
Artif Intell Rev
https://doi.org/10.1007/s10462-018-9631-5

Artificial intelligence test: a case study of intelligent
vehicles

Li Li1 · Yi-Lun Lin2,5 · Nan-Ning Zheng3 · Fei-Yue Wang2,5 · Yuehu Liu3 ·
Dongpu Cao4,6 · Kunfeng Wang2 · Wu-Ling Huang2

© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract To meet the urgent requirement of reliable artificial intelligence applications, we
discuss the tight link between artificial intelligence and intelligence test in this paper. We
highlight the role of tasks in intelligence test for all kinds of artificial intelligence.We explain
the necessity and difficulty of describing tasks for intelligence test, checking all the tasks
that may encounter in intelligence test, designing simulation-based test, and setting appro-
priate test performance evaluation indices. As an example, we present how to design reliable
intelligence test for intelligent vehicles. Finally, we discuss the future research directions of
intelligence test.
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1 Introduction

Artificial intelligence (AI) usually refers to intelligence exhibited by machines. Nowadays,
AI has transformed our lives in many aspects, from semi-autonomous cars on the roads to
robotic vacuums in our homes. With no doubts, AI will continue to invade every area of our
lives, from health care to education, entertainment to security, in the next 20 years.
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Some questions naturally arise. How to guarantee AI applications behave appropriately?
Would self-driven car crash in some rare situations? Will a robotic cooker burn house? The
urgent requirement of reliable artificial intelligence applications attracts increasing attention
to these questions.

To answer such questions, we need to rethink what artificial intelligence is. Clearly, the
definition given at the beginning of this paper is not precise. A more rigorous definition can
be given as “Artificial intelligence is the intelligence (that is similar to or the same kind as
human intelligence) exhibited by machines (in the same task)”.

We can see that this new definition reveals the tight link between artificial intelligence
and intelligence test. If and only if a machine finishes a set of specially designed tasks, we
can say that this machine exhibits intelligence as human. This new definition is similar to
Minsky’s definition: AI is “the science of making machines capable of performing tasks that
would require intelligence if done by [humans]” (Minsky 1968). The difference is that our
definition focuses on the result (performing tasks); while Minsky’s definition highlights the
cause (the required intelligence). This definition belongs to the so-called behavior type AI
definition proposed in (Russell and Norvig 2010).

Moreover, the choice of the designed tasks characterizes the kind of intelligence that this
machine can have. Two sets of tasks may have no or few overlaps so that we cannot simply
determine which one is more difficult. For example, an illiterate human may be a driver and
a well-educated blinded human may not be able to drive.

Turing is the first researcherwho realized the importance of intelligence test for developing
artificial intelligence (Turing 1950). He proposed a test in which a human evaluator would
judge natural language conversations between a human and a machine designed to generate
human-like responses. If the evaluator cannot reliably distinguish the machine from the
human, the machine is said to have finished the task and passed the test.

However, Turing test has several shortcomings and cannot be directly applied in many
other applicationswhich require reliable intelligence test formachines (Levesque 2014, 2017;
Ackerman 2014; Schoenick et al. 2017). One example is intelligent vehicles that draw great
attention from researchers, automobile manufacturers and the public in the last 10 years (Li
andWang 2007; Eskandarian 2012). In order to solve this problem, some initial attempts had
been carried out recently (Broggi et al. 2013, 2015; Huang et al. 2014;Wagner and Koopman
2015; Li et al. 2017; Koopman and Wagner 2017; Watzenig and Horn 2017a, b; Zhao et al.
2017), but none of them give a clear portrait of the difficulties of intelligence test and explain
the origins of these difficulties.

Facing such a predicament, some researchers claimed that machine-learning based auton-
omy is brittle and lacks ‘legibility’. In contrast, more researchers believed that the field of
autonomy is undergoing a machine learning revolution. They thought that the right time
has come and we should combine advances in intelligent machine learning with intelligent
machine testing of empirical autonomy applications.

Noticing that testing of intelligence is attractingmore interests in recent studies, we survey
the state-of-the-art achievements in this field in this paper. We account for the difficulties
of intelligence test, highlight the role of tasks in intelligence test for all kinds of artificial
intelligence, and discuss how to design reliable intelligence test for intelligent vehicles.
We will not discuss the so-called strong (or hard) artificial intelligence which requires an
intelligent machine to have an artificial general (full) intelligence and exhibit behavior as
flexible as humans do (Ohlsson et al. 2017). Instead, we will focus on intelligence test for
weak (or soft) artificial intelligence which requires an intelligent machine to solve specific
problems as humans would do (Newell and Simon 1976; Kurzweil 2005). Furthermore, the
recent progress in intelligent vehicles indicates that appropriate testing methods could help
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significantly improve the efficiency of intelligence test and thus increase the reliability of
some intelligent machines. All the promising achievements urge us to put more efforts into
this research field.

2 Difficulties of intelligence test

2.1 The description of tasks

The first difficulty of intelligence test is: How to well define/describe the task for a certain
kind of artificial intelligence? A not well-defined task is usually hard to test.

Themajor shortcoming of Turing test is that the test is not quantitatively defined. Although
Turing had inspirationally proposed a game between human and machine, there is no distinct
game rule for the evaluator to determine which one will win the game. As a result, both
human and machine has very little information to establish or update their strategy toward
the success of the game. This certainly hinders the development of intelligent machine that
can pass Turing test.

Let us review the great achievements of artificial intelligence that gained during the last
30 years. For example, IBM’s Deep Blue won the chess game against human players in
1996–1997 (IBM 1997). Deepmind’s AlphaGo won the Go game against human players in
2016–2017 (Silver et al. 2016, 2017b). Both chess game and Go game have much clearer
definitions anddescriptions than the imitation gameproposedbyTuring. For another example,
in the celebrated ImageNet test (ImageNet 2016), we are required to just recognize the given
objects but not every object. Such quantitative settings make the test focused so that we can
easily track/analyze the try-and-test results and update our applications.

The comparison between Turing test and the above tests shed light on the importance
of task description for intelligence test. However, it is often hard to provide a clear defini-
tion/description of the tasks that need to be finished for a certain intelligence test. Instead,
many people just give a rough definition of the scenario, in which a lot of tasks needs to be
finished. For example, the famous DARPA Ground Challenge 2004 requires the players to
pass through a part of the Mojave Desert region of the United States but does not give a full
description of the detailed task that the player may encounter (DARPA Grand Challenge and
DARPA Urban Challenge 2004–2007; Buehler et al. 2009; Campbell et al. 2010). This often
makes the intelligence test insufficient.

It is interesting to compare the representation systems of artificial intelligence (Srinivasan
and Parthasarathi 2017; Licato and Zhang 2017) and the description of intelligence test tasks
here. Both of them aim to give a ‘levels of abstraction’ and ‘gradients of abstraction’ for
the problems of interests. Both of them embrace computer science terminology (e.g., typed
variables, instantiated variables, ranges of valid values for variables, etc.) to describe the
artificial intelligence systems that are made to reason or test. The major difference between
these two concepts lies in their different focuses. The description of intelligence test cares
only about the input and desired output of the system; while the representation systems of
artificial intelligence are not only the input and desired output of the system, but also the way
to model and describe the relationship between the input and desired output of the system
(Cheng 2016).

In short, we need to first establish a set of detailed tasks for a special kind of artificial
intelligence and such tasks could be quantitatively validated.Without such a basis, we cannot
implement or test the intelligence exhibited by machines.
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2.2 The validation of tasks

The above assumption naturally leads to the second difficulty of intelligence test: How to
guarantee that themachine acts accordingly for all the tasks thatmay encounter in a scenario?

In general, we could view task validation as a decision problem that has been studied in
computability (complexity) theory (Bradley and Manna 2007; Ding et al. 2013; Kroening
and Strichman 2016). The input of the machine is the setting of tasks. If the machine passes
a task, we assume it outputs “yes”; otherwise it outputs “no”. We hope that the machine
outputs “yes” for all possible inputs.

The complexity of decision problem varies significantly. Though few theoretical analysis
had been made for intelligence test, we can easily find that some tasks are at least as hard as
the nondeterministic polynomial time (NP) decision problems (Karp 1972). Till now, we still
do not have the ranking standard to evaluate the complexity level of special kinds of artificial
intelligence. We believe more and more research interests will be attracted to such a field in
the near future.

For some relatively simple intelligence tests, if the scenario can be described in terms of
discrete variables, we enumerate all the tasks that may occur and validate the performance
of machine in each possible task. This is often troublesome and time-consuming, due to the
famous combinatorial explosion problem. For example, a brute force validation reported in
(Lamb 2016) had generated a 200-terabyte proof. If the scenario is described in terms of con-
tinuous variables, things may becomeworse, since we cannot enumerate all the combinations
of variables due to their continuity.

Onewidely-used strategy to handle such problems is to sample the countless combinations
of variables and just check the performance of the machine within these limited sampled
tasks. If these representative test samples are appropriately selected, the machine which has
finished all the sampled tasks is expected to behave well for all the remaining tasks, since
the capability of the machine is built to be generalizable. For example, AlphaGo does not
enumerate all the branches of Go game, if we view all the decision space of Go game as
a decision tree. Instead, its build-in policy-network helps to filter many branches of the Go
game tree and just sample a few nodes of this tree to train the machine (Silver et al. 2016,
2017b; Heule and Kullmann 2017). Competition between AlphaGo and humanmasters show
that the policy-network based sampling strategy generally works well. However, AlphaGo
still lost one game to Lee Sedol, due to incomplete training samples in 2016. The designers
of AlphaGo used more samples to teach the machine to fix this problem and won all the
official 60 games in 2017.

The sampling process can be guided by deterministic rules, or randomly data-driven, or
even mixed. For example, researchers had proved that solving the Sudoku minimum number
of clues problem is 16 via hitting set enumeration (Mcguire et al. 2014). Differently, at least
partially randomly, data-driven adversarial decision-exploration and self-playing help build
AlphaGo from a zero-knowledge beginner of Go game to a super Go master.

It should be pointed out that gaming is found to be a very effective task exploration tool
which provides a good way to find the new samples for continuous learning and testing.
Interestingly, Turing may be the first one to realize the power of gaming in artificial intelli-
gence implementation and testing (Turing 1950). The emerging Generative Adversarial Nets
(GAN) (Goodfellow et al. 2014) and the recently proposed parallel learning framework (Li
et al. 2017) can all be viewed as applications of gaming based (adversarial) learning.

For some artificial intelligence applications, we will require the machine to pass all the
representative tasks that will cover the whole task space. For example, we aim to test every
possible extreme task an intelligent vehicle may encounter in practice (Zheng et al. 2004; Li
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et al. 2012, 2017; Huang et al. 2014; Wagner and Koopman 2015; Watzenig and Horn 2017a,
b; Zhao et al. 2017), so as to avoid any severe accidents (A Tragic Loss 2016). However, no
one can guarantee that AlphaGo will not lose a game anymore (Wang 2016a, b). How many
sample tasks that are needed remains to be fathomed.

2.3 The design of simulation-based test

The desire to sample enough tasks forces us to resort to simulation-based intelligence test,
since the time and financial costs of practical intelligence tests are often too high to afford.
This leads to the third difficulty of intelligence test: How to make the simulation-based test
as “real” as possible?

We could roughly categorize the simulating objects into three kinds: natural objects, man-
made objects and human ourselves.Man-made objects are relatively easy to simulate because
we usually know the exact math or physical disciplines that govern the behaviors of these
objects. Some natural objects are difficult to simulate since they are much more complex
to model. We usually introduce certain simplification and just reproduce the major features
of these objects. For example, we assume that the arriving rate of vehicles follows certain
distributions to test the performance of intelligent traffic control systems (Tong et al. 2015;
Li et al. 2016a, b).

To mimic human behaviors is difficult. Actually, we meet a causal loop here: to test
whether a machine behaves like a human, we need to set up simulation-based test; and to
better simulate human that may interact with the machine, we need to well describe and
simulate behaviors of human. This again requires us to judge whether the machine behaves
like a human. The only possible solution to this dilemma is to build a spiral escalation process:
the simulation will increase our knowledge about how to describe and simulate behaviors of
human, and meanwhile, the gained knowledge helps better simulate human behaviors (Wang
et al. 2016a; Li et al. 2017).

2.4 The setting of performance indices

In many applications, we have different goals of using intelligent machines. This leads to
the fourth difficulty of intelligence test: How to establish the appropriate test performance
evaluation indices for tasks?

The first kind of performance indices is to require the machine to behave like a human.
A simple yet effective is to first observe how human operate in a certain task and then set up
a criterion to measure how close artificial intelligent machine operations differ from human
operations (Argall et al. 2009; Bagnell 2015; Kuefler et al. 2017). Therefore, the problem is
transferred into finding an appropriate criterion that is able to robustly and smartly distinguish
between intelligent machine operations and human operations, based on limited samples.
Many researchers again resorted to the emerging Generative Adversarial Nets (GAN) (Ho
and Ermon 2017;Merel et al. 2017), since we do not need to provide explicit rules to measure
the difference. The implicit (dis)similarity between man-made and machine-made data will
be automatically extracted and compared when GAN is correctly used. However, we have to
admit that, for some applications, we still do not know how to set an appropriate quantitative
criteria.

The second kind of performance indices is to reach the best performance. For example, in
all chess games, we aim to build the machine that can beat all the other opponents rather than
make it play like a human player. It is relatively easy to set the corresponding performance
indices for such single-objective applications.
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Unlike chess games in which players only aim to win, many intelligent applications have
multi-objectives. For example, intelligent vehicles consider driving safety, travel speed, fuel
consumption, and some other issues. Because different performance indices may lead to
quite different implementations of intelligent machines, we should be very careful to set
appropriate performance indices to balance different objectives.

In 2016–2017 Intelligent Vehicle Future Challenge hold in Changshu city of China, the
time used by a participating vehicle to pass the given 10 taskswas taken as one of the standards
of grading for intelligence level, since it is a nice synthetic criterion. Any traffic violation
(e.g. running through a red light) will lead to a deduction of the final score. It is interesting
that challenge participators have noticeably different preferences of the deduction values for
each task. The judges had to hold a 3-h meeting to finally settle down the scoring rules.

Moreover, when the personal feeling is considered, it becomes even harder to set the
appropriate performance indices. For example, personal preferences of driving may vary
significantly from person to person (Classen et al. 2011; Butakov and Ioannou 2015; Lefèvre
et al. 2015). To the best of our knowledge, few studies had established an accurate, flexible,
and adjustable standard of grading for different personalizing aspects of driving.

3 Intelligence test for intelligent vehicles

Since it is impossible to summarize all the AI applications, we take intelligent vehicles as
an example to present a framework of intelligence test and review the latest advance in this
field.

3.1 The definition and generation of intelligence test tasks for vehicles

Most previous tests of intelligent vehicles did not provide a clear definition of driving
intelligence. We can roughly categorize them into two kinds: scenario-based tests and
functionality-based tests.

Scenario-based tests, such as DARPA Grand Challenge and DARPA Urban Challenge,
just require an autonomous vehicle to pass a special region safely within a limited time
(DARPA Grand Challenge and DARPA Urban Challenge 2004–2007; Buehler et al. 2009;
Campbell et al. 2010). The number and the kind of traffic participants are not clearly defined.
The scene and the driving environment is not explicitly given, either. This is mainly because
researchers cannot enumerate all the possible settings of driving situations.

Functionality-based (ability-based) tests examine three components of driving
intelligence: sensing/recognition functionality, decision functionality according to the
recognized information, and action functionality with respect to the decision (Li et al. 2012,
2016a, b; Huang et al. 2014; Hernández-Orallo 2017). Special detailed functions (e.g., traffic
sign recognition) will be further tested with specially designed tasks (GTSDB 2014). How-
ever, existing functionality-based tests are carried out separately and independently, which
makes it impossible to get a comprehensive understanding of the intelligence level of vehicles
and thus degrades the reliability of such tests.

Recently, a semantic relation diagram for driving intelligence was proposed in (Li et al.
2016a, b) to better define the intelligence of vehicles. Task atoms are on one side of this
semantic relation diagram, while function atoms are on the other side of this semantic rela-
tion diagram. The links between these two sides denote that it usually requires an autonomous
vehicle to perform several function atoms to fulfill any task atom. Moreover, various combi-
nations of task atoms can be grouped into different kinds of driving scenarios. Meanwhile,
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Fig. 1 An illustration of the semantic relation diagram for driving intelligence of autonomous vehicles

analogous to human drivers, the function atoms can also be grouped into three major cate-
gories: sensing/recognition functionality, decision functionality, and action functionality; see
Fig. 1.

We can see that scenario-based tests only emphasize the left part of this semantic relation
diagram; while functionality-based (ability-based) tests only emphasize the right part of
it. So, this semantic relation diagram actually integrates the two major kinds of intelligent
vehicle testing approaches. Moreover, if we transverse from the right side of the semantic
relation diagram to the left side of the semantic diagram, we will generate the desired test
task that is needed for some special functions (abilities). So, this semantic relation diagram
not only defines the intelligence required to drive a vehicle but also gives the way of test task
generation.

Based on this semantic relation diagram definition, a detailed test design can be simplified
as a special temporal and spatial arrangement of task atoms. As shown in Fig. 2, each task
can be taken as a rectangle. The left vertical boundary of this rectangle denotes the time that
a task starts, and; the right vertical boundary defines the maximal allowable time when a
task must be finished. The left horizontal boundary of this rectangle denotes the position that
a task starts, and; the right horizontal boundary defines the maximally allowable position
where a task must be finished. Since a vehicle may need to process and finish several task
atoms simultaneously, the temporal-spatial range of a task may be overlapped with those of
other tasks.

The number of task atoms, the difficulties of task atoms, and the numbers of concurrent
task atoms all influence the difficulty of a particular task. Varying all these factors, we can
sample and test tasks with different difficulty levels; see Fig. 2.

It is interesting to compare the above task definition and generation process with the so-
called V-model which is frequently used for conventional automobile software development.
V-model means Verification and Validation model. As shown in the right part of Fig. 3,
it assumes that testing of the system is planned in parallel with a corresponding phase of
development.
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Fig. 2 An illustration of
transforming a typical driving
scenario into the corresponding
temporal-spatial plot of the
assigned tasks and generating
sample instances of the related
objects in simulation, according
to the assigned temporal-spatial
positions of tasks
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The first phase of the V-model is the requirement phase which creates a system testing plan
before development starts. The corresponding test plan focuses on meeting the functionality
specified in the requirements gathering.

The second phase of the V-model is the high-level design phase which characterizes
system architecture and design, providing an overview of the solution. Correspondingly, an

123



Artificial intelligence test: a case study of intelligent…

Requirements 
Specification

Low-Level 
Design

Module 
Specification

Source 
Code

High-Level 
Design

Unit Test

Program Test

System
Component Test

Validation & Traceability

Verification & Traceability

Verification & 
Traceability

Acceptance
Test

Fig. 3 An illustration of the V-model

integration test plan is created in this phase as well in order to test the pieces of the software
systems ability to work together.

The third phase of the V-model is the low-level design phase which designs the actual
software components, defines the operation rules for each component of the system, and
sets the relationship between each designed classes. Correspondingly, component tests are
created in this phase.

The fourth phase of the V-model is the module design phase which further decomposes
the components into a number of software modules that can be freely combined. The bottom
phase of the V-model is the coding phase where all design is converted into the code by
developers. The dependences of different modules are minimized. Correspondingly, unit
testing is performed by the developers on the obtained code to check the performance of
modules.

If we combine the aforementioned test tasks generation method with the V-model, we can
get aΛ–V-model as shown in Fig. 4. Since the definition of the up-level “scenario” is usually
much more abstract than the definition of the low-level “task” and “function”, we use the
Greek symbol Λ to represent this top-down design. The phase-by-phase specification in the
V-model is right a transverse from the left side of the semantic relation diagram to the right
side of the semantic diagram.

3.2 The framework of intelligence testing system for vehicles

When test tasks are determined, we will build the testing system.
V-model is simple and easy to use for small system development where requirements can

be straightforwardly understood. However, test designing happens before coding in the V-
model. This makes V-model very rigid and inflexible for complex artificial intelligent system
development.

As pointed out in (Boehm 1988; Raccoon 1997; Black 2009), we should take a spiral loop
to find most challenging test tasks. Because learning and testing are two sides of the same
coin, the architecture of such a powerful testing system should share a similar loop structure
with some certain powerful artificial intelligence learning systems.
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123



Artificial intelligence test: a case study of intelligent…

Solve How to 
Guide Actions 
Based on New 

Data

Solve How to 
Generate Most 

Challenging 
Tasks

Solve How to 
Label Action 

Results for New 
Data

Prescriptive 
Learning

Predictive 
Learning

Solve How to 
Explore New 

Data for Learning

(a)

Solve How to 
Label Testing 

Results for New 
Tasks

Task 
Description Task Sampling Task Testing

(Simulation)

Solve How to 
Generate New 

Tasks for Testing

(b)

Descriptive 
Learning

Fig. 5 A comparison of a parallel learning loop (Li et al. 2017); and b testing loop for artificial intelligence

Let us take the recently proposed parallel learning framework (Li et al. 2017) as an
example. As shown in Fig. 5a, parallel learning first applies descriptive learning to create
the same (kind of) new data. This is just as Prof. Richard Feynman had said: “What I cannot
create, I do not understand.” Then, parallel learning applies prescriptive learning to make
system evolve appropriately by special trying-and-testing and guide system with growing
knowledge. Finally, parallel learning applies predictive learning to label data-action pair and
leads the system to evolve in an unsupervised manner. The new action will generate new data
and forms a loop in the end. The system will finally master the knowledge of choosing the
appropriate actions for all the tested data. Such knowledge will be generalized to choose the
actions for the untested data.

Check the inner mechanism of AlphaGo, we can find that it indeed does the same thing.
The rules of Go game is first encoded (descriptive learning). The system sets up a deep
neural network based policy network (prescriptive learning) to learn how to choose a move
in the game (the action). The Monte Carlo sampling based self-playing (predictive learning)
Browne et al. (2012) is used to determine whether the move (the action) is correct and how
to update the policy network. Such a spiral loop makes the system become better and better.

Following a similar logic, an intelligent system for vehicle intelligence test explores the
space of state, policy and state transitions in a loop as illustrated in Fig. 5b.
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Task description part solves how to generate new tasks for testing. The main goal of this
part is to set up and refine a methodology, which can guide to set up environments for the
following tests. For tasks in every scenario, the descriptor will break it down into several task
atoms, and then function atoms and functionalities. The connection between these elements
will be described as well.

Given detailed descriptions of tasks, task sampling part will explore the policy space to
choose challenging tasks. There were several ways to reach this goal (Zhao et al. 2017;
Evtimov et al. 2017). However, none of the existing approaches is self-motivated.

To implement rapidly adaptive intelligence test, we consider challenging task sampling
as a decision process which can be formalized as a 4-tuple (S, A, P, R). The state st in
this decision process is the confidence we had on the performance of vehicle intelligence at
time t , and the action at is the testing procedures that we choose to update our confidence.
Pra

(
st , s′

t+1

)
denotes the probability that we choose a specific task will lead to another

understanding level s′ from state s, and the reward rt gives how much confidence we gained
at time t .

Under such setting, the long-term understanding of vehicle intelligence can be formalized
as

V π (s) � E

( ∞∑

t�0

rt |s, π
)

. (1)

The goal of task sampling part is to find an optimal policy π∗ which can maximize the
long-term understanding

π∗ � argmax
π

V π (s) . (2)

With a detailed description of the task and sampling policy, testing (simulation) part
can finally solve how to label testing results by actually generate the test scenarios and
see how well the vehicle intelligence can perform. Two kinds of relationships need to be
labeled during this procedure. One is the relationship between vehicle intelligence and its
performance under certain environments. The evaluation of vehicle intelligence is the main
output we want from an intelligent test system, and such results can help us sample better
tasks in the next episode. Another is the relationship between the test and real environments.
Differences of two environments and behaviors of subjects (e.g., the characteristic of traffic
situations and features of vehicle dynamics) need to be paired, so the task description can be
more detailed and realistic in the next loop.

The above framework of intelligence testing system for vehicles is designed based on the
following considerations:

First, we can hardly know in advance whether intelligent vehicles will behave unless we
test them. So, we cannot directly answer which task is most challenging. So, we need to
gradually build our knowledge of testing from zero knowledge state and adopt a prescriptive
learning style.

Second, testing can actually be viewed as a self-labeling (prediction learning) process.
Since we do not know the outcome of a special test, we have to wait and let the results label
whether the vehicle can pass the test or not.

Third, it requires huge an amount of resources and a long time to cover most of the
functionalities that a vehicle intelligence should have. So, we need to find an efficient way
to maximize the long-term understanding of vehicle intelligence.
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We do not restrict the implementation details of such task sampling decision problem.
We are now testing whether deep reinforcement learning needs to be used. We will write a
dedicated paper to report the progress in the near future.

3.3 Parallel testing for vehicle intelligence test

When the detailed task is assigned, simulation-based tests can then be applied for tests of
intelligent vehicles. Researchers began to show interests in accurately reproducing human
behaviors (Wang et al. 2017b). While, currently, most efforts had been put into generating
virtual image/video data as inputs of intelligent vehicles, since most information is collected
by visual sensors (Gaidon et al. 2016; Santana and Hotz 2016; Liu et al. 2017).

Some approaches first accepted real 2D image/video data, then built the corresponding
3D object models in rendering engines, and finally generated 2D virtual image/video data as
sensing inputs of intelligent vehicles (Gaidon et al. 2016;Richter et al. 2016;Greengard2017).
Some other approaches directly employed GAN to generate new virtual 2D image/video data
from existing real 2D image/video data (Santana and Hotz 2016; Gatys et al. 2016; Liu et al.
2017). The latest approach mixed these two methods to produce more virtual data as “real”
as possible and as “rich” as possible (Veeravasarapu et al. 2015; Wang et al. 2017a; Ros et al.
2016).

In this subsection, we propose a parallel system framework that combines real-world and
simulation-world for vehicle intelligence test. As illustrated in Fig. 6, a vehicle intelligence
test can be decomposed into three parts, the environment, the test planning part, and the test
performing part. Following the logic we predicated in the last subsection, a parallel system
can be built by connecting these three parts.

The loop of intelligence test in the parallel system starts from a real environment, which is
an area with intersections, traffic signs and other elements of some specific driving scenarios.
Depending on the mission, a task description, which is a directed acyclic graph (DAG) can
first be initialized according to some prior knowledge. It breaks down the task into task atoms,
function atoms, and functionalities atoms. Then, it establishes the connection between these
atoms. The weights of DAG are estimations of confidence gained by performing a certain
step.

Based on the description, an agent will be trained to plan the best schedule of tasks. For
example, if there are two task atoms, traffic signs recognition and lane changing, the optimal
agent will find that, the traffic signs recognition atoms can actually be neglected, since most
of the confidences can be gained by performing the lane changing atom. Weighing the pros
and cons of different routes in the DAG, the agent prunes some routes and picks important
ones to perform. The most important tasks will be checked in the real environments and the
less important ones will be tested in simulation.

Once the schedule is provided, a special task can be tested.Depend on the confidence of test
accuracy and the importance of atom, we can calculate a weighted score based on the results
in both real and simulative environments. Meanwhile, data generated in the real environment
will be fed into the simulative environment, so the simulation can be improved continuously.
The loop in the real system and the artificial system is asynchronous, and multiple loops can
be performed in the artificial system while one loop in the real environment.

Comparing to traditional simulative environments, the parallel system for vehicle intelli-
gence test has two main differences. First of all, the parallel system is not merely a reflection
of the real system, but a combination of two systems with equal status. Things happened in
both systems will affect each other and form a closed self-boosting loop. Second, the paral-
lel system is a learning system which can evolve over time. Several key components in the
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Fig. 6 A demonstration of parallel system for vehicle intelligence test
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2D Iamge 
3D Enviroment 
Transfermation

Test in 3D virtual parralel world 
to find the most challenging task

Test the 
selected task in 

field test

Fig. 7 A demonstration of using parallel system to find the most challenging task

artificial system (e.g., the task sampling agent and simulative environment) are data-driven
instead of arbitrary models. Such designs make the parallel system more autonomous and
quantifiable.

It should be pointed out that a prototype parallel intelligence testing system had already
been built in Changshu city, Jiangsu Province, China and had successfully supported the
2016 and 2017 Intelligent Vehicle Future Challenge (IVFC). As shown in Fig. 7, some testing
vehicles passed a number of relatively simple tasks but failed to do so when encountering
the most challenging task that had been found in virtual tests in the virtual parallel world.

4 Discussions

4.1 Ethical problems

Most researchers, starting from Turing, have implicitly assumed that human will do the right
things to finish the studied tasks and intelligent machines should learn to do the same right
thing to finish the studied tasks. So, we only need to check whether intelligent machines do
the same things as human, during intelligence test.

However, in some cases, even a human will feel difficult to know what should be done.
One famous case is the so-called trolley problem that has mulled for about 50 years. Suppose
a runaway trolley speeding down a track to which five people are tied. You can pull a lever
to switch the trolley to another track to which only one person is tied. Would you sacrifice
the one person to save the other five, or let the trolley kill the five people?

Trolley problems caused much debate that we do not want to discuss in this paper. If we
think of humans as moral decision-makers and take artificial intelligent machines as moral
agents that actually replace our capacities, we can hardly find a commonly accepted answer
(Goodall 2014; Kumfer and Burgess 2015; Maurer et al. 2015; Thornton et al. 2017). If we
assume that intelligent machines reason and act just what human had told them to do, the
only decision-makers are human but not intelligent machines. In this paper, all such problems

123



L. Li et al.

involved ethical decision making are not considered. As a result, we do not discuss how to
design any intelligence test tasks for ethics, since we should pay to Caesar what belongs to
Caesar–and God what belongs to God.

4.2 Real-time and automated evaluation of testing results

One major difference between Turing test and the new approach of intelligence test is the
selection of the judge. Turing chose human to be the judge to arbitrate whether a machine
has intelligence in Turing test; while many new intelligence testing systems use machines to
arbitrate. This is not only because we have a more clear description of tasks in many recently
studied intelligence test problems, but also because a human is unable to accurately examine
many results of intelligence test without the help of machines.

Let us still use testing for intelligent vehicles as an example. To save time and money,
several independent tasks of an intelligent vehicle are often linked along a special path of
the vehicle and are tested sequentially in practice. For instance, a vehicle needs to finish
14 tasks in 2017 Intelligent Vehicle Future Challenge, including: (1) make U-turn, (2) pass
the signalized T-intersection, (3) pass the non-signalized cross-intersection, (4) pass other
vehicles, (5) pass the tunnel in which GPS is blocked, (6) recognize the stop sign dedicated
for vehicles and behave appropriately, (7) pass another stop sign dedicated to school children,
(8) give way to pedestrian, (9) make a right-turn, (10) pass the rural road, (11) give way to
bicycle, (12) pass the working zone, (13) recognize the speed limit and behave appropriately,
(14) park into the assigned berth; see Fig. 8 for an illustration.

Usually, we do not require the vehicle to stop after it passes a task. In order to achieve a
real-time and automated evaluation of the testing results for each individual task, researchers

Fig. 8 An illustration of different test tasks for 2017 intelligent vehicle future challenge
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Fig. 9 A demonstration of the real-time automated evaluation system designed for vehicle intelligence tests
of 2017 intelligent vehicle future challenge (IVFC)

had used vehicle-to-everything (V2X) communications to connect the onboard sensors and
control center, share a number of information of vehicle (e.g., position, speed, ac/deceleration
rate) and rapidly calculate the performance values of each task based on the collected infor-
mation. Such a method reduces the burden of testing and becomes increasingly popular.

Figure 9 gives a demonstration of the evaluation system designed by Tsinghua University
and Qingdao VIPioneers company, for 2017 Intelligent Vehicle Future Challenge. The left
screens show the real-time trajectories of 5 vehicles that were running in the Challenge and
their ranks. The right screens show the real-time monitoring video data collected from the
cameras that were installed inside the tested vehicles, the cameras that were installed inside
the following arbitrator vehicles, and the roadside cameras.All the datawere transferred to the
testing center via various ways, including V2X communication, 4Gwireless communication,
and optical fiber communication.

In 2009–2015 Intelligent Vehicle Future Challenges, human judges determine how to
evaluate the performance of intelligent vehicles. Such manual evaluation is tedious, time-
consuming and prone to error. In Intelligent Vehicle Future Challenge 2017, most evaluations
were done by machines based on the measured data collected from various resources. Com-
parisons show that the evaluations became more accurate and much quicker. For example,
in the previous match, human judges stared at the dashboard to check whether the tested
vehicle is speeding. Based on the high-resolution position information measured via BeiDou
navigation satellite system (Wang 2016a, b), we can easily reconstruct the whole trajectory
of the tested vehicle and determine when and where the vehicle is speeding.
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Fig. 10 A demonstration of the automated evaluation system designed to lane departure warning

For another example, Fig. 10 gives a demonstration of the deep learning (LeCun et al.
2015; Goodfellow et al. 2016) based automated evaluation system designed to recognize
whether the vehicle had crossed the lane boundaries (You 2017). This system used YOLO
(Redmon et al. 2016; Redmon and Farhadi 2016) to recognize the tested vehicle, based on
the video data collected from the judging vehicle that follows the tested vehicle all the way
along. It can help catch each incorrect crossing of the lane boundaries during the long-time
running tests and greatly relieve the burdens of human judges.

4.3 Human–machine integrated testing

However, we do not claim that we should remove human from tests of artificial intelligence.
In the current stage, human participates in every aspect of artificial intelligence tests.

First, human experts are heavily involved in the description of test tasks. Indeed, every
test is described by a certain kind of language that is established by human. Till now, we do
not observe any artificial intelligent machine generates its own language. The capability of
an intelligent machine and that of the corresponding testing system is constrained by human
designers, too. So, we always resort to human experts to make substantive improvement for
the design and tests of artificial intelligence.

Second, human experts also help to design the most challenging tasks in many intelligent
applications, according to their experience and intuition that is gained through finishing the
same tasks. For example, researchers inquired human drivers to set up different testing levels
for different tasks for intelligent vehicles (Zheng et al. 2017).

Third, human experts usually monitor the testing process and take the final responsibility
to guarantee that the testing results are correct. As shown in Fig. 8, the automated evaluation
system designed for 2017 Intelligent Vehicle Future Challenge provides real-time visualiza-
tion for human experts. This enables human experts to track the entire progress of testing,
monitor whether the automated evaluation system works well, and gain an intuitive under-
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standing of testing result. Such a hybrid-augmented intelligence (Zheng et al. 2017) setting
helps combine both human and machines to better evaluate the performance of intelligent
machines.

It should be pointed out that, till now, human’s intelligence levels are tested via the tasks
designed by human experts (Sternberg and Davidson 1983; Sternberg 1985; Mackintosh
2011; Rindermann et al. 2016; Ohlsson et al. 2017). Can we use some tasks that generated
by machines via some technologies similar to what we had discussed above? We believe this
interesting question will attract more attention in the near future.

4.4 Testing as a measurement of intelligence level

SAE International defines the six levels of driving automation, from no automation to full
automation in 2016 (SAE J3016 2016). However, there is not a clear description of the
corresponding test tasks. So, it becomes widely accepted that testing results for intelligent
vehicles can be viewed as a measurement of intelligence level. Only if a vehicle passes all
the tasks that are designed for a special level of driving automation, we can claim that this
vehicle has such an intelligence level.

Intelligent machines are becoming smarter and smarter now. Now, intelligent machines
had beaten all human players in Shogi, chess and Go games (Silver et al. 2017a, b). The AI
‘Top Gun’ beat the military’s best pilots repeatedly. It is probably safe to say that all artificial
intelligence researchers aim to design and implement some machines that beat human in
certain kinds of tasks, since aeronautical engineers had shown that they can do something
better than making machines fly so exactly like pigeons (Russell and Norvig 2010).

Maybe in the future, we should renew our definition of artificial intelligence as “Artificial
intelligence is intelligence (that is similar to, or the same kind as, or even superior to human
intelligence) exhibited by machines (in the same task)”. At the current stage, human experts
are still themajor referring standard for tests of artificial intelligence. Sometimes in the future,
the performance that an intelligent machine could achieve will serve as a new evaluating
standard of intelligence level instead.

When we cannot enumerate all the test tasks, it becomes increasingly complex to set
a fair measurement of intelligence for two different artificial machines dedicated for the
same purpose. For example, in Go game, researchers used the Elo rating scores (Elo 1978;
Coulom 2008; Silver et al. 2017b) that were computed from evaluation games between
different players, because conventional static rating systems do not consider time-varying
strengths of players. When the information that we can observe from the results is limited,
things become even harder. As shown in the recent algorithms designed for the poker game,
analyzing results indicated that we need to build special algorithms to drill the useful guide
so as to boost the intelligent machines (Moravčík et al. 2017; Brown and Sandholm 2017).
We believe that more research efforts will be put into this research direction.

4.5 Explainable testing of intelligent machines

It should be also pointed out that, just like Turing had done 67 years ago, we focus on the
outside behaviors of human/machine rather than the inside mechanism that generates the
outside behaviors. If a machine has passed all the tasks according to its outside behaviors,
we admit its intelligence in this special field. However, we usually know neither what the
best way to finish all these tasks is, nor how human finish these tasks.

Nowadays, intelligent algorithms and machines become more and more complex. Some-
one is calling them ‘black box’, since it becomes harder to interpret what these algorithms
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and machines are doing. However, intelligent machines coded in simple rules seem do not
work as well as some state-of-the-art ‘black boxes’. Actually, if we assume that the latest
machine learning technology has “the ability to learn from testing results and improve itself
automatically without being explicitly programmed, we may find that these machines will
be naturally hard to interpret. Otherwise, we can turn them back to explicit codes.

To the best of our knowledge, few studies give a widely-accepted generalizable way to
combine inside mechanism design with outside behavior validation of artificial intelligence.
We think this new direction may bring some interesting findings in the near future.

4.6 Testing as an essential part of artificial intelligence software development
process

Because artificial intelligence is coded and implemented on computers, we need to highlight
the importance of software development of artificial intelligence. The lack of reproducibility
and readability has already hindered the development of AI techniques, since researchers can
hardly rely on an implementation that can hardly be proofed or understood to further their
research.

A proper design of AI development loop can help to alleviate such situation. Test-driven
development (TDD) has already been widely adopted in modern software development pro-
cess. The basic idea of TDD is to organize the development cycle as a repetition of a very
short development cycle: First turn the requirements into very specific test cases, and then
improve the software to pass the tests. In such development process, the reliability can be
guaranteed if we set the test properly, and the readability of software can be improved as
well, since it is organized as the collection of simple components to each fulfill a specific
requirement.

The development of AI software can be profited from such development methodology, if
some critic problems are solved. Despite the unclear definition of requirements which can
be handled by the method we proposed in the last section, the major problem is the lack
of testing and debugging tools. Software testing had already taken an essential part of soft-
ware development. Almost all state-of-the-art commercial software developing tools provide
thorough support for testing at different phases (Huizinga and Adam 2007; Ammann and
Jeff 2017). However, most current software/toolbox for building artificial intelligence lacks
convenient testing tools and debuggers. We wonder software/toolbox for building artificial
intelligence could be viewed as Software 2.0 (Karpathy 2017). We expect more attention
could be drawn to this important issue.

4.7 Life-long learning and life-long testing

Researchers are developingmore andmore powerful testingmethods of artificial intelligence,
just like what they had done for design methods of artificial intelligence. However, all the
changes take time to complete. Similar to the evolutionary history of machine learning, it
seems that machine testing will take a relatively long time to become strong enough to
characterize what a truly intelligent machine should be. We cannot give a precise prediction
of the time when an intelligent vehicle can drive in all kinds of situations. So, we borrow
the term “life-long” from life-long learning (Chen and Liu 2016) and name this evolution
process as “life-long testing”.

Moreover, it should be emphasized that we should always take the design and testing of
intelligent vehicle as a whole. The knowledge of testing will be fed back to the design part of
intelligent vehicle and will be used to further improve the intelligence of intelligent vehicles.
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Such a spiral loop helps make intelligent vehicle into practice in every automobile lab and
manufactory.

In precision machining industry, we continuously employ low-level machines to build
more precise high-level machines. About 400 years ago, we can only make some simple
gadgets. Now, we had achieved a great success and become able to make many complex
things like CPU and GPU. Similarly, in artificial intelligence research field, smart machines
are used to build even smarter machines now. Fortunately, we are now witnessing such a
great change in artificial intelligence development.

4.8 Testing as an economical opportunity

The ongoing artificial-intelligence revolution brings changes in enormous social lives and
economic opportunities (Harari 2017). Humans are pushed out of some part of the job market
by intelligentmachines (Fagnant andKockelman 2015; Fisher et al. 2016). For example, some
aggressive researchers advocated to totally replace human drivers in the near future.

Meanwhile, AI generates a wide range of new jobs, including some new jobs for tests of
AI. Using crowdsourcing (Wang et al. 2016b), we can hire a number of human to label the
video data collected in streets and plot the bounding boxes of vehicles/pedestrians, since we
need ground truth data to train the artificial intelligent systems for environment recognition
and autonomous driving. Several companies in China had hired a lot of retired people to do
such jobs and gained gigabytes of useful in return. We hope that, in the future, many people
who had been replaced by intelligent machines could join the building process of more
intelligent machines. This also requires us to build more flexible and powerful software, like
Completely Automated Public Turing test to tell Computers andHumans Apart (CAPTCHA)
(von Ahn et al. 2003; George et al. 2017).

Crowdsourcing also leads to new risks of AI developing and testing. Tencent company
had recently announced a critical vulnerability of Google’s TensorFlow. Such vulnerability
allowes hackers access to AI code being written by programmers, jeopardize the training
data, or confuse the testing results (Liao 2017). So, we have to make far more efforts to make
distributed tests of artificial intelligence into practice.

5 Conclusions

In this paper, we discuss fourmajor difficulties of carrying out the test of artificial intelligence,
with a special emphasis on the role of task in intelligence test.We also present our experiences
in designing reliable intelligence test for intelligent vehicles.

We explain our design of intelligence test by analogy with the structure of machine learn-
ing framework. The origin of this similarity lies in the fact that learning and testing are indeed
two faces of artificial intelligence. From this viewpoint, we explain why a parallel system
framework for vehicle intelligence test is needed. Such a framework should have two impor-
tant features. First, the whole testing should be formulated as a loop between three parts:
task description, task sampling and task testing (simulation). This formulation allows us to
gradually build our knowledge of testing results and automatically finds the most challenging
tasks to test. Second, the simulation tests should be executed in a mirror system so that we
can produce more virtual data as “real” as possible and as “rich” as possible. This will help
us reduce both the time and financial costs of testing.

However, the evolution of artificial intelligence only helps to reduce human participation
from someparts but not the core of artificial intelligence test.We still do not have an intelligent
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machine can self-test, self-boost and upgrade without the help of human. The singularity of
AI (Vinge 1993; Kurzweil 2005) is yet to come.
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