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Abstract— Traffic flow prediction is one of the most popular topics in
the field of the intelligent transportation system due to its importance.
Powered by advanced machine learning techniques, especially the deep
learning method, prediction accuracy noticeably increases in recent years.
However, most existing methods applied a data-driven paradigm and
tend to ignore the outliers, which result in poor performance while
handling burst phenomena in the traffic system. To overcome this
problem, the prediction model needs to recognize different patterns
and handle them in different ways. In this paper, we propose a new
prediction model (called pattern sensitive network) that can handle
different traffic patterns automatically. By using adversarial training,
our model can make more accurate predictions in unusual states without
compromising its performance in usual states. Experiments demonstrate
that our method can work well in both usual traffic states and unusual
traffic states.

Index Terms— Traffic flow prediction, deep learning, generative adver-
sarial network.

I. INTRODUCTION

TRAFFIC flow prediction plays a key role in many traffic
applications [1]–[4], e.g., signal optimization [5], [6], route

planning [7]. Using some powerful models, such as Autoregressive
moving-average model (ARMA) [8], [9], Support Vector Regres-
sion (SVR) [10], [11], and especially the Deep Learning (DL) [12],
the prediction accuracy for real-world application has already been
significantly increased.

Deep Learning methods have achieved the state-of-art performance
on traffic flow prediction problem [13]–[15]. Such methods combine
data-driven paradigm with representation learning, allowing machine
learning model to automatically discover the patterns within the
data [16]. However, unlike other missions deep learning methods
are usually applied to, such as computational vision or speech
recognition, the traffic prediction problem has a different nature. One
of its most significant characteristics is the violent change of traffic
flows. Though such bursts rarely occur, they may lead to noticeable
prediction errors or economics cost [17], [18]. Applying deep neural
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network directly without considering the diverse patterns of traffic
system leads to unsatisfactory performances in extreme situations,
as shown in the experiments of this paper, though its overall score is
still one of the best. A further analysis on the origin of this problem
reveals that many conventional data-driven prediction methods do not
fully consider the training objective for traffic prediction problems.
Since the occurrence of unusual situations is rare, the prediction errors
on the associated data points contribute relatively little to the total
prediction errors. That makes prediction models easy to remember
the patterns of usual data but not the patterns of unusual data. As a
result, conventional prediction methods turn to ignore these unusual
traffic states implicitly, thereby a preprocessing to categorize the
data will be needed. Some previous works address this problem by
training separate models dedicated for different traffic states [19].
Such methods require us to label the collected traffic flow data, so the
model can tell the difference between the usual and unusual cases.
It can achieve good performance only if we know which kind of
model should be used and have enough sources to label the data.

Instead of supervised methods, we proposed a novel model called
Pattern-Sensitive Networks (PSNs) to solve this problem by unsu-
pervised learning. PSNs are first trained to learn the joint distribution
of the historical-future data pairs by applying an adversarial learning
paradigm [20], [21], then fine-tuned to better describe the precise
conditional distribution (causal relation) between historical and future
data. In such way, PSNs can automatically distinguish between the
data of different cases, and use the learned diverse representations for
better prediction. Experiments show that this kind of networks per-
forms comparably or even better than some state-of-art approaches,
especially for unusual states when burst phenomena occur.

To further explain our approach, the rest of this paper is arranged
as follows. Section II introduces the conventional methodology of
traffic flow prediction, then points out its hidden problem. Section III
proposes the principle of a solution along with the structure and
training scheme of PSN. Section IV provides some numerical results
to verify the effectiveness of the proposed method. Finally, Section V
concludes the paper.

II. TRAFFIC PREDICTION METHODS

A. Conventional Traffic Prediction Method
The core of conventional traffic flow prediction methods is to

appropriately establish a special (usually learnable) mapping relation
that links historical records (including traffic flow data and other
traffic information) and future traffic flow data [17], [22]. Along this
paper, we use the notation st to represent the true traffic flow at time
step t , and s0:N to represent the sequence of N +1 historical records
�s0, s1, . . . , sN �. Moreover, we use s0:t−1 to indicate the historical
records with a fixed length before st for simplicity.

This prediction problem can be viewed from a probabilistic
perspective. We can view the traffic flow at time step t as a
random variable depends on the historical data, and the conditional
probability p

�
st |s0:t−1

�
obeys a certain distribution. A probabilistic
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inference method can be used to find this unknown distribution.
The conventional way is to set up a learnable model q

�
st |s0:t−1

�

that is controlled by one or some parameters θ , then minimizes
the difference between the learnable model q

�
st |s0:t−1; θ

�
and true

conditional distribution p
�
st |s0:t−1

�
[23].

The difference between two distribution is usually measured by
Kullback-Leibler (KL) divergence [24]:

K L
�

p
�
st |s0:t−1

� � q
�
st |s0:t−1; θ

��

=
�

S

p
�
st |s0:t−1

�
log

p
�
st |s0:t−1

�

q
�
st |s0:t−1; θ

� (1)

where S is the set of all possible values of st
Using Kullback-Leibler divergence, the best parameters should

satisfy

θ∗ = arg min
θ

K L
�

p
�
st |s0:t−1

� � q
�
st |s0:t−1; θ

��
(2)

Then a gradient based optimization method can be applied to
calculate θ∗.

Let us use s̃t to represent the predictive future traffic flow given by
a conditional parametric model. Once the model has been fitted to the
training data, the prediction s̃∗t can then be drawn from conditional
distribution in either a stochastic or deterministic way:

s̃∗t ∼ q
�
st |s0:t−1; θ∗

�
or s̃∗t = arg max

s̃t
q

�
st |s0:t−1; θ∗

�
(3)

Using a complex model, such as deep neural network as the
parametric model q

�
st |s0:t−1

�
, the conventional prediction methods

can achieve high accuracy in general.

B. The Bursts in Traffic System

Traditionally, data-driven methods tend to neglect the outliers in
order to prevent overfitting. The outlier refers to the observation that
is distant from other observations. In the context of the sequence
prediction problem, it means that, for similar historical records
s0:t−1 and s�0:t−1, the conditional probabilities of following values
in unusual cases s�t are relatively low. The relation between the usual
cases and unusual cases can be formalized as:

p
�
s0:t−1

� � p
�
s�0:t−1

�
, p

�
st |s0:t−1

�
> p

�
s�t |s�0:t−1

�
(4)

The KL-divergences in usual cases are most likely larger than those
in unusual cases due to p(st |·) > p(s�t |·), which makes the gradient-
based methods tend to ignore the outliers since ∇θs > ∇θs � .

The extreme conditions in traffic dynamic are treated as outliers in
most of the previous works, since the prediction error in extreme
conditions is minor under some statistical criteria, such as mean
square error and mean absolute percentage error. For example, if we
categorize the observed traffic states in PeMS dataset [25] into two
cases: the usual case and the unusual case, and define the unusual
case as follow:

�
�st − st−1

�
�

st−1
≥ 1, st > 5 (5)

Then there is only 2% of the records satisfy such definition.
However, such mispredictions may result in traffic congestion

and economic loss [19], [26], and it implies a mismodeling of
traffic dynamic [27]. Therefore, an accurate forecasting of extreme
conditions is urgently needed for traffic control.

III. PATTERN SENSITIVE NETWORKS

A. Pattern Sensitive Prediction
As above analysis has shown, the data-driven methods are designed

to neglect the unusual patterns. To let the model pay more atten-
tion to the unusual patterns, one alternative solution is to use the

KL-divergence of joint distribution instead of conditional distribution.
We prove its effectiveness in the following chapters.

Similar to the conventional method, the learning process of para-
metric model is to minimize the KL-divergence between its model
distribution q

�
s0:t−1, s:t ; θ

�
and true distribution p

�
s0:t−1, st

�
:

K L
�

p
�
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� � q
�
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��

=
�

S

p
�
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�
log

p
�
s0:t−1, st

�

q
�
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�

=
�

S

p
�
st |s0:t−1

�
p

�
s0:t−1

�
log

p
�
st |s0:t−1

�
p

�
s0:t−1

�

q
�
st |s0:t−1

�
q

�
s0:t−1

�

(6)

Notice that p
�
s0:t−1

�
does not depend on p (st ) and p

�
s0:t−1, st

�
,

combining (6) with (1), we have

K L
�

p
�
s0:t−1, st

� � q
�
s0:t−1, st

��

= p
�
s0:t−1

�
K L (p (st |·) � q (st |·))+ log

p
�
s0:t−1

�

q
�
s0:t−1

� (7)

Since p
�
s0:t−1

� ∈ [0, 1], and log p(s0:t−1)

p
�
s �0:t−1

� q(s0:t−1)

q
�
s �0:t−1

� approaches the

limit zero while distribution q getting closer to p, we can further
infer that
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�
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� − log
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⎞

⎠

� K L (p (st |·) � q (st |·))− K L
�

p
�
s�t |·

� � q
�
s�t |·

��
(8)

Inequation (8) indicates that, by learning the joint distribution
instead of conditional distribution, we can reduce the gap between
KL-divergences under different cases, and let the model pay more
attention to the unusual patterns. Since such prediction method is
more sensitive to the different patterns, we call it Pattern-Sensitive
Prediction (PSP).

B. Pattern-Sensitive Networks
For the traffic prediction problem, deep neural network exhibits the

highest capability to fit the records than previous models [14]. More-
over, its flexibility allows multimodal data fusion to be performed,
which boosts its performance even further [28]–[32].

However, the neural network is usually modeled as a conditional
distribution instead of a joint distribution. Since the neural network
performs a deterministic mapping process, there has to be an input
in order to get a meaningful output. A recently developed approach,
called Generative adversarial network (GAN) is one of the exceptions.
GAN is in the family of implicit density models, which can be
trained while interacting only indirectly with the data distribution
by sampling from it [20].

The basic idea of GAN is to set up an adversary game between
two differentiable networks, call generator and discriminator. The
generator maps a source of noise z ∼ p(z) to the input space. The
discriminator receives either a generated sample or a true data sample
and tries to distinguish between them. Hopefully, this competition
will converge to an equilibrium while generative samples are indis-
tinguishable from the discriminator. That indicates the generator is
an approximation of the real samples distribution.

By introducing GAN into the prediction model, we are able to
perform a pattern sensitive prediction using neural networks. A novel
structure, called Pattern Sensitive Networks (PSNs) is proposed
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Fig. 1. Schematic of PSN architecture.

Fig. 2. The implementation of PSN used in this paper. (a) Generator.
(b) Discriminator.

by combining the adversary structure with auxiliary losses. This
model can first infer the joint distribution of historical record and
future state, therefore automatically discovers the unusual patterns
and categories the data into different classes by providing diverse
representations. Then the representation it learned from the previous
stage can be used for better prediction. The structure of this network
is illustrated in Fig. 1.

As illustrated in the figure, the main components of PSN are two
adversary networks, in which a generator receives both random noises
and historical records s0:t . The generator outputs a sequence of values
s̃0:t and is optimized according to three criteria.

First is the discriminative criterion D(G(z, s0:t−1)), which is
provided by the discriminator to indicate if the generative sequences
can be told from the true ones. The consistency loss Lcons is
used to decrease the reconstruction error of the historical record,
i.e., s̃0:t−1 ≈ s0:t−1. And the last criterion is the prediction
error Lpred, which measures the prediction accuracy. The total
objective function of the generator can then be formed as:

LG = c1 · D
�
G

�
z, s0:t−1

��+ c2 · Lcons + c3 · Lpred (9)

where ci is the coefficient of different losses.

C. Implementation of PSN
In this paper, we implement a pattern sensitive network to predict

the traffic flow of freeway system across all major metropolitan areas
in California, US.

Our implementation adapts a variant of GAN called Wasserstein
GAN with gradient penalty (WGAN-GP) [33], containing two net-
works: generator G with weights θ , and discriminator D with
weight w. Compared with original GAN, this variant optimizes
Earth-Mover’s distance instead of Jensen-Shannon divergence.

As shown in Fig. 2b, the discriminator receives either true or gener-
ated samples and then outputs a scalar. The goal of discriminator is
to maximize the expected difference between D(s0:t ) and D(s̃0:t ).
To guarantee the discriminator to be optimal, a gradient penalty,
(� ∇ŝ Dw(ŝ) �2 −1)2 will also be applied. ŝ is a random mix of
true and generative samples

ŝ = �s0:t + (1− �)s̃0:t (10)

where � is a random variable sampled uniformly from 0 to 1.

Algorithm 1 Pretraining Stage of PSN. We Use Default Values of
λ = 10, ndisc = 5
Require: Traffic records collected from different stations; Random

distribution p(z); Preprocessing time steps T1; Fine-tuning time
steps T2;

1: Initialize θ , w.
2: while θ has not converged do
3: for t = 1 to ndisc do
4: for i = 1 to m do
5: sample real record s(i)

0:t−1 from random station, latent
variable z ∼ p(z), a random number � ∼ U [0, 1].

6: s̃(i)
0:t ← G(s(i)

0:t−1, z), ŝ(i)
0:t ← �s(i)

0:t + (1− �)s̃(i)
0:t

7: calculate L(i)
D according to (11)

8: end for
9: w← w + ∇w

1
m

�m
i=0 L(i)

D
10: end for
11: for i = 1 to m do
12: sample real record s(i)

0:t−1 from random station, latent variable
z ∼ p(z)

13: s̃(i)
0:t ← G(s(i)

0:t−1, z)

14: calculate L(i)
G according to (12)

15: end for
16: θ ← θ + ∇θ

1
m

�m
i=0 L(i)

G
17: end while
18: return Generator network Gθ

The objective function of discriminator can then be formed as:

LD = D(s̃0:t )− D(s0:t )+ λ(� ∇x̂ Dw(x̂) �2 −1)2 (11)

where λ is the coefficient of gradient penalty.
The objective function of the generator has three components,

as introduced in the previous section and Equation (9). The
discriminative criterion is−D(s̃0:t ) under the WGAN-GP framework.
The prediction error and consistency loss are defined as mean square
errors in this paper. Therefore, the objective function of the
generator is

LG=−c1 · D(s̃0:t )+ c2 · (s0:t−1−s̃0:t−1)
2 + c3 · (st − s̃t )

2 (12)

For traffic prediction problems, the training scheme of PSN can be
separated into two stages.

The first training stage of PSNs is an unsupervised pretraining
process, performing on a mixed data set collected from different
stations S0, S1, . . . , SN . The learning process follows the way intro-
duced in literature [33], in which the discriminator will be trained for
ndisc epochs while the generator for only one epoch. By adversarial
training upon mixing dataset obtained in different lanes, the generator
can fit the joint distribution of traffic states and obtain a glimpse
of the flow patterns. The pretraining procedure is demonstrated in
Algorithm 1.

Then the representation gained from the unsupervised stage can
be used to perform supervised tasks, so the generator network can
best fit a specific station Si . The most direct way is to optimize the
generator according to the prediction error. This procedure performs
a better estimation of the conditional distribution on given records
and improves model’s prediction accuracy for a specific area.

Both generator and discriminator are built by stacking 5 fully
connected layers with 128 units, each following a Leaky version of
a Rectified Linear Unit (Leaky ReLU) [34]. The last layer in the
generator is always trainable during the whole training process, while
the other layers can only be trained during the unsupervised learning
stage. This implementation is illustrated in Fig. 2.
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IV. NUMERICAL COMPARISON RESULTS

In this section, we conduct experiments to answer whether pattern
sensitive model can better handle unusual cases.

A. Data Sources and Data Preprocessing
The experimental dataset is obtained from Caltrans Performance

Measurements Systems (PeMS) [25], which is the most widely used
dataset for traffic prediction. In PeMS, the traffic flow data are
collected by inductive loop sensors throughout the freeways and
then aggregated as counts of cars into 5-min periods. The proposed
model is applied to the data in the whole year of 2016, in which
the data of the first 9 months are used as the training set and the
data of the remaining 3 months are used as the test set. We only
focus on 1397 sensors in district 4 which functioned consistently
throughout the studied period. The missing data of these sensors are
imputed using simple average trend. Due to the limited computational
resource, 50 sensors are selected to perform one-to-one prediction
(to predict the traffic flow of one station using its own records only).1

Detrending is widely used in analyzing traffic flow time series and
proved to be critical for neural network methods [17], [35], [36].
We consider the weekly seasonality of traffic flow by using a simple
moving average method. All data will be detrended by subtracting
the average flow at the same time of last few weeks:

trendt = 1

N

N�

i=1

st−i∗weeks (13)

We look back four weeks to calculate the trend in this paper, which
means N = 4. For example, for the data obtained at 10:00 A.M.
in the Wednesday of the fifth week, the input flow data will subtract
the mean value of the traffic flow at 10:00 A.M. in the Wednesday
of the previous four weeks. The input flow data in each sensor are
also normalized to be 0 mean and 1 standard deviation depending on
the value of training set.

B. Performance Indexes and Models Used for Comparison
We compare different models under two performance indexes,

the mean absolute error (MAE) and mean absolute percentage
error (MAPE), which are defined as:

MAE (st , s̃t ) = 1

T

T�

t=0

|s − s̃t | (14)

MAPE (st , s̃t ) = 1

T

T�

i=0

�
��
�
st − s̃t

st

�
��
� (15)

where T is the length of the test set. For the MAPE index, we only
consider the situation when st > 5. The standard deviations of
prediction error are also considered in our experiment, defined as

Std (M AE) =

�M

i=1
�
M AEi − M AE

�2

M − 1
(16)

Std (M A P E) =



�M
i=1

�
M A P Ei − M A P E

�2

M − 1
(17)

M = 50 is the station numbers we have in the dataset.
M AE and M A P E are the average error on all stations. The per-
formances are calculated after we scale back the data to the original
representation and add the trend back to it.

1The id of each sensor is: 400000, 400001, 400002, 400006, 400009,
400011, 400014, 400015, 400017, 400025, 400028, 400030, 400031, 400039,
400041, 400043, 400048, 400049, 400050, 400060, 400067, 400069, 400073,
400074, 400078, 400079, 400083, 400085, 400088, 400090, 400091, 400093,
400096, 400098, 400101, 400103, 400105, 400107, 400112, 400113, 400115,
400118, 400119, 400122, 400125, 400126, 400127, 400132, 400137, 400141.

C. Compared Methods

To demonstrate the improvement brought by GAN technique,
we compare our implementation of PSN, which is described in
section III-C with some previous state-of-art methods, including
Autoregressive Moving Average Models (ARMA) [37], Support Vec-
tor Regression (SVR) [10], [38], Scalable End-to-End Tree Boosting
System (XGBoost) [39], Stack Auto Encoders (SAE) [14] and Long
Short Term Memory Network (LSTM) [40]–[42].

For the non-neural-network-based models, we adopt the default
settings of hyperparameters, which is believed to be suited in most
cases. For ARMA, the number of lag order p is set to 12 and
the order of moving average q is set to 1. For SVR, the radial
basis function (RBF) is used as the kernel function, and the penalty
parameter is set to empirical value 1.0. For XGBoost, there are
100 estimators, each with depth up to 3, and the learning rate is 0.1.

For the neural-network-based models, we use different structures
with similar complexity. A 1-layer LSTM network with 128 cells and
an SAE with the same structure as the generator in PSN are used in
the experiment. LSTM and SAE are trained on the data of each station
for 20 epochs in a batch size of 128, while PSN is pretrained for
15 epochs and then fine-tuned for 5 epochs in a batch size of 128 as
well. All neural networks are optimized by Adam method [43] with
hyperparameters α = 0.0001, β1 = 0, β2 = 0.9. The networks are
implemented by using Tensorflow framework [44]. All experiments
are performed on a workstation with an Intel Core i7-6700K CPU
and two Nvidia GeForce GTX Titan X Graphics Cards.

D. Testing Results of One-to-One Prediction

Since short-term prediction is more challenging, we conduct exper-
iments using the data in previous 1 hour to predict the traffic flow
of next five minutes in this paper. For the PeMS dataset, that means
setting the length of the historical time window T to be 12 and the
time interval to 5 minutes.

We evaluate the prediction performance of the proposed PSN
together with other models. The average prediction errors on
50 stations along with the standard deviations of errors are shown
in Table I. The top-3 performances are shown in bold in this table.

It is clear that PSN methods work well in both usual and unusual
cases under MAE and MAPE criteria. In usual cases, PSN works
almost the same as LSTM and XGBoost. It achieves a test error
rate (MAPE) of 11.96, which is 5.53% better and variant 54.04%
less than SAE with the same structure.

Most importantly, PSN outperforms other advanced models in
unusual cases. It outperforms SAE by 7.48% in MAE criteria
and 1.91% in MAPE. Comparing with models that have similar
performance, it is about 3.14% better than LSTM and 3.31% better
than XGBoost under MAE criteria, and about 2.38% better than both
competitors under MAPE criteria.

Among all the models, PSN is the only kind that performs well
under both criteria. Most complex models are inferior to simpler
models such as ARMA and SVR under MAE criteria while outper-
forming them under MAPE criteria. This indicates that compared with
traditional methods, recent methods tend to be more error when the
traffic flow is higher. The achievements of PSN imply its excellence
for both peeks and idle hours predictions.

Our method brings practical benefit as well. As summarized
in Table II, comparing different neural networks for their number
of parameters and the total training time for 50 stations prediction,
we find PSN can achieve close performance as LSTM while using
only about one-fifth of the training time.
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TABLE I

PERFORMANCE COMPARISON OF DIFFERENT MODELS FOR A 5-MINUTES ONE-TO-ONE PREDICTION

TABLE II

COMPLEXITY OF DIFFERENT NETWORKS

V. CONCLUSION

In this paper, we propose Pattern-Sensitive Network to better
capture the variation patterns of traffic flow and thus make a better
prediction in extreme conditions. Testing results show that, by letting
the neural network learn the joint distribution of future flow and
historical records explicitly, we can handle the violent changes in
traffic system more robustly without compromising its prediction
accuracy. Our method also reduce the need for complex structures
and thereby reducing the time cost as well.

The PSN can be further improved by using more complex network
structures if the data is noisier. Moreover, our work indicates that the
research of traffic prediction models can be extended by adopting
the recent developments of GAN. We hope further applications,
such as making a more precise prediction of various conditions,
providing a better interpretation [45] for the prediction results, as well
as combinations with software-defined transportation systems, data
recovery, virtual-real interaction [46] can benefit from our study.
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