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Abstract

Fitting conic from images is a preliminary step for its
plentiful applications. It’s a common sense that geometric
distance based fitting methods are better than algebraic dis-
tance based ones. However, for a long time, there has not
been a geometric distance between a data point and a gen-
eral conic that allows easy computation and achieves high
accuracy simultaneously. In this paper, we derive a new ge-
ometric distance between a data point and a conic by revis-
iting Sampson distance. The new geometric distance is ac-
curate and simultaneously still explicit analytical represen-
tation, which is greatly easy to be implemented. Then, based
on the distance, a new cost function with combining Samp-
son distance is constructed. The conic fitting optimization
by minimizing this cost function has all the merits of the ge-
ometric distance based methods and simultaneously avoids
their limitations.

1. Introduction

Conics abound in manmade objects and natural scenes.

Conic fitting from images is a preliminary step for their

plentiful applications in robot vision, industrial measure-

ment, computer graphics et al. A specific conic in the scene

is still imaged as a conic on the perspective projection but

the imaged conic might be a circle, an ellipse, a hyperbola,

a parabola, and even degenerate lines. If there is no prior

knowledge of the scene or before recognizing a conic, the

conic type in the image is not available. It follows that it is

necessary to study the fitting problem for a general conic. In

this paper, we study fitting a general conic without knowing

its type.

One natural simple way is to use linear least square

[4, 15]. But, the accuracy is not so high to meet practical

tasks. Therefore, further optimizations based on some error

distances are needed. Not so strictly, there are three kinds

of these methods for a general conic: the statistical distance

based methods, the algebraic distance based methods, and

the geometric distance based methods.

The typical works of the statistical distance based meth-

ods are [5–8, 11, 14, 15]. Kanatani [5, 6] proposed a re-

normalization method from ‘Statistical’ distance to make

bias-corrected, which was improved by Zhang [15] and

Wang et al. [14] later. The idea is very reasonable of in-

troducing a statistical model of noise in terms of the covari-

ance matrix to compute an unbiased estimate by adjusting to

noise. Shklyar et al. [11] considered adjusted least squares

estimators for conic fitting which are shown to be similar-

ity invariant. Kanatani [7] gave the accuracy analyses of

various techniques for conic fitting and a ‘hyperaccuracy’

method of subtracting an estimated bias term from maxi-

mum likelihood solution. Furthermore, by modifying the

previous renormalization works, Kanatani et al. derived a

new scheme called hyper-renormalization which has zero

bias up to high order error terms [8].

The second is the algebraic distance based methods [2,

4, 15]. The algebraic distance is minimized to optimize the

conic parameters with different constraints. Bookstein [2]

proposed a quadric constraint and then solved a general-

ized eigensystem to obtain fitting result by block decompo-

sition. Fitzgibbon and Fisher [4] analyzed the complexity

of the algebraic distance minimizations with two different

constraints. Zhang [15] detailed the minimization of the al-

gebraic distance with three different constraints.

The third is the geometric distance based methods [1, 4,

9, 10, 12, 13, 15]. The first geometric distance is the orthog-

onal distance from points to the conic section proposed by

Nakagawa and Rosenfeld [9]. To obtain the distance of each

point, a quartic equation needs to be solved. Zhang [15] de-

rived the solution of the geometric distance as the quartic

equation. A good approximation to the orthogonal distance

is the Sampson distance [10] that are the weighted algebraic

distance by one order differentials. Taubin [13] indepen-

dently derived the approximate distance. Sturm and Gar-
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gallo [12] parameterized the fitted conic by a homography

and a circle, and then proposed a new geometric distance of

a data point to the conic by the parameterization.

The first kind statistical methods require noise to be

Gaussian and to concentrate on a small region occurring

in the tangent space. Also, the methods need to compute

covariance matrix. They would become unstable when the

noise level increases. The algebraic distance based meth-

ods are easy to compute. However, the performance gap

between algebraic fitting and geometric fitting is wide [1,3]

and the accuracy of the algebraic distance based methods

is not satisfactory. It is a common sense that minimizing

geometric distance is better than minimizing algebraic dis-

tance [12, 15]. Thus, we also study conic fitting as the geo-

metric distance based methods. At present, each of the ge-

ometric distance based methods has its own limitation. The

Sampson distance based method is easy to be implemented

but this distance is only an approximation that cannot give

high accuracy. The orthogonal distance based method can

give high fitting accuracy but for each point to be fitted, a

quartic equation needs to be solved. Although closed form

solutions exist for the quartic equation, condition determi-

nations are needed and numerical instability can result from

the application of the analytic formula as pointed out by

Fitzgibbon and Fisher [4]. Also, usually there are too many

points extracted in the image and thus the complexity is

not low. The homography-circle parameterized method can

give high accuracy but there are many parameters to be op-

timized and quartic equations still need to be solved when

giving the initial values.

As stated above, there has not been a geometric distance

based method that allows easy computation and simulta-

neously for high accuracy. In this paper, we give a novel

geometric distance based method, which has all the mer-

its of the geometric distance based methods and simultane-

ously avoids their limitations. The contributions are: 1) The

Sampson distance is revisited and its geometric meaning is

exhibited. 2) A new geometric distance between a point and

conic is given by analyzing the Sampson distance, which

is more accurate than Sampson distance. 3) The given ge-

ometric distance is represented explicitly and analytically.

During optimization, neither condition determinations nor

solving equations are required. Moreover, the distance is

on only five independent algebraic parameters and no any

other parameters are needed. It follows that this geomet-

ric distance based fitting is greatly easy to be implemented.

4) A new constructed cost function with combining Samp-

son distance is constructed. The conic fitting optimization

by minimizing this cost function is robust and can achieve

high accuracy.

The structure of the paper is organized as follows. Sec-

tion 2 provides some preliminaries. Section 3 revisits

Sampson distance and gives its explicit geometric interpre-

tation. Section 4 derives the new geometric distance. The

new cost function and conic fitting algorithm are reported

in Section 5. Section 6 shows experimental results and Sec-

tion 7 concludes the paper.

2. Preliminaries
A bold letter denotes a vector or a matrix.

The locus of planar points with homogeneous coordi-

nates (x, y, w)T that satisfies the equation

ax2 + 2dxy + by2 + 2exw + 2fyw + cw2 = 0 (1)

is a conic. We denote

⎛
⎝ a d e

d b f
e f c

⎞
⎠ as C that can rep-

resent this conic. In this paper, we study fitting a general

conic without considering its type.

Given a point m in 2D homogeneous coordinates, let

Cm represent a line (i.e. Cm is as line coordinates). Then

m and Cm are of polarity relationship related to C. The

relationship is invariant under a projective transformation.

Cm is called the polar of m related to C.

3. Interpreting the Sampson distance

Let mi = (ui, vi, 1)
T
, i = 1, · · · , N , be the measured

points in the image from a conic C. Without noise, there

are mT
i Cmi = 0, i = 1, · · · , N . The polar line of a

single point m related to C is Cm. Denoted Cm = l =
(l1, l2, l3)

T
, the distance between m and l is:

d(m, l) =
|mT l|√
l21 + l22

, (2)

where | • | denotes absolute value of the element included

in the two bars. Substitute l = Cm into Eq. (2), the result

is:

d (m, l) =
|mTCm|√
mTGm

, (3)

where G =

⎛
⎝a2 + d2, ad+ bd, ae+ df
ad+ bd, b2 + d2, de+ bf
ae+ df, de+ bf, e2 + f2

⎞
⎠ . The se-

quential principal minors of G are

a2 + d2 ≥ 0, (ba− d2)2, det(G) = 0 .

mTGm usually are not always zero and the reason is as fol-

lows. The denominator is zero if and only if both l1 = 0 and

l2 = 0 (cf. Eq. (2)). This case occurs when the polar line

l = Cm is at the infinity. At the time, m is the center of a

centric conic or at infinity for a parabola. This does not usu-

ally appear because the extracted points m with large noise

are removed by RANSAC (RANdom SAmple Consensus)

before applying a fitting method.
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The well known Sampson distance for fitting a conic is:

dSam =
|mTCm|√(

∂(mTCm)
∂u

)2

+
(

∂(mTCm)
∂v

)2
. (4)

Substituting the differential results into Eq. (3) gives:

dSam =
|mTCm|
2
√
mTGm

. (5)

By comparing Eq. (3) with Eq. (5), we know the Sampson

distance is just half of the distance of m to its polar line

l. The numerator of them are the usually algebraic distance

and thus the Sampson distance is a weighted algebraic dis-

tance.

Taking the square sum of Eq. (3) with different points

mi or taking the square sum of Eq. (5) with different points

mi yields the cost functions for fitting the conic C. The two

cost functions are different by a fixed scalar 4 and therefore

they are equivalent by optimizing to find the minimal C.

4. New geometric distance between a point and
a conic

As shown above, the Sampson distance between a point

and a conic is a kind of geometric distance much simpler

than the orthogonal distance. However, the Sampson dis-

tance is only a kind of approximation. Here, we derive a

new geometric distance between a point and a conic. The

distance is not only accurate but also explicitly analytical.

It has both advantages of Sampson distance and the orthog-

onal distance.

Figure 1: A geometric distance: d (m, p) of m to C.

As shown in Fig. 1, C is a conic, m is a point, l = Cm
is the polar line. Denote the line passing through m and

orthogonal to l as l′ and the intersection point of l with l′ as

q. l′ intersects C at two points denoted as p+ and p−. We

propose a new geometric distance between m and C as:

d (m, C) = min { d (p+, m
)
, d

(
p−, m

) }. (6)

Let p = argminp+,p− { d
(
p+, m

)
, d

(
p−, m

) }. So

d (m, C) = d (m, p). Clearly shown in Fig. 1, d (m, p)

is more accurate than d (m, q) to measure the distance be-

tween m and C. In order to compute d(m,C), one way of

obtaining p is to solve the following system:⎧⎪⎪⎨
⎪⎪⎩

pTCp = 0,

pT l′ = 0,

p = argmin
p+,p−

{ d (p+, m
)
, d

(
p−, m

) } . (7)

Directly solving Eq. (7) is not simple, in which it is needed

to determine the corresponding different solution repre-

sentations according to different symbol sign assumptions.

Also, the solution representations are long and complex.

This process is not indeed so much easy than solving 4th

order polynomials for the orthogonal distance between a

point and a conic. However in the following, we can give

a technique to obtain an explicitly analytical representation

of Eq. (7) in a very concise way.

At first, we compute q. l = Cm is also denoted

l = (l1, l2, l3)
T

. l′ is orthogonal to l and passes through

m = (u, v, 1)
T

. Thus, l′ = (−l2, l1, l2u− l1v)
T

. q is the

intersection of l with l′. So it is:

l× l′ =(
l22u− l1l2v − l1l3, l

2
1v − l1l2u− l2l3, l

2
1 + l22

)T
.

Dehomogenizing q gives

q =

(
l22u− l1l2v − l1l3

l21 + l22
,
l21v − l1l2u− l2l3

l21 + l22
, 1

)T

= m− mTCm

mTGm
C̄m ,

(8)

where C̄ =

⎛
⎝a d e
d b f
0 0 0

⎞
⎠, that is the matrix of C by substi-

tuting 0 for its last row.

Notice that q is on l, then qT l = 0. Since l = Cm, we

have:

qTCm = 0. (9)

The two solutions p± are collinear with q and m. So they

can be expressed as:

p± = λ1q+ λ2m, (10)

by homogeneous coordinates, where λ1, λ2 are two scalars.

Substituting Eq. (10) into the first equation of Eq. (7) and

using Eq. (9), we obtain:(
qTCq

)
λ2
1 +

(
mTCm

)
λ2
2 = 0. (11)

Usually q and m are on the different sides of C. So,
qTCq
mTCm

< 0. Solving Eq. (11) gives:

λ2

λ1
= ±

√
− qTCq

mTCm
. (12)
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qTCq
mTCm

> 0 are called the degenerate cases which appear

seldom. This does not affect the cost function construction

(cf. Section 5)

Then remembering the last element of m = (u, v, 1)
T

is 1 and that of q in Eq. (8) is 1, according to Eq. (10), p±
is dehomogenized as:

λ1q+ λ2m

λ1 + λ2
. (13)

The last element is 1 too. Therefore, square of the distance

of p± to m is computed as:

d2
(
p±, m

)
=

1(
1 + λ2

λ1

)2 d
2 (q, m) . (14)

Substituting Eq. (12) into Eq. (13) and choosing the smaller

one give:

d2 (m, C) = min { d2 (p+, m
)
, d2

(
p−, m

) }
=

d2 (q, m)(
1 +

√
− qTCq

mTCm

)2
(15)

Furthermore, substituting the expression q of Eq. (8) into
Eq. (15), we obtain the final distance representation:

d2 (m, C) = (
mTCm

)2
(
1 +

√
(mTGm)2−(mTCm)(mTWm)

(mTGm)2

)2

(mTGm)

, (16)

where we use CC̄ =
(
C̄
)T

C =
(
C̄
)T

C̄ = G and

W =
(
C̄
)T

CC̄, C̄ is as shown in Eq. (8). The denomi-

nator mTGm cannot be zero as discussed below Eq. (3).

Compared with Eq. (5), Eq. (16) is a weighted Sampson

distance (or a weighted algebraic distance). The analytical

presentation of p can also be obtained which is not given

here due to the space limit.

5. Conic fitting algorithm
We now construct a cost function by using the new geo-

metric distance derived in Section 4 and the Sampson dis-

tance. Notice that the new geometric distance requires the

term in the square root to be non-negative, i.e.:

(
mT

i Gmi

)2 ≥ (
mT

i Cmi

) (
mT

i Wmi

)
. (17)

It follows that a cost function is given as:

∑
(mT

i Gmi)
2≥(mT

i Cmi)(mT
i Wmi)

d2 (mi, C)+

1

4

∑
(mT

i Gmi)
2
<(mT

i Cmi)(mT
i Wmi)

(
mT

i Cmi

)2
mT

i Gmi

(18)

where the first summation part is from the new geometric

distances Eq. (16) and the second summation part is from

the Sampson distances Eq. (5). When noise is small, the

second part is empty. When noise is large, there are a

few points satisfying the second part condition. This cost

function is consistent with the absence of noise. When

noise of a point mi is zero, not only both the numerators

mT
i Cmi = 0 in the new geometric distance and the Samp-

son distance, but also the denominators of the two distances

become the same. In addition, the cost function is homoge-

nous with respect to the six parameters of C.

Then, a conic fitting algorithm is proposed as follows.

Algorithm: Fitting image points to a conic.

Input: Extracted images points

mi = (ui, vi, 1)
T

, i = 1, · · · , N.
Output: A conic C fitting the extracted image points.

1: Employ RANSAC to remove outliers.

2: Use linear least square method to obtain an initial esti-

mation C0 from inliers. Namely, solve the linear sys-

tem mT
i Cmi, i = 1, · · · , N , by singular value de-

composition to the coefficient matrix. The right singu-

lar vectors corresponding to the smallest singular value

is the solution.

3: Minimize Eq. (18) by Levenberg-Marquardt iteration

to obtain a conic C1 with C0 as the initial values. We

denormalize C1 as C1

‖C1‖F = C with F-norm ‖C1‖F .

The usual worrying problems for nonlinear optimiza-

tions are how to choose initial values and whether the it-

eration is convergent. Here, it is easy to obtain the initial

values by linear least square method of using SVD decom-

position. The obtained initial values are sufficiently reliable

that always make the iterations convergent.

6. Experiments

Extensive simulations and experiments on real data were

performed. Comparisons with typical conic fitting methods

were included: Linear least square method (LLS), Sampson

distance based method (Sampson) [10], H-circle method

of Sturm and Gargallo (SG) [12], and orthogonal distance

based method of solving 4th order equations (Orthogonal)

n [15]. LLS method is the most direct one. Sampson

method is the easiest one among the nonlinear geometric

optimizations. SG method is the most recent geometric

method for fitting a general conic. Orthogonal method min-

imizes the shortest distances between points and a conic

that can achieve high accuracy. The results of LLS method

are as the initial values and then are further optimized by

Sampson method, SG method, Orthogonal method, and the

proposed method in Section 5 independently on the same

data. The results show that when noise levels are lower than
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1% of the image sizes for hyperbolas, parabolas, and en-

tire ellipses, all of the SG method, Orthogonal method, and

the proposed method achieve nearly the same accuracies,

which are better than LLS method and Sampson method at

the most time. When noise levels increase to 5%, the pro-

posed method achieves the highest accuracies among all the

methods at the most time. For a section from an ellipse, the

proposed method behaves all along well under all noise lev-

els.

6.1. Simulations

Ellipses, hyperbolas, and parabolas are generated. Points

on a conic are extracted. Then, Gaussian noise is added

to each point. Under each noise level, we performed 1000
runs. Then, both of means of absolute errors and maha-

lanobis distance errors are computed, which have the sim-

ilar results. Due to space limit, only the latter errors are

shown below.

(a) (b)

Figure 2: Two used ellipses

(a) (b)

Figure 3: Errors of the results from Fig. 2

At first, Gaussian noise with 0 mean and standard devi-

ation ranging from 0 to 10 pixels with step 0.5 pixels are

added to each point on the used conic. Fig. 2 shows two

used ellipses, where the right is rotated from the left by

45 ◦. Extracted number of points are 300. The errors are

shown in Fig. 3. We see that with the noise level increas-

ing, all of SG method, Orthogonal method, and the pro-

posed method achieve nearly the same accuracies, which

are higher than LLS method or Sampson method. From the

ellipses by other rotations, there are the similar results.

Other types of conics, hyperbolas and parabolas, and

(a) (b)

Figure 4: Two used conics

(a) (b)

Figure 5: Errors of the results from Fig. 4

their rotations are also generated. Two of them are shown

in Fig. 4. Extracted number of points is 157 from Fig. 4a

and is 145 from Fig. 4b. After adding Gaussian noise, the

fitting results are shown in Fig. 5. We obtain the similar

conclusions as before.

(a) (b)

(c)

Figure 6: Errors when noise levels increase to 5%

The largest noise level added above is about 1% of the

image sizes. When continually increasing the noise level to

5%, the proposed method in Section 5 achieves the high-

est accuracies among all the methods at the most time. The

results from Fig. 2b, Fig. 4a, and Fig. 4b are shown respec-

tively in Fig. 6.

Also, a section from an ellipse is taken as shown in

Fig. 7a with blue. The results with noise shown in Fig. 7b
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(a) (b)

Figure 7: (a) A used section shown as the blue part on an

ellipse; (b) Errors of the results from (a)

demonstrate that the proposed method in Section 5 behaves

very well.

All of the simulations show that the proposed method is

the most robust to noise even noise level increases to 5% of

the image sizes.

Although the orthogonal distance is the shortest distance,

when noise level increases, it did not achieve the best re-

sults. The reason is because solving 4-th order equations

is not stable to noise. Due to the same reason, we find

SG method is sensitive to the initial values. Also, we find

when the number of the extracted points on an entire conic

increases, SG method performs well gradually and could

achieve the slightly highest accuracies when noise is small.

6.2. Experiments on real data

(a) ceiling (b) floor

Figure 8: Fitting results of two lines of fisheye images

Images of lines under a fisheye camera are conics. Usu-

ally, we do not know the conic type. Fitting results by dif-

ferent methods for one line are shown in Fig. 8a as different

colors. Fig. 8b shows the results for another conic. The

color denotations are the same as Section 6.1. LLS and

SG methods have the similar results. Sampson, Orthogo-

nal, and the proposed methods in Section 5 have the similar

results. This is consistent with the simulation results fitted

from a section of a conic of Fig. 7, where Sampson method

behaves better than SG method.

7. Conclusions
We give a novel geometric distance Eq. (16) between

a point and a general conic. Then a new cost function

Eq. (18) with combining Sampson distance is established

to optimize the conic fitting. This proposed new method

has merits of state of the art geometric distance based meth-

ods and simultaneously avoids their disadvantages, which

allows easy computation and simultaneously achieves high

accuracy and robustness. The idea can be extended to fitting

other kind planar curves or higher-dimensional surfaces that

are differentiable.
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