
Traffic-Aware and Memory-Aware Task Scheduling 

on Multi-Core Chips 

Hongyu Meng 

Institute of Automation, Chinese Academy of Sciences 

University of Chinese Academy of Sciences 

95 Zhongguancun East Road,100190, Beijing, China 

menghongyu2014@ia.ac.cn 

Yang Guo, Zijun Liu and Donglin Wang 

Institute of Automation, Chinese Academy of Sciences 

95 Zhongguancun East Road,100190, Beijing, China 

{ guoyang2014 & zijun.liu & donglin.wang }@ia.ac.cn

 

 
Abstract—With the development of semiconductor industry and 

integrated circuits, the performance of processors has been 

advanced steadily. More and more devices including cores, 

memories and peripherals are being integrated in chips to meet 

the requirements of high performance applications. The rapid 

increase in chip complexity makes it difficult for these devices to 

work efficiently. In order to facilitate efficient chips systems, we 

proposed a task scheduling algorithm for Chip Multi-Processors 

(CMP) which are called Homogeneous Earliest-Finish-Time 

(HoEFT) algorithm. We use this algorithm to finish two 

benchmarks on a chip system consisting of eight Processing 

Elements (PEs) and a 16MB shared memory. The results show 

that these PEs can reach reasonable utilization under HoEFT 

algorithm. 

Keywords-task scheduling; multi-core; shared memory; traffic-

aware; memory-aware 

I.  INTRODUCTION 

Rapid advancements in semiconductor technology over the 
past few decades make the computing systems larger and faster. 
By integrating more and more processors in computing systems, 
researchers can handle many high-performance applications. 
For example, a distributed computing system is a group of 
processors connected via a high speed network, which supports 
the execution of parallel applications. However, as the 
computing systems and applications become more and more 
complex, it is difficult for the systems to execute efficiently 
and achieve high performance. Task scheduling aims to 
allocate the tasks of an application to the set of available 
processors and arrange the execution of the tasks on each 
processor to minimize the total execution time [1]. The 
efficient scheduling of an application on the available resources 
is one of the key factors for achieving high performance [2]. 
Over the last several decades, considerable researches have 
been conducted for tasks scheduling and it has been proved that 
the task scheduling problem is an NP-complete problem in 
most cases [3]. 

In general, task scheduling is presented in two forms: static 
and dynamic [4]. In static scheduling algorithms, all 
information needed for scheduling must be known in advance 
while in dynamic scheduling, tasks are allocated to processors 
upon their arrival time and scheduling decisions are made 
during run time. In this paper, our main focus is on static 
scheduling. In addition, task scheduling algorithms can be 

classified into a variety of categories such as list-scheduling 
algorithms, duplication-based algorithm and guided random 
search methods. Though these algorithms have been proved 
with good results, they are usually not memory-aware or 
traffic-aware. Thus theses algorithms cannot be used for chip 
systems directly. 

Like integrating many processors in a computing system, 
multi-core chip systems integrate many cores in one chip to 
improve the performance of each processor. Thus we consider 
that the tasks scheduling algorithms for computing systems 
apply equally for multi-core chip systems after improving. As 
the designs of multi-core chip systems become more and more 
application-specific, they derives two main chip systems: Chip 
Multi-Processors (CMPs) and Multi-Processors System on-
Chip (MPSoC). CMPs usually consist of many homogenous 
cores and they are used for high-performance computing and 
cloud computing in workstations or servers. MPSoCs are 
generally used for real-time computing such as stream 
computing, communication processing and multimedia 
processing. 

In order to improve the performance and utilization of 
CMPs, we proposed a task scheduling algorithm. Based on the 
original task scheduling algorithms for computing systems, we 
add traffic-aware and memory-aware patterns as they are 
important parts in chip systems. Like previous works, we 
represent applications by a directed acyclic graph (DAG) in 
which nodes represent application tasks and edges represent 
internal task data dependencies. We introduce traffic status to 
represent the ports of memory banks and cores, and memory 
status to represent the shared memory and cores’ memory. 
Then we search the minimum time of tasks execution based on 
a certain scheduling order. In experiment, we use our algorithm 
to complete LU-decomposition and Double-precision General 
Matrix Multiplication (DGEMM) on an eight-PE chip system. 
Results show that the PEs can reach 16.8% and 95% utilization 
rate. 

Following the above discussion, the remainder of this paper 
is organized as flows. We start by introducing related work in 
the next Section II and HoEFT algorithm in Section III. In 
section IV, we show the experimental results. Finally, section 
V is a conclusion. 



II. RELATED WORK 

Static task scheduling algorithm can be roughly classified 
into two main groups: heuristic-based algorithms and guided 
random-search-based algorithms [2]. Heuristic-based 
algorithms can be further classified into three groups: list 
scheduling algorithms, clustering algorithms and task 
duplication algorithms. List scheduling algorithms maintain a 
list of all tasks of a given graph according to their priorities. It 
has two phase: task prioritizing phase for selecting the highest-
priority ready task and processor selection phase for selecting a 
suitable processor that minimizes a predefined cost function. 
Different from the limited number of processors in list 
scheduling algorithms, tasks in clustering algorithms are 
mapped to an unlimited number of clusters and the selected 
tasks for clustering can be any tasks. Every iteration refines the 
previous clustering by merging some clusters. If two tasks are 
mapped to the same cluster, they will be executed on the same 
processor. Clustering algorithms require additional steps to 
generate a final schedule: a cluster merging step for merging 
the clusters so that the remaining number of clusters equals the 
number of processors, a cluster mapping step for mapping the 
clusters on the available processors, and a task ordering step for 
ordering the mapped tasks within each processor [5]. Task 
duplication algorithms complete tasks scheduling by mapping 
some of tasks redundantly, which reduces the inter-process 
communication overhead. Guided random-search-based 
algorithms mainly include scheduling algorithms based on 
genetic algorithms, simulated annealing algorithms and local 
search technique. In this paper, we focus on list scheduling 
algorithms and other traffic-aware and memory-aware 
algorithms. 

Dynamic Critical-Path (DCP) scheduling algorithm [6] 
defines that every task has dynamic priority and every task 
except the entry task and exit task can be moved on the 
scheduled processors. In addition, when the step is in processor 
selection phase, DCP considers schedule the highest-priority 
successor task of the current task on this processor. DCP uses 
Absolute Earliest Start Time (AEST) and Absolute Latest Start 
Time (ALST) which can also be considered as lower bound 
and upper bound to determine the priority of each task. And it 
just selects the processors which contain the predecessor-tasks 
or do not contain any tasks. That means the processors should 
be homogenous otherwise DCP should search all the 
processors. DCP also contains an insert algorithm which is 
used to find the best processor and insert the current task 
between scheduled tasks. After inserting the current task, DCP 
will update the value of AEST and ALST of each tasks until 
the last task. Thus DCP constructs a dynamic priority list. 

Heterogeneous Earliest Finish Time (HEFT) scheduling 
algorithm [2] is another typical list-scheduling algorithm. It 
uses a static priority list based on Upward Rank (URank). 
HEFT introduces two attributes: Earliest execution Start Time 
(EST) and Earliest execution Finish Time (EFT). When 
selecting processors, HEFT will search every processor and 
find the one which can minimize the EFT of the current task. 
Different from dynamic scheduling, when finding an insert slot, 
HEFT will not move any other tasks in current processor and 
will not check its highest-priority successor task. In addition, 
the URank value will not be update after each scheduling step 

in HEFT algorithm. Critical Path on a Processor (CPOP) 
scheduling algorithm [2] is another list-scheduling using 
dynamic priority based on HEFT algorithm. It uses the sum of 
URank and Downward Rank (DRank) to assign the priority of 
each task. In first, CPOP finds a critical path (CP) which is the 
highest sum of ranks and a critical-path processor which 
minimizes the value of the CP. Then they start to schedule the 
tasks based on the priority list. For the tasks in critical path, 
they are scheduled on the critical-path processor. For the other 
tasks, they are scheduled on the processors which can minimize 
the EFT. After each scheduling step, CPOP will update the 
priorities of reset tasks until the last task. 

Longest Dynamic Critical Path (LDCP) algorithm [7] is a 
simplifying list-scheduling algorithm which has low 
complexity. LDCP just uses URank to determine the priority of 
each task. When selecting processors, it also chooses the one 
which minimize the finish time of selected task like HEFT. 
After each scheduling step, LDCP will update rank values of 
rest tasks. Like HEFT and CPOP, LDCP do not move 
scheduled tasks either when inserting the current task. 

However, the above task scheduling algorithms do not 
consider the traffic ports and the storage capacity. In [8], 
authors propose Performance Driven Scheduling (PDS) 
algorithm, Homogeneous Workload Distribution (HWD) 
algorithm and Traffic Aware Scheduling (TAS). PDS bases on 
simulate annealing algorithm and performs the following: 
random scheduling and mapping of tasks, simulation and 
capturing, averaging and normalizing performance variables 
and finally calculate the performance. The other two 
algorithms performs to add workload and traffic restriction. In 
[9], authors propose Integer Linear Programming (ILP) 
algorithm which is a traffic-aware task scheduling algorithm. It 
contains the following steps: mapping each task to a processor, 
the scheduling of the tasks on corresponding processor and the 
priority of each message on an edge. In [10], authors propose a 
memory-aware task scheduling algorithm which is based on 
quantum evolutionary algorithm (QEA). Their main focus is 
energy consumption and they compare message passing and 
shared-memory communication using QEA. 

III. HOEFT ALGORITHM 

A scheduling system in CMPs consists of an application 
and the hardware architecture of chip systems. The application 
is represented by a DAG, G = (V, E), where V is the set of v 
tasks and E is the set of e edges. Each edge represents the 
precedence constraint between two tasks. 

We introduce two communication matrixes UDATA and 
DDATA to indicate the communication cost between two tasks.  
UDATA describes the communication from predecessor tasks 
to successor tasks while DDATA describes the communication 
from successor tasks to predecessor tasks. That means UDATA 
and DDATA are transposed each other. 

We assume that there is a p ports shared memory which 
means p memory banks and a set Q of q homogeneous PEs in 
the target CMP. Each of the PEs and each of the memory bank 
has only one port and the PEs and shared memory are fully 
connected in the target system. In addition, the port can execute 
load and store at same time. The data communications may 



1. Set the computation vendor EXEC and communication 
matrix UDATA and DDATA with mean values. 

2. Compute URank values of all tasks starting from the exit 
tasks. 

3. List the tasks by decreasing order of URank values. 

4. While there are unscheduled tasks in the list, do 

5.  Select the current task from the list. 

6.  Compute the EST value and update PORTIN, 
PORTOUT and MEMORY temporarily. 

7.  Schedule the current task to the PE which 
minimizes EST value. 

8. Update matrixes including PORTIN, 
PORTOUT, MEMORY and AVAIL and update AFT 
values for scheduled tasks. 

9. Endwhile 

suffer from contentions and we use first-come-first-serve 
strategy to deal with these contentions. We introduce PORTIN 
and PORTOUT traffic matrixes to indicate the statues of PEs’ 
and shared memory’s ports. For every row vector in PORTIN 
or PORTOUT, it describe the idle time and usage time of its 
port. 

 We introduce memory matrixes MEMORY (p + q) to 
indicate the data storage by PEs and memory banks. 
MEMORY can also indicate the PEs or memory banks are full 
or have free space. As we assume there are only Scratch Pad 
Memories (SPMs) in the target system, we introduce indexes to 
determine which data can be overwritten when the memory is 
full. For the memory of PEs, we define it will be overwritten 
automatically when the memory is full. For the shared memory, 
we define the data can be overwritten if its index is above a 
certain value which is set by the type of the target application. 
When the status of shared memory is full and the index is 
lower than the certain value, the PORTIN of this memory 
bank cannot be used. 

We introduce computation vendor EXEC to indicate the 
computation time of each task on PEs as our target system is 
homogenous. In addition, we introduce status matrix AVAIL 
to indicate the idle time and execution time for every PE. 

Like HEFT algorithm, we also define the EST and Actual 
Finish Time (AFT) attributes which are derived from a given 
partial schedule. EST(ni, pj) is the earliest execution start time 
of task ni on PE pj. For the entry task which has no predecessor 
task, the value of its EST is 0. For the other tasks in the graph, 
the EST(ni, pj) values are computed recursively and starting 
from the entry task, as shown in (1). 

max{ready[j], max(AFT(nm)+r(PE(nm),pj)(2cm,i+wm)}   (1) 

where nm is one of the set of immediate predecessor tasks about 
task ni and ready[j] is the earliest time at which pj is ready for 
task execution. The inner max block in (1) means the time 
when all data needed by ni has arrived at pj. AFT is determined 
when the task has been scheduled and its value is the EST add 
the computation time. PE(nm) is the PE which task nm is 
scheduled on, and r(PE(nm),pj)=1 if PE(nm)≠pj and zero 
otherwise. As we use shared-memory in target system, we 
should double the communication time cm,i which means the 
communication time from task nm to task ni. As we add traffic-
aware and memory-aware mechanism, we define the wait time 
as wm which means the time should be waited before the data 
from task ni can be sent. The calculation of wm is described in 
PE Selection Phase which should update the statues of 
PORTIN, PORTOUT and MEMORY temporarily. 

Based on previous insertion-based scheduling policy in [6], 
we add some restrictions on it. First, we define the scheduled 
tasks on one PEs cannot be moved. That means if it cannot find 
a slot on all PEs, the current task should be scheduled at last on 
one processor. Second, when finding a slot on one PE, it should 
check the traffic status and memory status. When both the 
traffic and memory can be available, the current task can be 
inserted on this PE. 

Like most list scheduling algorithms, tasks in HoEFT are 
also ordered by scheduling priorities that are based on URank. 
The URank of a task ni is defined by (2). 

URank(ni) = exi+max(ci,j+URank(nj))   (2) 

where exi is the execution time of task ni, nj is one of the set of 
successor tasks about tasks ni and ci,j is the communication 
time between task ni and task nj. The communication time is the 
value from UDATA which do not consider whether the two 
tasks are scheduled on the same PE. For the exit tasks, the 
values of URank are the computation times. Compared with 
other algorithms which use two ranks, we just use one to 
reduce the complexity as our focus is traffic-aware and 
memory-aware. 

Figure 1. The HoEFT algorithm 

Figure 1 shows the HoEFT algorithm for a bounded 
number of homogenous PEs. It also contains two major phases: 
task prioritizing phase and PE selection phase. As we want to 
research more details about tasks scheduling in CMPs, we add 
update phase which is used to restrict the rest of scheduling 
steps. 

A. Task Prioritizing Phase 

This phase is completed according to URank values shown 

in (3). We first compute the URank values of exit tasks which 

are equal to their computation times. Then we can compute the 

URank values of these exit tasks’ predecessor tasks. Based on 

the DAG, we finish computing the URank values of all tasks 

in turn. At last, we prioritize the tasks based on URank values. 

The entry tasks have the highest priorities and the exit tasks 

have the lowest priorities. For those tasks which have the same 

URank value, we define the one which has more successor 

tasks has higher priority. If they still have the same number of 

successor tasks, we randomly prioritize them. 

B. PE Selection Phase 

From the AVAIL we can get the earliest available time of 

a PE. This time may not be the final value that a task can be 

executed as we can use the insertion-based algorithm to find a 

slot between the scheduled tasks. Although we can find a slot 

in some PEs or we get the time from the AVAIL, we still do 



not define the time as the maximum value between them. We 

take the communication time into account if the current task 

has predecessor tasks and the communication time should be 

doubled if the current task and its predecessor task are not on 

the same PE. Furthermore, we add wait time to allow the data 

needed by the current task to be ready before the tasks can be 

executed. The wait time is mainly caused by the contention in 

traffic and the limitation of the memory’s capacity. We must 

wait the port of the destination memory and the port of current 

PE to be idle, and wait the memory bank until it can be written 

if it is full. No matter calculating the communication time or 

the wait time, we will update PORTIN, PORTOUT and 

MEMORY until all the predecessor tasks have been checked. 

When selecting PEj, we get the minimum value from the 

results of AVAIL and insertion-based algorithm which is 

defined as ready[j]. Then we calculate the communication 

time and wait time as the above and add them together with 

the AFT values of the current task’s predecessor tasks. After 

checking all the predecessor tasks, we choose the maximum 

sum. Then we select the maximum value as the EST from the 

sum and the ready[j]. After all the PEs have been checked, we 

select the PE which minimizes the EST. 

C. Update Phase 

After selecting the task and the PE, we should update the 

status of PORTIN, PORTOUR, MEMORY and AVAIL. It 

should be noted that the status of MEMORY should not be 

updated to the status which the current task has sent out its 

data. As the data needed by next selected task should not be 

sent before next update phase and can just be sent temporarily 

in next PE selection phase. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

We assume that our chip system contains eight PEs, a 
shared-memory and two Double Date Rate (DDR) controllers. 
Each PE consists of four 512-bit Floating-point Multiply-Add 
(FMA) units and 1 MB ping-pang memory. The shared 
memory contains 16 banks each of which is also 1 MB ping-
pang memory. We assume that the Synchronous Dynamic 
Random Access Memory (SDRAM) can run at 2800 MHz with 
64-bit data width and we don’t care about the capacity of 
SDRAM. The PEs run at 1.4 GHz, and the shared-memory and 
DDRs run at 0.7 GHz. We assume that there is a 128-bit 
crossbar to connect them which also runs at 0.7 GHz. The one 
of the DDRs is used to store the original data and the other is 
used to store temporary data. 

As LINPACK is now the most popular benchmark in the 
world for testing floating-point performance and it mainly 
consists of LU-decomposition and DGEMM, we test them 
separately on our chip system under the HoEFT algorithm. Our 
chip system is based on shared memory, so it will consume 
long time to write back the data after computing. We assume 
that each PE manages some fixed data and just change two 
vectors after each compare operation. Thus near the end of LU-
decomposition, some PEs are idle. The other scheduling steps 

in LU-decomposition and the scheduling steps in DGEMM are 
as our algorithm. 

Results show that in LU-decomposition, PEs can reach 
about 126.9 Gflops while in DGEMM they can reach 716.8 
Gflops. Taking account of 5% error, we consider that PEs can 
reach 16.8% utilization rate in LU-decomposition and 95% 
utilization rate in DGEMM. As our algorithm contains more 
limitation, the utilization rate is lower than the results in 
distributed computing systems. Thus it can reflect the 
performance of chip systems more exactly. 

V. CONCLUSION 

In this paper, we proposed a traffic-aware and memory-
aware task scheduling algorithm which can be used for task 
scheduling in CMPs. Based on previous list scheduling 
algorithms, we add traffic-status matrix and memory-status 
matrix which can be used to indicate more details in chip 
systems. We use this algorithm to finish two benchmarks in an 
eight-core systems. Results show that our algorithm can make 
the PEs run at a reasonable utilization rate. 

In the future work, we consider that we can use this 
algorithm to finish more tasks scheduling in different chip 
systems. Then we can find the bottlenecks of hardware design 
and improve them. 

REFERENCES 

[1] Daoud M I, Kharma N. A hybrid heuristic–genetic algorithm for task 
scheduling in heterogeneous processor networks[J]. Journal of Parallel 
& Distributed Computing, 2011, 71(11):1518-1531. 

[2] Topcuoglu H, Hariri S, Wu M Y. Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing[J]. IEEE 
Transactions on Parallel & Distributed Systems, 2002, 13(3):260-274. 

[3] Bajaj R, Agrawal D P. Improving scheduling of tasks in a heterogeneous 
environment[J]. Parallel & Distributed Systems IEEE Transactions on, 
2004, 15(2):107-118. 

[4] Bansal S, Kumar P, Singh K. Dealing with heterogeneity through limited 
duplication for scheduling precedence constrained task graphs[J]. 
Journal of Parallel & Distributed Computing, 2005, 65(4):479-491. 

[5] Liou J C, Palis M A. A comparison of general approaches to 
multiprocessor scheduling[C]// Parallel Processing Symposium, 1997. 
Proceedings. International. IEEE, 1997:152-156. 

[6] Kwok Y K, Ahmad I. Dynamic Critical-Path Scheduling: An Effective 
Technique for Allocating Task Graphs to Multiprocessors[J]. IEEE 
Trans Parallel & Distributed Systems, 1996, 7(5):506-521. 

[7] M.I. Daoud, N. Kharma, A high performance algorithm for static task 
scheduling in heterogeneous distributed computing systems, J. Parallel 
Distrib.Comput. 68 (2008) 399–409. 

[8] Tafesse B, Raina A, Suseela J, et al. Efficient Scheduling Algorithms for 
MpSoC Systems[C]// Eighth International Conference on Information 
Technology: New Generations. IEEE, 2011:683-688. 

[9] Yang L, Liu W, Jiang W, et al. Traffic-Aware Application Mapping for 
Network-on-Chip Based Multiprocessor System-on-Chip[C]// IEEE, 
International Conference on High PERFORMANCE Computing and 
Communications. IEEE, 2015:571-576. 

[10] Lee J, Choi K. Memory-aware mapping and scheduling of tasks and 
communications on many-core SoC[C]// Design Automation Conference. 
IEEE, 2012:419-424. 

 


