attention behind user interactions, which has profound

nfluences on social, economic and governmental activities. Thus,

odeling and predicting the popularity of online contents has be-

ome an important research topic in social media analytics and

s beneficial to many applications in public management, business

nd security-related domains. For example, it can support emer-

ency management by knowing the impact of natural disasters,

errorisms and crimes [1] . In business domain, it can help analyze

he trends as well as the concerns of people, and provide valuable

nformation for systemic risk modeling [2] . 

However, popularity prediction is a nontrivial task. Firstly, the

mounts of users and user generated contents in social media are

uge and they are multi-dimensional. For example, there are hun-

reds of millions of monthly active users on the Twitter platform,

nd the relationships between users are very complicated. Sec-

ndly, social media data are often noisy. For instance, there are
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any informal expressions, word morphs in social media. Thirdly,

opularity may be affected by many factors, such as text content,

ser and time, which are intertwined with each other during the

ascade process. 

Early studies on popularity prediction mainly adopt feature-

ased methods [3–7] . These methods extract a large number of

eatures related to user attributes, user network, text content and

ime series, and then train machine learning models to predict

opularity. They can get relatively good performance when fea-

ures are effective. However, as the performances of these methods

ely heavily on feature engineering, which is time consuming, labor

ntensive, and requires much expert knowledge. In the case that

he selected features are not appropriate for the task, the model

an be brittle. While early studies depend on simple regression

odels, some recent studies focus on modeling the time series of

opularity using stochastic processes (e.g. Hawkes processes [8] )

8–13] . However, they solely use time series information for the

rediction task, and ignore other valuable information for popular-

ty prediction. Moreover, these methods rely on strong hypotheses

bout the formation of popularity. 

Recently, inspired by the outstanding performances of deep

earning models in many fields, several deep learning based popu-

arity prediction methods are proposed [14–16] . In these methods,

eepCas [15] and DeepHawkes [16] only take user network infor-

ation into consideration, and ignore interactions between differ-

nt kinds of information (i.e. text, user and time series), while the

ethod in [14] only uses deep neural network to extract features

rom videos. All these related methods either require feature engi-
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Need much expert knowledge
Require �me-consuming feature engineering
Become bri�le when features are not appropriate

Only consider �me series informa�on
Rely on strong hypotheses about the forma�on of 
popularity 

Only consider user informa�on
Ignore interac�ons between different kinds of 
informa�on

Exis�ng Methods Problems and Issues
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based methods

Other deep learning 
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Fig. 1. Existing problems of popularity prediction. 
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neering, or only focus on part of the useful information for pop-

ularity prediction. In summary, Fig. 1 shows existing problems of

popularity prediction models in the related work. To address the

aforementioned challenges and overcome the weaknesses of ex-

isting models, we propose a deep neural network model to pre-

dict the popularity of social media content. It jointly models users

participating in the online activities, user generated text contents

as well as time series at an early stage. Our model takes multi-

ple strategies to fuse different kinds of information by considering

the interplay between them. Firstly, as users have different writing

styles and word usage tendency, and users in the same community

tend to have similar interests, we learn word and user embedding

jointly. In addition, contents of different topics may have different

popularity evolution patterns and different influential users. Thus,

we adopt attention mechanism and a fusing layer to capture the

interplay between different kinds of information. 

The contributions of this paper are as follows. Firstly, we pro-

pose a neural model for popularity prediction, include time em-

bedding and joint embedding of users and words. To focus on

the informative parts, we also employ attention mechanism. Sec-

ondly, we propose three encoders by considering text content, user

and popularity time series information for social media content.

Thirdly, we use large social media datasets to show the effective-

ness of our neural popularity prediction (NPP) model. 

The rest of the paper is organized as follows. Section 2 reviews

the related research on popularity prediction. Section 3 presents

the details of our proposed method. In Section 4 , we report our

experimental study and discuss the results. Finally in Section 5 , we

conclude the paper and raise some future work. 

2. Related work 

Popularity reflects the level of public attention toward a Web

content (e.g. a hashtag, an event, a video, etc.), which is quanti-

tatively represented by a measure, either a numerical value (e.g.

the number of related tweets, the number of views) or a range

of values. Popularity prediction aims to predict this measure of

public attention using the information at an early stage. Existing

approaches to popularity prediction fall into four categories: fea-

ture engineering, time series analysis, cascade process analysis and

deep learning based methods. 

Feature engineering based methods mainly focus on feature de-

sign. The features used in the related work are mainly extracted

from user attributes, user network, text content and time series at

an early stage. Tsur and Rappoport [3] extract a lot of lexicon fea-

tures as well as some topic, user and time series features, and then

adopt different machine learning models to predict topic popular-

ity in future days. Aiello et al. [4] predict the popularity of hashtags

on the next day, using features such as language model divergence
nd topic distribution etc. Weng et al. [5] propose some commu-

ity and user network features. To predict the popularity of news

rticles, Tsagkias et al. [6] propose many features, include surface

eatures (e.g. publication time, length of the content and number

f hyperlinks), accumulation features (e.g. number of articles at the

ame time), texture features (e.g. term frequency of keywords), se-

antic features (e.g. number of location entities, person entities

nd organization entities), and physics features (e.g. temperature).

andari et al. [7] take the number of shares as the popularity of

ews articles. They adopt features such as the average popular-

ty of the corresponding category and news source. They also con-

ider the text subjectivity as well as named entities in the text.

 major drawback of these methods is that they usually require

omain knowledge and hand-crafted effort s so as to design useful

eatures. 

Time series analysis based methods mainly take advantage of

he evolution information of popularity at an early stage. Early

tudies use a simple linear function to predict popularity [17] .

ome other works use multivariate linear regression [18] , ARMA

odel [19] , or multiplicative seasonal Holt–Winters model [20] .

hese methods assume that future popularity has a linear or non-

inear relationship with early popularity. Some works assume that

he popularity evolution processes can be described by several

emporal patterns [18,21] , and thus they use most similar pop-

larity evolution processes to make predictions. Recently, many

orks model the spread of contents as stochastic processes [8–13] .

awkes [8] is the state of the art method among them. It first

mploys Hawkes processes to model the spreading processes of

ontents, then uses both learned stochastic processes parameters

nd some other features to train a random forest model. Although

hese stochastic models elegantly explain the formation process of

opularity, most of them only rely on time series information and

gnore other important information for the prediction, with the ex-

eption of [8] using some other features. 

Popularity prediction is similar to cascade size prediction,

hich aims to predict the cascade size in the future using the cas-

ade state at an early stage. Cascade process analysis based meth-

ds predict popularity by modeling the cascade process in user

etwork. Zhang et al. [22] simulate the spreading process of an

vent, using similarity between user history publications and the

vent content to compute user interest toward the event. DeepCas

15] constructs a cascade network by taking the users involved in

he cascade as nodes and the following relationships as edges. It

akes random walks on the cascade network. Then, it uses Recur-

ent Neural Network (RNN) with attention mechanism to extract

eatures from the walk sequences for popularity prediction. These

ethods mainly consider information of user network, and do not

ake fully use of other information from text content and time

eries. 
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There are a few popularity prediction methods based on the

eep neural network. Trzcinski et al. [14] adopt LRCN [23] to ex-

ract features from video content, and the extracted features are

hen used to predict the number of views at a future time. How-

ver, their method is limited to video popularity prediction. Deep-

as [15] is also a deep neural network based method, but it only

ses user network information. DeepHawkes [16] is an extension of

awkes method. The original Hawkes method only uses the num-

er of followers as user feature, while DeepHawkes uses user em-

edding vector and adopts RNN to encode cascade paths. However,

eepHawkes only consider user information and cascade path in-

ormation. If we take every post or retweet as an element in a

equence, the propagation process can be viewed as a sequence.

mong neural network models, RNN has gradually become the ba-

is of many models dealing with sequence data, e.g. next basket

rediction [24] , machine translation [25] and dialogue system [26] .

NN has a lot of variations including LSTM [27] and GRU [28] .

owever, RNN assumes dependency changes monotonously along

he whole sequence, while the time interval between actions may

e varied in social media. Moreover, social media platform has

ime-varying activity level (depending on that it is working hours

r rest time etc.), which is hard to be captured by ordinary RNN. 

To address the above issues, in this paper, we propose a neu-

al popularity prediction model for social media content, which

dopts time embedding enhanced RNN and fuses text content, user

s well as time series information. To focus on the informative

arts of information and reduce noise, we incorporate attention

echanism in our model. We take Twitter as the representative

ocial media platform, and focus on the prediction of the range of

opularity, because for many applications, it is more practical than

redicting the exact number. We also conduct experiment on real

orld datasets and experimental results show the effectiveness of

ur proposed model. 

. The proposed NPP model 

In this section, we first formulate the popularity prediction

roblem. As our model uses vector representations of time, users

nd words, we then present our time embedding enhanced RNN,

s well as our joint embedding model of users and words. We fi-

ally describe the details of our NPP model, which encodes infor-

ation of social media content and predicts popularity. 

.1. Problem formulation 

We define popularity as a numerical value related to a social

edia content (e.g. the number of retweets for a single tweet, or

he number of tweets discussing an event). Here, a social media

ontent refers to a tweet, a hashtag or an event. We transform the

opularity prediction task to predicting whether the future popu-

arity will exceed a given threshold. Specifically, given a social me-

ia content, we observe the discussion of the social media content

uring time period [ T s , T s + t o ] , including related tweets, authors of

he related tweets as well as the publication timestamps of the re-

ated tweets, where T s is the publication time of the first tweet

elated to the social media content, and t o measures how long we

bserve. Denoting the number of tweets about the social media

ontent from T s to T s + t r ( t r > t o ) as V , where t r is the lifecycle of

he social media content, our goal is to predict whether V will ex-

eed the threshold δ. 

.2. Time embedding enhanced RNN 

Recently, RNN has been successfully employed to model

equence dependency in many tasks. However, ordinary RNN

ssumes monotonously temporal dependency when modeling the
equence data. In our popularity prediction task, adjacent tweet

airs may have different time intervals. In general, shorter time

nterval indicates more heated discussion about a social media

ontent. However, ordinary RNN is hard to capture this difference.

oreover, users in social media may have different activity levels

t different times, e.g. users may be more active at the rest time

nd not so active during working hours. Considering the above

ifferences, we propose a time embedding enhanced RNN. 

The input of an RNN is a sequence [ x 1 , x 2 , . . . , x n ] , where x i is a

ector that summarizes information at current step. At each step,

n RNN takes the last state h i −1 and current input x i to update the

urrent state h i , i.e. 

 i = f ( x i , h i −1 ) 

here f is the update function for RNN. In our model, the input x i 
s the vector representation of the i -th related tweet or its author

nd h i is a vector that summarizes information at the i -th step as

ell as its context. 

To capture the time information in modeling the sequence, we

dd a time embedding vector to every input of RNN. A time em-

edding vector consists of three parts: 

(1) The embedding vector of the hour. 

(2) The embedding vector of the weekday. 

(3) The embedding of the distance to the time when we make

prediction, denoted as s ( t o − t i ) , where s is the embedding

function, t o is the observation time, and t i is the publication

time of the i -th tweet (or retweet). 

The embedding vectors of the hour and the weekday are op-

imized during the training process. There are several options for

he embedding function s ( t o − t i ) , and we choose the cosine func-

ion for its effective representation ability. The value at the j- th

osition in the embedding vector would be 

 j ( t ) = cos ( α jt ) , j ∈ [ 1 , K ] 

The parameter α is optimized during training process, and K is

n hyper-parameter, representing for the dimension of the embed-

ing vector. 

By considering time embedding, we change the original RNN

pdate method into 

 i = f ( [ x i , te ( t i ) ] , h i −1 ) 

here te ( t i ) is the time embedding of input at the i- th step. Thus,

t each step, the update of state will consider both the input and

ime information. 

.3. Joint embedding of users and words 

An embedding model aims to learn a continuous vector rep-

esentation for each word or user. There are many widely used

ord embedding models, e.g. Word2vec [29] , Glove [30] . These

ord embedding models are learned from unlabeled text corpus

y predicting co-occurrence relationships in a window, and can

apture the semantics of words. There are also many network em-

edding models [31,32] that learn user embedding by predicting

dges in user network or co-occurrence relationships in random

alk sequences. These network embedding models can capture

ommunity or structure information of a user in the user network.

owever, it is hard to capture the relations between users and

ords by learning word embedding and user embedding in sep-

rate models. For instance, users with different interests may have

ifferent word usage tendency. Thus, we learn the user and word

mbedding in a joint model. 

For our joint embedding model, there are three parts in the

raining objective, namely word co-occurrence objective L w 

, user

o-occurrence objective L u , and word usage tendency objective L uw 

.
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Fig. 2. Structure of tweet encoder. 
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For word embedding, we decompose each word into two vec-

tor representations. We call the two representations as “input” rep-

resentation and “output” representation following Word2vec [29] .

In word co-occurrence objective, we want to distinguish the co-

occurrence word pairs from randomly sampled word pairs using

these vector representations. Here, a co-occurrence word pair con-

sists of two words that show in the same fix-length window in a

sentence. Specifically, this objective tries to minimize 

L w 

= log σ
(
v ′ w O 

ᵀ v w I 

)
+ 

k ∑ 

i =1 

E w i ∼p noise ( w ) log σ
(
−v ′ w i 

ᵀ v w I 

)

where w O and w I belong to a co-occurrence word pair, and w i and

w I belong to a randomly sampled word pair, σ is sigmoid function,

v ′ w O 
, v ′ w i 

are the “output” representations for word w O and w i re-

spectively, while v w I 
is the “input” representation of the word w I ,

k is the number of randomly sampled word pairs corresponding to

each co-occurrence word pair, E represents for expectation, and w i 

is a word randomly sampled from the noise distribution p noise ( w ).

We use the same choice as in [29] for p noise ( w ), i.e. the unigram

distribution raised to the 3/4rd power. 

To capture user network information, we first take random

walks on the user network to produce several user sequences, and

learn user representation by predicting user co-occurrence in these

sequences. To this end, the user co-occurrence objective tries to

distinguish user co-occurrence pairs from randomly sampled user

pairs using user representations, which is similar to the word co-

occurrence objective: 

L u = log σ
(
v ′ u O ᵀ v u I 

)
+ 

k ∑ 

i =1 

E u i ∼p noise ( u ) log σ
(
−v ′ u i ᵀ v u I 

)

where u O and u I belong to a co-occurrence user pair, and u i and u I 
belong to a randomly sampled user pair, v ′ u O and v ′ u i are “output”

representations for user u O and u i , while v u I is the “input” repre-

sentation for user u I . 

To capture word usage tendency of users, we jointly learn

user and word embedding by predicting the author of a tweet.

Specifically, we map each tweet and author into vector represen-

tations, then our embedding model tries to discriminate between

the true author of the tweet and randomly sampled users. Let

[ w 1 , w 2 , . . . , w n ] be the word sequence of the tweet, u I be the true

author of the tweet, and u i be a randomly sampled user. The word

usage tendency objective L uw 

is computed as: 

v t = At t sel f ( [ v w 1 
, v w 2 

, . . . , v w n ] ) 

L uw 

= log σ
(
v ′ u I ᵀ v t 

)
+ 

k ∑ 

i =1 

E u i ∼p noise ( u ) log σ
(
−v ′ u i ᵀ v t 

)

where Att self represents for self-attention mechanism. It maps a se-

quence of vectors into one vector by weighted summing and we

will introduce the detail of self-attention mechanism in the follow-

ing section. v ′ u I and v ′ u i are “output” representations of user u I and

u i , respectively, while v w i 
is the “input” representation of the i -th

word in the word sequence. v t is the vector representation of the

tweet. 

3.4. The structure of NPP model 

The popularity of a social media content is affected by many

factors, such as influential users, text content and time. Existing

popularity prediction methods either require time-consuming fea-

ture engineering, or only focus on one part of information for

popularity prediction (e.g. time series or user network). To over-

come these drawbacks, we propose our neural popularity predic-

tion model NPP. 
The NPP model consists of four parts, namely, text content en-

oder, user encoder, time series encoder and fusing layer. The first

hree encoders are to learn text content, user and time series rep-

esentations from data respectively. The fusing layer then combines

eatures produced by these three encoders and outputs the predic-

ion result. 

.4.1. Text content encoder 

Each social media content consists of a sequence of related

weets or retweets, and each tweet/retweet is a sequence of words.

hus, we use a hierarchical neural network. At the first level, it

ses a tweet encoder to encode each tweet into a vector represen-

ation, and at the second level, it obtains the text content repre-

entation from the sequence of tweet representations. 

Tweet encoder. Fig. 2 shows the structure of the tweet encoder.

e embed each word w 

i 
j 

in a tweet into a low dimension vector x i 
j 

sing our joint embedding model, where w 

i 
j 

is the j -th word of the

 -th tweet (or retweet). Then we use bidirectional Gated Recurrent

nits (BiGRU) to encode the sequence. BiGRU maps a sequence to

nother sequence by considering context information of each word,

.e. 

h 

i 
1 , h 

i 
2 , . . . , h 

i 
n 

]
= BiGRU 

([
x i 1 , x 

i 
2 , . . . , x 

i 
n 

])

here each h i 
j 

summarizes the context information of the word

 

i 
j 
. To get the representation of a tweet, we introduce attention

echanism to extract and aggregate the most important states for

opularity prediction. This operation produces one single vector by

eighted summing the sequence of vectors, denoted as 

 

′ 
i = At t sel f 

([
h 

i 
1 , h 

i 
2 , . . . , h 

i 
n 

])

here s i 
′ is a vector representation for the i -th tweet and

tt self represents for self-attention mechanism. The detail of self-

ttention mechanism is as follows. 

Self-attention mechanism . Attention mechanism learns to focus

n more informative parts and suppress noise, and maps a se-

uence of states into a vector representation by weighted summing

he states in the sequence. The weight can be interpreted as at-

ention weight on the corresponding state in a neural metaphor.

pecifically, let [ h 1 , h 2 , . . . , h n ] be a sequence with length n . The

elf-attention mechanism outputs a vector v using 

 i = tanh ( W h i + b ) 

i = 

exp ( u T

 

s u i ) ∑ 

t exp ( u T

 

s u i ) 

 = 

∑ 

i 

αi h i 

here each state h i is mapped into a hidden space to get u i . The

ttention weight αi is the normalized value of the dot product be-

ween u i and u s . Here, u s is a parameter optimized during training.

Text content encoder. After applying tweet encoder to each

weet, we can get the tweet vector representations, denoted as

 s 
′ 
, s 

′ 
, . . . , s 

′ 
n ] . However, this representation does not contain time
1 2 
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nformation. To capture time information of tweets, we adopt the

ime embedding enhanced RNN. Its input at the i- th step is the

oncatenation of the time embedding and the tweet representation

 

′ 
i 
, i.e. 

 i = 

[
s 

′ 
i , te ( t i ) 

]

here t i represents for the publish time of the i -th tweet, and te ( t i )

s the time embedding of t i . 

Then we use a bidirectional GRU and attention mechanism to

et the text content representation as follows: 

h 

tc 
1 , h 

tc 
2 , . . . , h 

tc 
n 

]
= BiGRU ( [ s 1 , s 2 , . . . , s n ] ) 

 tc = At t sel f 

([
h 

tc 
1 , h 

tc 
2 , . . . , h 

tc 
n 

])

here h tc 
i 

is the i -th state produced by the GRU in the text content

ncoder, and v tc is a vector representation for text content. Att self is

elf-attention mechanism. 

.4.2. User encoder 

In the user encoder, we use time-embedding enhanced RNN

nd attention mechanism to model the user sequence. Each user is

epresented as a low dimension vector U i 
′ using our joint embed-

ing model, which encodes the structure, community and interest

nformation of the user in the network. Let U i be the concatenation

f U i 
′ and the time embedding, then we use bidirectional GRU and

n attention layer to get a higher level representation of the user

equence. Specifically, the representation of the user sequence is

omputed from 

 

h 

u 
1 , h 

u 
2 , . . . , h 

u 
n ] = BiGRU ( [ U 1 , U 2 , . . . , U n ] ) 

 u = At t sel f ( [ h 

u 
1 , h 

u 
2 , . . . , h 

u 
n ] ) 

here h u 
i 

is the i -th state produced by the bidirectional GRU in the

ser encoder, and v u is a vector representation for users. 

.4.3. Time series encoder 

We divide the early observation time [ T s , T s + t o ] into m time

indows with fixed window width �t. Each time widow corre-

ponds to one feature vector, denoted as f i . The feature vector

 i includes the number of tweets in this time window, average

nd maximum follower number of authors of these tweets, and

ime embedding. Thus the whole time series is represented as

 f 1 , f 2 , . . . , f m 

] . We again use the bidirectional GRU and attention

echanism to map this sequence of feature vectors to a vector rep-

esentation, i.e. 

h 

ts 
1 , h 

ts 
2 , . . . , h 

ts 
m 

]
= BiGRU ( [ f 1 , f 2 , . . . , f m 

] ) 

 ts = At t sel f 

([
h 

ts 
1 , h 

ts 
2 , . . . , h 

ts 
m 

])

here h ts 
j 

is the j -th state produced by the bidirectional GRU in the

ime series encoder, and v ts represents for a vector representation

or time series information. 

.4.4. Fusing layer 

The above encoded text content, user and time series represen-

ations are concatenated into one feature vector after batch nor-

alization [33] in the fusing layer. We choose batch normaliza-

ion here because features from different kinds of information may

e in different distributions. Let ˜ v tc , ̃  v u , ̃  v ts be the normalized vec-

or representations of text content, user sequence and time series

espectively. The fusing vector representation is computed as fol-

ows: 

 f = [ ̃ v tc , ̃  v u , ̃  v ts ] 
Considering the interplays between different kinds of infor-

ation as described in the earlier sections, we further adopt

ontext-aware attention mechanism to refine feature representa-

ions. Specifically, the refined text content representation v ′ tc , user

epresentation v ′ u and time series representation v ′ ts are computed

espectively as follows: 

 

′ 
tc = At t context 

([
h 

tc 
1 , h 

tc 
2 , . . . , h 

tc 
n 

]
, v f 

)

 

′ 
u = At t context 

(
[ h 

u 
1 , h 

u 
2 , . . . , h 

u 
n ] , v f 

)

 

′ 
ts = At t context 

([
h 

ts 
1 , h 

ts 
2 , . . . , h 

ts 
m 

]
, v f 

)

here h c 
i 
, h u 

i 
are the i- th state produced by bidirectional GRUs in

he text content encoder and the user encoder respectively. h t 
j 

is

he j -th state produced by the bidirectional GRU in the time series

ncoder. And Att context is context-aware attention mechanism. The

etail of context-aware attention mechanism is as follows. 

Context-aware attention mechanism . In the self-attention mech-

nism, we only use the information from the state itself, while

ontext-aware attention mechanism takes other context informa-

ion to compute attention weight, as Fig. 3 shows. This is impor-

ant for popularity prediction for the following reasons: 

(1) A specific topic may be more welcome in some communi-

ties, and thus be more popular. 

(2) Users play different roles in the cascade process in different

kinds of events, for example, a user may be more influen-

tial in the political area, but less influential in the economic

area. 

(3) Different topics and different communities may have differ-

ent activity levels, resulting in different popularity evolving

processes. 

Therefore, we employ context-aware attention mechanism to

apture the interplays between different kinds of information. 

The output of context-aware attention mechanism is computed

s 

 i = tanh ( W h i + W c v context + b ) 

i = 

exp ( u T

 

s u i ) ∑ 

t exp ( u T

 

s u i ) 

 = 

∑ 

i 

αi h i 

here v context is the context vector, which summarizes the external

nformation. And the representation of the whole sequence is v ,

hich is obtained by weighted summing the states. 

After obtaining the refined feature representations v ′ tc , v ′ u and

 

′ 
ts , we adopt a dense layer to encode the social media content fea-

ure further, i.e. 

 

′ 
m 

= σ
(
W ds 

[
v ′ tc , v 

′ 
u , v 

′ 
ts 

]
+ b ds 

)
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Fig. 4. Structure of the NPP model. 
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where σ represents for sigmoid function. W ds and b ds are trainable

weights. 

Then another dense layer is used to produce popularity predic-

tion result, i.e. 

ˆ y = σ
(
W p v 

′ 
m 

+ b p 
)

The larger ˆ y is, the higher probability we believe that the event

will going to be popular. W p and b p are trainable weights. 

3.5. Optimization 

We use cross-entropy as our loss function, i.e. 

L = −
M ∑ 

i =1 

(
y i log ˆ y i + ( 1 − y i ) log 

(
1 − ˆ y i 

))
. 

Here, y i and ˆ y i are the true label and prediction result of the

i -th social media content respectively. M is the total number of so-

cial media contents. L is the loss we want to optimize. We adopt

Adagrad [34] to optimize the parameter weights, which is a widely

used optimization method. To avoid overfitting, we choose L1 reg-

ularization with 1e-8 for the dense layer. We also adopt early stop-

ping strategy in our training process. 

Fig. 4 summarizes the structure of our proposed model NPP.

The NPP model uses three encoders to learn text content, user and

time series representations from data respectively. The fusing layer

then combines features produced by these three encoders and out-

puts the prediction result. 

4. Experiment 

4.1. Datasets and experimental setting 

To compare our proposed model with methods from related

work, we collected two datasets from Twitter, which is one of the

largest social media platforms. Table 1 shows the summary statis-

tics of our datasets. 

Retweet dataset : This dataset was collected using the Twitter

public API ( https://developer.twitter.com ) from Aug. 9, 2016 to Dec.
0, 2016. We filter out tweets with less than 5 retweets and sam-

le 20,0 0 0 tweets as our dataset. Each sample corresponds a tweet,

hich contains the tweet content, retweets of this tweet during

bservation time, the authors of these retweets, and publication

imestamps of these retweets. We measure the popularity of a

weet using the number of its retweets. 

Event dataset : This dataset was also collected using Twitter pub-

ic API from Aug. 9, 2016 to Dec. 10, 2016. Users usually use a

ashtag to denote the event that they discuss, but sometimes one

vent may correspond to several hashtags, and some hashtags may

ot discuss real world events. To ensure the quality of the dataset,

e manually remove non-event hashtags and merge hashtags that

iscuss the same event. In this dataset, each sample corresponds

o an event, including tweets discussing the event during observa-

ion time, the authors of these tweets and publication timestamps

f these tweets. We measure the popularity of an event using the

umber of its related tweets. 

We set the threshold to regard a sample as popular or not ac-

ording to the implication of Pareto Principle (or 80–20 rule) [35] ,

hich indicates that roughly 80% of people focus on around 20% of

ontents in social media. It has been used in many popularity pre-

iction works [36,37] . Therefore, in our datasets, the top 20% most

opular source tweets/events are considered as “popular”, and we

andomly sample the same number of source tweets/events from

he rest as “unpopular”. For both datasets, the observation time t o 
s set to 1, 6, 12 or 24 h, respectively. The fixed window width �t

n the time series encoder is set to 10 min. In our experiment, the

raining set contains 70% of the whole datasets, the validation set

ontains 10%, and the test set contains 20%. 

.2. Baseline methods 

We compare our method to the following baseline methods and

se accuracy as the evaluation metric. 

(1) Tsur’s [3] : This method mainly uses lexicon features, associ-

ated with a few user, user interaction and time series fea-

tures to predict popularity. 

https://developer.twitter.com
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Table 1 

Statistics of datasets. 

Retweet dataset #source tweets #retweets avg. #retweets per source tweet max #retweets per source tweet 

20,0 0 0 915,139 46 1910 

Event 

dataset 

#events #tweets avg. #tweets per event max #tweets per event 

41,035 4,561,375 111 234,944 

Table 2 

Comparison with baseline methods. 

Method Retweet dataset Event dataset 

Observation time (h) Observation time (h) 

1 6 12 24 1 6 12 24 

Tsur’s 0.757 0.794 0.810 0.843 0.612 0.653 0.682 0.722 

Aiello’s 0.804 0.851 0.876 0.901 0.633 0.701 0.728 0.781 

Hawkes 0.733 0.732 0.740 0.745 0.590 0.669 0.709 0.749 

DeepHawkes 0.782 0.854 0.870 0.903 0.588 0.691 0.725 0.791 

DeepCas 0.794 0.853 0.875 0.893 0.580 0.658 0.707 0.780 

NPP 0.828 0.865 0.889 0.911 0.698 0.743 0.768 0.824 
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Table 3 

Comparison with NPP variations. 

Method Observation time (h) 

1 6 12 24 

Text 0.662 0.718 0.758 0.809 

User 0.650 0.704 0.742 0.797 

Time series 0.679 0.712 0.749 0.798 

Text + user 0.660 0.731 0.768 0.822 

Text + time series 0.695 0.740 0.758 0.805 

User + time series 0.692 0.735 0.759 0.809 

NPP 0.698 0.743 0.768 0.824 
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mation. 
(2) Aiello’s [4] : This work proposes many novel features based

on language model, network structure and time series to

predict popularity. 

(3) Hawkes [8] : This method models popularity dynamics as

Hawkes processes, then combines Hawkes processes param-

eters, a few user and text content features to predict popu-

larity. 

(4) DeepHawkes [16] : This deep neural network based method

is an extension of Hawkes method. The original Hawkes

method [8] only uses the number of followers as user fea-

ture, while DeepHawkes uses user embedding and adopts

GRU to encode cascade paths. 

(5) DeepCas [15] : This method focuses on the cascade process of

a social media content. It takes random walks on the cas-

cade graph to produce a large number of sequences, and

then uses GRU and attention mechanism to predict the pop-

ularity. 

.3. Results 

.3.1. Comparison with baseline methods 

Table 2 shows the prediction accuracies of our proposed model

PP and other comparison methods. As shown in Table 2 , NPP

utperforms all the baseline methods: in the retweet dataset, NPP

mproves accuracies by around 1% compared to the best baseline

ethod; in the event dataset, NPP improves accuracies by about

% under all observation time settings. 

Aiello’s method and Tsur’s method only use hand-crafted fea-

ures, while our method learns the high-level feature representa-

ions in a data-driven manner, which shows the superiority of the

eep learning based methods. 

All models have lower accuracies when the observation time is

hort, because there is little information for popularity prediction,

specially for Hawkes, DeepHawkes and DeepCas methods. How-

ver, as observation time gets longer, accuracies of these methods

an be very close to Aiello’s method. Different from all other meth-

ds, our proposed NPP model combines text content, user and time

eries information, which enables NPP to have a good performance

n all observation time settings. 

.3.2. Comparison with NPP variations 

Effectiveness of different encoders: To show the effectiveness of

ifferent encoders, we compare with the following variations of

ur model using the event dataset. We only use the event dataset

or evaluation in the following sections, because we find the event

ataset is more difficult according to Table 2 . 
(1) text : Only uses features produced by the text content en-

coder to predict popularity. 

(2) user : Only uses features produced by the user encoder to

predict popularity. 

(3) time series : Only uses features produced by the time series

encoder to predict popularity. 

(4) text + user : Combines the text content encoder and the user

encoder. 

(5) text + time series : Combines the text content encoder and the

time series encoder. 

(6) user + time series : Combines the user encoder and the time

series encoder. 

Table 3 shows the popularity prediction performances of differ-

nt variations of our proposed model. Among the three encoders,

ime series encoder achieves the best performance when the ob-

ervation time is 1 h, but text content encoder performs best when

he observation time gets longer. This shows that time series infor-

ation is important when the observation time is short, but text

nformation is more powerful when observation time gets longer.

y comparing text + user and user + time series, we can have sim-

lar conclusions. By combining all three encoders, we can improve

ccuracies by 2–3% compared to individual encoders. 

Effectiveness of attention mechanism: We compare different at-

ention mechanism strategies using the event dataset in Table 4 .

he comparison methods are as follows: 

(1) NPP (Without attention) : Removes attention mechanism from

NPP. 

(2) NPP (Self-attention) : Only uses text content information, user

information, and time series information to compute atten-

tion weights in three encoders without context-aware infor-
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Table 4 

Comparisons of models with different attention mechanism settings. 

Method Observation time (h) 

1 6 12 24 

NPP (Without attention) 0.678 0.735 0.755 0.804 

NPP (Self-attention) 0.696 0.733 0.762 0.814 

NPP 0.698 0.743 0.768 0.824 

Table 5 

NPP with/without time embedding. 

Method Observation time (h) 

1 6 12 24 

NPP (without time embedding) 0.624 0.705 0.742 0.794 

NPP (with time embedding) 0.698 0.743 0.768 0.824 

Table 6 

Comparison with different word and user embedding models. 

Model Observation time (h) 

1 6 12 24 

Random 0.684 0.708 0.755 0.800 

Word2vec 0.686 0.731 0.760 0.804 

Node2vec 0.692 0.723 0.762 0.816 

Word2vec + Node2vec 0.693 0.735 0.763 0.817 

NPP 0.698 0.743 0.768 0.824 
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The experimental results show that introducing attention mech-

anism can improve accuracies by around 2%. With context–aware

attention mechanism, NPP can improve the accuracies by around

1% compared to NPP (Self-attention), which considers context in-

formation when computing attention weights. 

Effectiveness of embedding model: We compare the NPP with

time embedding and without time embedding in Table 5 . The ex-

perimental results show that our time embedding model is effec-

tive by improving the accuracy by about 3%. 

To show the effectiveness of joint embedding of words and

users, the following embedding models are taken into considera-

tion for comparison. 
Table 7 

Attention weights in text content encoder. 

Topic 1: #PrayForLouisiana 

Tweet Attention 

weights 

Word Attention Weights 

(We highlight the words with high attention w

high RT this is awful please pray 

Even though we ’ve lost everything glad to m

Lord we ’ve been so divided in our state and

More caskets coming up Could u imagine gett

low And the flooding continues.... 

we went from sweating in 100 ° weather to our

United states is about to lose a state bc Louisia

My momma friend house This rain aint playing

Topic 2: #SiegeKillsYemenis 

Tweet Attention 

weights 

Word Attention Weights 

(We highlight the words with high attention w

high Amnesty International accused the US govern

21 Million Yemenis in urgent need of human

SHOCKING US made bombs falling on and kil

Child starving dying of hunger screaming in

low the sick ones first 

Yemeni governorates have seen strikes on agri

“Yemen’s access food threatened, supply route

“Is Yemen Too Much for the World to Take?”
(1) Random : Randomly initializes embedding of users and

words, and optimize the embedding vectors during training

popularity prediction model. 

(2) Word2vec : Uses Word2vec as word embedding model, while

user embedding vectors are randomly initialized and opti-

mized during training popularity prediction model. 

(3) Node2vec : Uses Node2vec as user embedding model, while

word embedding vectors are randomly initialized and opti-

mized during training popularity prediction model. 

(4) Word2vec + Node2vec : Uses Word2vec as word embed-

ding model and Node2vec as user embedding model.

Word2vec + Node2vec trains word embedding and user em-

bedding separately, while out proposed model NPP trains

them jointly. 

Table 6 shows the comparison results of different embedding

odels. The Random initialized model performs worse than other

omparison methods, which shows that appropriate user and word

mbedding are important for popularity prediction. Through jointly

odeling users and words, NPP model further improves accuracies

y more than 0.5% compared to Word2vec + Node2vec. 

.4. Illustrations of learned feature representations 

As for text content encoder, we compare different attention

eights for words and tweets. Specifically, we select several tweets

ith high or low attention weights, and highlight two to three

ords with high attention weights in the tweet (see Table 7 ). 

We find that the words with large attention weights seem to

e reasonable. Firstly, words that express emotions usually have

igher attention weights, e.g. “please”, “lord”, “horrible”. It is inter-

sting that these words may not be adjective, e.g. “could u imag-

ne”. Secondly, some verbs (e.g. “lost”) and named entities (e.g.

Amnesty International”) also have higher attention weights. Some

f these words may relate to hot topics recently, which inspires us

o update the popularity prediction model regularly. As for tweets,

t seems that tweets with high attention weights usually carry

trong emotions or may cause strong emotion. 

Next, we qualitatively study the connection between learned

ser representations and some well-known network properties. For

ach event, we construct a user local network from the users who

articipate in the discussion using their following relationships.

hen we layout the local networks to a 2-D space by feeding
eights) 

ake it out safe and help rescue people in the process 

country Let us all come together 

ing a call that you have to rebury a family member 

 streets being flooded 

na about to float away 

 at all!! 

eights) 

ment of deadly hypocrisy 

itarian aid 

ling civilians 

pain appealing to conscience of the world 

cultural & food production infrastructure 

 targeted by airstrikes” #SiegeKillsYemenis 
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Fig. 5. Visualization of user feature. 
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earned representations from user encoder to t-SNE [38] , which

an model similar objects by nearby points. In Fig. 5 , each point

orresponds to the user local network of an event, and each sub-

gure is colored using a hand-crafted network feature. If we can

bserve some patterns of the distribution of colors in the figure,

t suggests some connection between the learned representations

nd hand-crafted features. 

As Fig. 5 shows, our learned representation could capture some

and-crafted network features. For example, the local networks

ith a large number of leaf nodes distribute on the center right

art of the sub figure. By observing the distribution of events with

igh popularity, we also found that these hand-crafted features

ave some connection to the future popularity. 

. Conclusions 

In this paper, we propose a neural popularity prediction model

or social media contents. The proposed model consists of three

ncoders, which learn high-level representations of text content,

ser and time series in a data-driven approach. Attention mecha-

ism is introduced to make the model focus more on informative

arts and suppress noisy ones. We also propose time embedding

nhanced RNN to capture different time interval of tweets, and

ime-varying activity level of social media platform. Experimen-

al results show that the popularity prediction model can benefit

rom time embedding, as well as joint learning embedding of users

nd words. The illustrations further demonstrate that our model

an assign reasonable attention weights on text content, and the

earned user representations have some connection to handcrafted

etwork features. In general, the empirical studies verify the effec-

iveness of our proposed model compared to the baseline methods.

For future work, we shall explore more information in social

edia for popularity prediction. As currently we mainly take the

ublications of tweets as a sequence, we shall consider the utiliza-

ion of user interaction behaviors such as retweet and mention. We

hall also consider the interactions between different social media

ontents and different platforms. 
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