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Abstract. Deep convolutional networks have recently gained much attention be-

cause of their impressive performance on some visual tasks. However, it is still 

not clear why they achieve such great success. In this paper, a novel approach 

called Filter Sensitive Area Generation Network (FSAGN), has been proposed to 

interpret what the convolutional filters have learnt after training CNNs. Given 

any trained CNN model, the proposed method aims to figure out which object 

part each filter represents in a high conv-layer, through appropriate input image 

mask which filters out unrelated area. In order to obtain such a mask, a mask 

generation network is designed and the corresponding loss function is defined to 

evaluate the changes of feature maps before and after mask operation. Experi-

ments on multiple datasets and networks show that FSAGN clarifies the 

knowledge representations of each filter and how small disturbance on specific 

object parts affects the performance of CNNs. 

Keywords: Convolutional Neural Network, Interpretability, Knowledge Repre-

sentations. 

1 Introduction 

Recent years have seen spectacular improvements in artificial intelligence. Particularly, 

deep neural networks (DNNs) has achieved superior performance in a variety of visual 

tasks, such as fine-grained classification [1,2], object detection [3,4] and semantic seg-

mentation [5,6]. Although DNNs outperform previous machine learning techniques on 

the comparison of accuracy, we still have little knowledge about what they have learnt. 

When they fail on some cases, it is hard to explain what caused the DNNs to make such 

decisions. One Pixel Attack cheated the DNN successfully by changing value of a sin-

gle pixel, which is impossible for human to make such mistakes. This lack of interpret-

ability of DNNs is largely due to the end-to-end structure and learning strategy, which 
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lead to the difficulties of understanding the main role of individual neurons during the 

whole process of completing visual tasks. 

Recently, a large number of researchers have realized the necessity of improving 

interpretability of DNNs and have proposed a variety of models to dig the interpretable 

knowledge representations learned by DNNs, especially by Convolutional Neural Net-

works (CNNs). Zeiler et al. [7] examine the pattern of every layer by visualization with 

a deconvnet and figure out whether a model is truly identifying the location of the object 

in the image by occluding different portion of the input image and observe the proba-

bility of the correct class. This approach finds the occlusion sensitive region of convo-

lutional filters and classifiers, but the size of region is limited to a rectangle and the 

process is time-consuming. Yosinski et al. [8] visualized filters by finding an image 

that maximize the activation of this unit via regularized optimization. Much other work 

tries to leverage heatmaps to understand the decision-making process of networks. An 

approach called CLEAR [9] is invented to visualize attentive regions of DNNs during 

the decision-making process. These approaches change the original network structure 

or learning process more or less and give little insight about what each individual filter 

has learnt after a network is trained. 

In this paper, we mainly focus on the question, which area of the input image does a 

convolutional filter mainly focuses on? Based on the observation that a specific filter 

has strong activations for certain parts of the object and keep silent for other areas, we 

expect to figure out the intrinsic activation mode of some filters and interpret what these 

filters have remembered after training.  

To find out which parts each filter pays attention to automatically and efficiently, we 

propose a Filter Sensitive Area Generation Network (FSAGN) for generating input im-

age mask to mask unimportant regions in an image. In consideration of sparse activation 

properties of neural network, we first statistically analyze average activation of every 

filter and filter out the silent filters. For each active filter, a network is designed to 

generate a mask of the input image and obtain a new input image by mask operation 

with the original image. Through a forward propagation, we can get new feature maps. 

By minimizing the difference between the original and new feature maps, FSAGN con-

verges gradually and finally obtain the power to localize the key part that certain filter 

represents. Simultaneously, we also adopt an occlusion strategy to generate occlusion 

sensitive area. After we have a clear insight about which parts each filter focuses on, 

adversarial samples can be designed to cheat the original network. 

The rest of this paper is organized as follows. The proposed framework and design 

of network are introduced in Sect. 2. Section 3 presents experimental results and corre-

sponding analysis. Section 4 make a conclusion of the paper. 

2 Filter Sensitive Area Generation Network 

This section describes the proposed network for finding which parts contribute most to 

the response of certain filter. 
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2.1 Filters Selection 

Thanks to the sparsity of feature maps, only a few filters response strongly to some 

parts of objects, while others remain inactivated. If we select a filter randomly to gen-

erate its concerned part, we may fail because it has small probability to represent spe-

cific part of objects theoretically. 

In order to find which filters are sensitive for part discovery and are valuable to 

analyze, we first test all samples and record their activation for every channel. For better 

measuring the importance of filters, we calculate the sum of each feature map. Then we 

visualize the response map over all samples and channels, where the vertical axis is 

channel number, and the horizontal axis is the sample number. Due to the sparse re-

sponse distributions of CNNs, some filters are always activated for all samples, while 

others keep silent no matter what images are selected as input. 

As is seen in Fig. , there are several bright lines in the map, where most areas are 

dark, which indicates that these filters are potential to have strong response for some 

specific parts of objects. Therefore, we refer to these filters as the target filters for sen-

sitive area discovery. 

 

Fig. 1. Average response of each filter in CNN over multiple samples 

2.2 Filter Sensitive Area Generation Network 

Inspired by the observation that some convolutional filters only response to a small 

specific area on the input image, which means that when we occlude other areas, the 

filter activation is not affected dramatically. Zeiler. et al [7] manually adopt a gray rec-

tangle window for occlusion test by sliding window over the whole image to generate 

an occlusion sensibility map, which is limited for the fixed shape and size of part area 

and the whole process is time-consuming because of sliding window strategy. 

In this section we proposed a Filter Sensitive Area Generation Network (FSAGN) 

to locate the area that a filter focuses on. The network structure is shown in Fig. . Taking 

feature maps of the last convolutional layer in a trained CNN as input, the FSAGN 

outputs a mask with the same size as input image through a deconvolution structure [6]. 

Then the new image generated by mask operation is input to the original network and 



4           Y. Qian et al. 

the new feature maps are obtained too. By comparing the original and the new feature 

maps, we can evaluate the influence of different regions in images on the response of 

filters. Two criterions are adopted to define filter sensitive area. When the image except 

the sensitive area of a filter is set to zero, the response distribution of this filter will 

keep unchanged compared with the response from the intact image. This strategy is 

called as filter sensitive area reservation. 

On the contrary, when we occlude the sensitive area on the image, the filter response 

distribution will change significantly, which is called filter sensitive area occlusion. In 

either case, the sensitive area should be as small as possible to avoid the area from 

converging to the whole image.  

Next, two methods will be introduced in detail respectively. 

 

Fig. 2. Framework of FSAGN. 

Filter Sensitive Area Reservation. For a filter in certain layer, it represents a specific 

part for some objects, which means activation of the filter mainly originates from a 

subarea of the whole input image I. Our target is to find a corresponding mask M ∈
[0,1] for input image to generate filter sensitive area reservation image I′. 

 I′ = I ⊙M (1) 

Given a trained CNN f, the original response of the c-th filter in layer l when input-

ting the original image is denoted as rl,c = 𝑓(𝐼)[𝑙, 𝑐]. Then the new image I′ is fed into 

the same CNN, and we get the new feature map of the c-th filter in layer l denoted as 

rl,c
′ = 𝑓(𝐼)[𝑙, 𝑐]. To find some object parts that contribute the most to the response of 

specific filter, the optimization goal of FSAGN is to minimize the difference between 

old feature maps and new feature maps. However, the generated mask is usually sparse. 

To encourage a compact distribution of mask, we introduce a new constraint in the loss 

function as follows: 

 Loss(M) = Ldif(𝑟, 𝑟
′) + 𝜆 ∗ 𝐿𝑎𝑟𝑒𝑎(𝑀) (2) 

where Ldif and Larea represents the feature map difference loss and the mask generation 

loss respectively. The feature map difference loss is used to describe the difference 

between the original and new feature maps. In order to focus on the consistency of 

response distribution rather than the concrete value of activation, two feature maps are 

firstly normalized to [0,1], then the feature map difference loss is given by: 

 Ldif(𝑟, 𝑟
′) = ‖𝑟 − 𝑟′‖𝐹 (3) 

CNN 

backbone

Filter sensibility area 

generation network

Input image maskOriginal feature map

CNN 

backbone

new feature mapNew image loss
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To introduce compact distribution constraint on generated mask, Larea(𝑀) is formu-

lated as follows [12]: 

 Larea(𝑀) = ∑ 𝑚(𝑥, 𝑦)(𝑥,𝑦)∈𝑀 [(𝑥 − 𝑡𝑥)
2 + (𝑦 − 𝑡𝑦)

2
] (4) 

where m(x, y) is the concrete value located at (x, y) on mask M, and tx, ty is the coor-

dinate corresponding to the location of peak response of the selected filter. With the 

constraint, the FSAGN will discover the most sensitive part to some filters. 

Filter Sensitive Area Occlusion. Contrary to the Filter Sensitive Area Reservation, we 

select filter sensitive area by observing the change rate of the corresponding feature 

map after adding occlusion on the input image, which is called Filter Sensitive Area 

Occlusion. Our target is developing a Filter Sensitive Area Generation Network to find 

some areas in input image so that when these areas are occluded, the response of the 

related filter changes dramatically. This method helps us better understand what the 

filters have learnt and which part they focus on. 

The optimization function is given as follows: 

 Loss(M) = Lsim(𝑟, 𝑟
′) + 𝜆𝐿𝑎𝑟𝑒𝑎(𝑀) (5) 

where Lsim and Larea represents the feature map similarity loss and the mask genera-

tion loss respectively. Different from the Filter Sensitive Area Reservation, the similar-

ity between new feature map and original feature map should be as small as possible. 

Herein the activation function is selected as ReLU, thus the feature map is non-neg-

ative. When occluding some parts of the object, the new response of this filter will drop 

rapidly and even decrease to zero. Therefore, the similarity loss is designed as follows: 

 Lsim(𝑟, 𝑟
′) = ‖𝑟′‖𝐹 (6) 

Meanwhile, the mask generation loss Larea keeps the same as that in Filter Sensitive 

Area Reservation. 

3 Experiments 

In this section, we will illustrate the efficiency of Filter Sensitive Area Generation Net-

work and show some examples to figure out which parts the specific filters pay attention 

to. Experiments were conducted on two public datasets, including MNIST and FGVC-

Aircraft [11]. Next, more implementation details and experimental results are ex-

plained. 

3.1 Implementation Details 

Before analyzing the sensitive area for some filters, CNN models for object recognition 

should be trained first. Specifically, a small-scale convolutional neural network is de-

signed for MNIST classification. It has two convolutional layers and two fully 
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connected layers, taking 28 ∗ 28  gray images as inputs, as shown in Fig. (a). We 

achieved an accuracy of 99.18% for MNIST datasets. Then we consider the feature 

maps of the last convolutional layer as reference. A deconvolutional network is adopted 

as the Filter Sensitive Area Generation Network, as shown in Fig. (b). It takes the fea-

ture maps of the last convolutional layer as inputs, and adds a sigmoid layer to the 

output, which generates a single-channel mask M ∈ (0,1). 
For FGVC-Aircraft benchmark, a VGG-16 [10] model pre-trained on ImageNet [13] 

with inputs of size 224 ∗ 224  are used for better recognition performance, which 

gained 74%  accuracy. We removed the last three fully-connected layers and aug-

mented with a deconvolutional network for filter sensibility area generation. The struc-

ture of FSAGN is shown in Fig. .  

When training the whole network, the parameters of basic recognition network re-

main fixed, with only the Filter Sensitive Area Generation Network updated. 

 

Fig. 3. Network structure for MNIST. (a) Network for classification. (b) Network for sensitive 

area generation. 

 

Fig. 4. Structure of FSAGN for VGG-16 trained on FGVC-Aircraft dataset. 

3.2 Experiments on MNIST 

Filter Selection. We get a collection of filter response distribution in the last convolu-

tional layer tested on randomly selected 1K samples and plot the filter response dia-

gram, which looks like sparse stripes. Following the method described in Section 2.1, 

the 18-th and 13-th channels are finally chosen as the target filters. 

Sensitive Area of the 13-th filter. We adopt filter sensitive area reservation strategy 

to generate the sensitive areas for the 13-th filter shown in Fig. . The figure shows the 

original images, original feature maps, generated sensitive areas, new input images af-

ter mask operation and new feature maps corresponding to the new image. From the 
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results, some observations can be made: 1) This filter mainly focuses on a small region 

of the whole image, which means that removing other parts does not have dramatic 

effects on the activation of this filter. 2) From the similarity of sensitive areas on dif-

ferent samples, the concerned part of the 13-th filter is the slash of handwritten numeral. 

After training for MNIST recognition, this filter has learned to capture the inclined part 

of images. 

Sensitive Area of the 18-th filter. The same experimental process is applied on the 

18-th filter. Results are shown in Fig. . Apparently, we can get similar conclusions with 

the 13-th filter. However, the 18-th filter tends to pay more attention to the vertical line 

in images. Therefore, these two filters both have their own sensitive areas, and they 

detect different parts of input images during object recognition. 

 

Fig. 5. The sensitive area of the 13-th filter. 
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Fig. 6. The sensitive area of the 18-th filter. 

3.3 Experiments on FGVC-Aircraft 

Filter Selection. We randomly choose 200 aircraft images from FGVC-Aircraft da-

taset and record feature maps of every channel to form average filter response diagram 

shown in Fig. . We can observe from the diagram that filters which keeping active all 

the time (bright vertical lines in the image) account for a rather small part of all chan-

nels. In the statistical sense, it is consistent with our intuition that the response of CNN 

is sparse. Following the method described in Section 2.1, the 26-th and 262-th filter in 

the last convolutional layer of the VGG-16 model are selected for finding the key parts 

that the filters represent. 

 

Fig. 7. Response diagram of each filter in VGG-16 for FGVC-Aircraft over multiple samples. 

Sensitive Area of the 𝟐𝟔-th filter. Firstly, filter sensitive area reservation strategy is 

adopted to generate the sensitive areas of aircrafts, as shown in Fig. . From the result, 

the key observations are the following: 1) The generated mask can filter out the back-

ground and localize the object coarsely, which is unsupervised without any bounding 

box labels. 2) Occluding most of the background will take little effect on the activation 

distribution of this filter. 3) We select the region with the biggest value on the mask 

(red circle on the new images) and find that this filter tends to be the most sensitive to 

the nose of aircraft. After training on the FGVC-Aircraft dataset, the 26-th filter has 

remembered the pattern of aircrafts’ nose. 

Next, occlusion strategy-based experiments are conducted to figure out which area 

has dramatical effect on the response of the filter when it is occluded. As shown in Fig. , 

some interesting observations are made as following: 1) The occlusion region consists 

of discrete points and lines rather than a whole continuous area. Although human can 

still recognize the aircraft after such occlusion, the response of the filter weakens rap-

idly. 2) The occlusion sensitive area of the filter tends to cover the whole object, which 

is apparently different from that in reservation strategy. 

Sensitive Area of the 𝟐𝟔𝟐-th filter. Similar experiments are repeated for the 262-th 

filter. From the results of sensitive area reservation strategy (see Fig. 1), we observe 
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that: 1) Unsurprisingly, this filter has the same preliminary ability to localize the object 

without supervision. 2) The main part that the 262-th filter focuses on is the fuselage 

close to the engine, which is different from the 26-th filter. It implies the diversity of 

filters and these filters have learnt the key parts of aircraft. 

From the results of sensitive area occlusion strategy (see Fig. 1), some unexpected 

observations are the following: 1) The occlusion region degenerates to multiple parallel 

vertical lines. This confirms that small disturbance can lead to the network’s failure. 

 

Fig. 8. The sensitive area of the 26-th filter of VGG-16 by reservation strategy. 

 

Fig. 9. The sensitive area of the 26-th filter of VGG-16 by occlusion strategy. 
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Fig. 10. The sensitive area of the 262-th filter of VGG-16 by reservation strategy. 

 

Fig. 11. The sensitive area of the 262-th filter of VGG-16 by occlusion strategy. 

4 Discussion 

From the experiments on different datasets with different convolution neural networks, 

some interesting discussions are the following: 1) The activations of filters in CNNs 

are rather sparse. A small proportion of filters in a layer response strongly, while others 

keep silent all the time. 2) Each activated filter has a specific response pattern. For 

simple images and small networks, activation of filters may be sensitive to the vertical 

line or horizontal line. It indicates that when corresponding parts are occluded, the ac-

tivation drop rapidly. By contrast, the feature map keeps unchanged when these areas 

are reserved. For complicated images and large networks, the response pattern of filter 

in high layer show stronger semantics. For example, a filter can represent the key part 

of object, like the nose of aircraft. It confirms that deep neural networks learned the key 

components of objects after training and we can establish a correspondence between 

parts of objects and filters by the proposed method.  
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5 Conclusion and Future Work 

In this paper, we have proposed a general method to analyze the interpretability of the 

trained CNNs and better understand what the filters have learnt after training on cer-

tain dataset. Based on the observation that some filters could localize the key parts of 

objects, a Filter Sensitive Area Generation Network is designed and trained to gener-

ate the key area that every filter represents. To better describe the correlation between 

certain filter and the key part, reservation sensibility and occlusion sensibility are pro-

posed respectively. Experiments have shown that the filters response to a certain part 

of the object and different filters have different fixed response pattern. Besides, small 

occlusion on the input image will take a significant effect on the activation of filters. 

In future work, we will explore classifier sensitive area and make use of this inter-

pretability to generate corresponding adversarial samples or improve the robustness of 

CNNs by adjusting the sensitive area of filters. 
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