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Abstract— In this paper, a novel robust adaptive control 

scheme for a class of uncertain nonlinear systems based on 

interval type-2 fuzzy logic system (IT2-FLS) and small gain 

approach is proposed. An interval type-2 Takagi-Sugeno-Kang 

fuzzy logic system (IT2-TSK-FLS) is employed to approximate 

the unknown dynamics of such a system. Based on the small 

gain theorem, a composite feedback form of the system is then 

established and a novel robust adaptive control law is developed, 

which can ensure all the signals in the close-loop system are 

uniformly ultimately bounded (UUB). Throughout the whole 

control scheme, only one parameter needs to be adapted online, 

which is different from most of existing IT2-FLSs. Numerical 

simulations demonstrate the robustness of our proposed scheme 

against uncertainties as well as the superiorities of IT2-TSK- 

FLS. 

I. INTRODUCTION 

To date, numerous efforts have been made on adaptive 
nonlinear control design and great progress has been 
witnessed. In order to better deal with the unknown dynamics 
of systems, fuzzy logic systems (FLSs) and neural networks 
(NNs), which can be regarded as universal approximators, 
have been incorporated into various adaptive control schemes 
since 1990s [1]. Recently, Zhou et al. [2] proposed an adaptive 
fuzzy control scheme for a class of nonlinear systems in 
nonstrict-feedback form subject to unmodeled dynamics and 
input saturation. Tong and Li [3] investigated the adaptive 
fuzzy output feedback tracking control problems in the 
presence of unknown dead zones. In [4], NNs were employed 
to approximate the model uncertainties, and a novel state 
constrained adaptive neural controller based on barrier 
Lyapunov function was developed. To handle the wind effects 
on flexible hypersonic flight vehicle, Xu et al. [5] proposed an 
disturbance observer based neural control scheme which can 
keep the states uniformly ultimately bounded (UUB). For 
MIMO nonlinear systems, Shi [6] developed a novel indirect 
adaptive fuzzy control scheme which can simultaneously deal 
with the possible singularity problem, the parameter initializa- 
tion problem as well as the unknown control direction. 

Actually, the FLSs mentioned above are all type-1 FLSs 
(T1-FLSs), which employ type-1 fuzzy sets (T1-FSs) to 
handle uncertainties. However, it is not reasonable to use an 
accurate membership function (MF) for something uncertain 
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[7]. Therefore, type-2 fuzzy set (T2-FS), which is the 
extension of T1-FS, together with corresponding type-2 FLS 
(T2-FLS), appears. Compared with traditional T1-FLS and 
NN, T2-FLS is a better choice when facing uncertain 
parameters, unmodeled dynamics and measurement noises 
due to its much more complex structure [8]. For sake of lower 
computational costs in practice, interval type-2 FLS (IT2-FLS) 
has raised more and more attention. In [9], Zhao and Dian 
employed an IT2-TS fuzzy model to represent nonlinear 
systems subject to parameter uncertainties, and the simulation 
results illustrated that IT2-FLS can perform better than T1- 
FLS. Considering the unknown flexible dynamics and the 
changes of fuel levels of hypersonic vehicles, Gao et al. [10] 
developed a novel indirect adaptive IT2 fuzzy sliding mode 
controller to keep all the signals in close-loop system bounded. 
However, in most of existing IT2-FLSs, too many parameters 
need to be adapted online, which may be time-consuming in 
reality. The similar question was first discussed in [11] and 
[12]. However, few results on this question can be found for 
IT2-FLS so far, which motivates this study. 

In this paper, a tracking control problem for a class of 
nonlinear systems is investigated. Both unknown dynamics 
and uncertain disturbances of such a system are taken into 
consideration. First, an IT2 Takagi-Sugeno-Kang FLS (IT2- 
TSK-FLS) is utilized to approximate the unknown dynamics 
of the system. Then, following the idea of the small gain 
theorem, a new composite feedback form of the system can be 
formulated. A novel robust adaptive control law together with 
its stability analysis is explored afterwards. Finally, a pole- 
balancing robot system is adopted to illustrate the effective- 
ness of our proposed control scheme. The highlights of this 
study can be organized as follows. First, to the best of our 
knowledge, it is the first time to combine IT2-FLS with small 
gain theorem in robust adaptive control design, and simulation 
results demonstrate the superiorities of IT2-FLS over type-1 
case. Second, different from most of existing IT2-FLS, no 
matter how many rules we define, only one parameter needs to 
be adapted online, which can greatly relieve the computation 
burden of the system. Last, we need no information about the 
system function or input gain function for control design, 
which can lead to a great convenience in practical 
applications. 

The rest of the paper is organized as follows. Section II 
briefly introduces the preliminaries of this study, which can 
help readers better understand the results we obtain. Section 
III states the robust adaptive control design in details. Section 
IV presents the numerical simulations, after which we draw 
our conclusions. 
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II. PRELIMINARIES 

A. Problem Formulation 

In this paper, the following nth-order uncertain nonlinear 
system is considered: 
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where  1 2, , ... ,
T n

nx x x x R  stands for the state vector, 

u R  denotes the control input, and y R  represents the 

output of the system. ( )f x  is the unknown smooth nonlinear 

system function with ( ) 0f 0 , while ( )g x  is the unknown 

smooth nonlinear input gain function. ( , )d tx  denotes the 

uncertain disturbance of the system. 

Throughout this paper, the following assumptions are 
made: 

Assumption 1: There exists an unknown positive constant 

ming  such that min( ) 0g g x , which means the input gain 

function ( )g x  is strictly either positive or negative. Without 

loss of generality, we further assume that 
min( ) 0g g x . 

Assumption 2: ( , )d tx  is bounded. In other words, there 

exists an unknown positive constant dmax such that 

max( , )d t dx . 

Assumption 3: The reference command yc together with its 
derivatives up to the nth order are bounded. 

The objective of this study is to develop a robust controller 
such that the output of the system y can track the reference 
command yc, meanwhile all the states of the system keep 
bounded. 

B. Brief Descriptions of IT2-TSK-FLS 

To deal with the unknown nonlinear dynamics in system 
(1), IT2-TSK-FLS is employed in this paper. According to 
[13], when the antecedents are IT2-FSs and the consequents 
are crisp numbers, the IT2-TSK-FLS is referred as the IT2- 
A2-C0-TSK-FLS. In this case, the sth rule of the rule base has 
the following form: 
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where 1 2, , ... ,
T

n

f f f fnx x x   x R  is the crisp input vector 

and sy  is the sth consequent. ( 1, 2, ... , )s

mF m n  is the 

antecedent IT2-FS, with the upper membership function 

(UMF) ( )s
m

fmF
x  and lower membership function (LMF) 

( )s
m

fmF
x  respectively. Then, if singleton fuzzification and 

product inference are employed, the degree of firing ( )s

ff x  

can be expressed as follows: 
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With the employment of Begian-Melek-Mendel (BMM) type 
reduction algorithm [14], the crisp output Y can be finally 
obtained: 
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where 
1 2 1m m  . In this paper, we choose 

1 2 0.5m m  . 

Let 
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denote the boundary fuzzy basic functions (BFBFs), 

 1 2( ) ( ), ( ), ... , ( )
T

M
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 1 2( ) ( ), ( ), ... , ( )
T

M

f f f f     x x x x  (8) 

denote the BFBF vectors, while 1 2, , ... ,
T

My y y   y . Then, 

(4) can be rewritten in the following compact form: 
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where  ( ) 0.5 ( ) ( )f f f x x x   , 1,
T

f
   x x , and 
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The following lemma demonstrates the IT2-TSK-FLS’s 
capability of approximating a real continuous function on a 
compact domain. 

Lemma 1 [15]: The IT2-A2-C0-TSK-FLS can uniformly 

approximate any function ( )ff x  which is continuous in 

[ 1,1]rC  with an arbitrarily small approximation error bound. 

In other words, for 0  , there exists an IT2-A2-C0-TSK- 

FLS as (9) such that 
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C. ISpS-Lyapunov Function and Small Gain Theorem 

To help readers better understand the results of this study, 
here we briefly introduce the input-to-state practically stable 
(ISpS) Lyapunov function and the small gain theorem. 

Definition 1 [11]: For a system ( , )f ux x  and a C1 

function V, if 



  

  there exist functions 
1  and 

2  of class K
 such that 
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  there exist functions 
3  and 

4  of class K and a 

positive constant d such that 
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then function V is said to be an ISpS-Lyapunov function of 
this system.  

Lemma 2 [11]: Consider two ISpS systems in the 
following composite feedback form 
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Particularly, for each   in the L
 supremum norm, each ẑ  

in the L
 supremum norm, each nx R  and each my R , all 

the solutions ( ; , )X x t  and ˆ( ; , )Y y z t  are defined on  0,   

and satisfy, for almost all 0t  , 

 1( ( ; , )) ( , ) ( )z tH X x t x t d   


    (16) 
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where   and   are of class KL, 
z  and   are of class K,  

d1 and d2 are two positive constants. Under these conditions, if 

 ( ( )) ( ( )) , 0z zs s or s s s         (18) 

then the solution of the composite systems (14) and (15) is 
ISpS. 

III. CONTROL DESIGN 

In this section, a novel robust adaptive control design 
based on the IT2-A2-C0-TSK-FLS and small gain approach 

will be proposed for system (1). Let 
1 1 ce x y   denote the 

tracking error, then (1) can be transformed into the following 
form: 
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where  1 2, , ... ,
T

ne e ee . Moreover, if  1 2, , ... ,
T

nk k kk  

are set as the coefficients of Hurwitz polynomial 
1

2 1...n n

np k p k p k     which can lead to the exponentially 

stable dynamics, (19) can be further transformed into the 
following compact form: 
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Since the detail expressions of ( )f x  and ( )g x  are both 

unavailable for us, first an IT2-A2-C0-TSK-FLS is applied to 

approximate the unknown nonlinear term ( )f x . According to 

Lemma 1, let ( 1), , ... ,
T

n

c c c cy y y    y , then ( )f x  can be 

expressed as follows: 
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Substituting (22) into (20), we can obtain 

 

0

( )

( ) ( ) ( )

( ) ( , )

( ) ( )

T T T

x x x c

n T

c

T T

x

g u d t y

g u D

     

    

      

e Ae b x a x A e x A y

x x k e

Ae b x k e b x A e

  



 (24) 

where 0 ( )( ) ( ) ( , )T T n
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with ( ) 1 ( )  x x , ( )n

c cy d , and  maxmax , ,d   

0,c x x cd a A y . 

In order to utilize the small gain theorem, according to 
Lemma 2, two subsystems in the composite feedback form as 

(14) and (15) must be established. If we let xc  A  

 1 2

max

T

x x   A A  and m

x x cA A  such that 1m

x A , then 

(24) becomes 
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Moreover, by choosing ˆ ( )H z e e  and ˆ ˆ( ) m

xK z A z , 

the following composite feedback form of (26) can be 
formulated: 
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The control law can be designed as follows: 

     ˆ ( )
T

T T Tu    x e k e k b Pe  (29) 

where T T  A P PA Q  with 
min ( ) 2 Q , 

min  denotes the 

minimum eigenvalue, while 

    2 2 2( ) ( ) 4 ( ) ( ) 4T    x x x x   (30) 

in which 1  ,   is a designed parameter, and the adaptive 

law 

  0
ˆ ˆ( ) T T        

 
x e Pbb Pe  (31) 

where 0  , 0  , 
0  is the predefined constant. Then, the 

main results of this study are given as follows. 

Theorem 1: Consider nth-order uncertain nonlinear system 
(1) together with the robust adaptive control input (29) and the 
adaptive law (31). If Assumptions 1-3 are satisfied, then the 
composite feedback system (26) is ISpS. Besides, all the 
signals in the close-loop system are UUB. 

Proof: To prove that the composite feedback system (26) 
is ISpS, we can first prove that subsystems (27) and (28) 
satisfy conditions (16) and (17) respectively, then we can 
obtain the results through the small gain theorem. 

For subsystem (27) together with control input (29) and 
adaptive law (31), consider the following Lyapunov function 
candidate: 
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where * ˆ    . The time derivative of V along the system 

trajectory is 
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We separately deal with each term in (33). First, since 

min 0g  , by using Young’s inequality, we can obtain the 

following result: 
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Besides, according to (25), the following inequality can be 
formulated through the Schwarz inequality: 
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The last term of (33) can be transformed into: 
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Thus, combining (35) and (36), we can obtain 
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where  * 1 2 1 2

min minmax ,g g c   . Moreover, according to 

(30), ( ) 0 x  is always satisfied. Therefore, 

 

    

 

 

2

min min

2

min min

min min

( )

ˆ( ) ( )

ˆ ( )

1 4

ˆ ( ) 1 4 .

T T

T
T T T T T T

T T T T

T T

T T

g u

g

g g

g g

g g

 





  

   

  

 

  

e Pb x k e

e Pb x x e k e k b Pe e Pbk e

x e Pbb Pe e kb Pe

e kb Pe

x e Pbb Pe

(38) 

Substituting (37) and (38) into (33), V  can be rewritten as 

follows: 
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 (39) 

If (31) is chosen for ̂ , noting that 
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0 0
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then (39) follows that: 
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where 

  
2

* 2

1 min 0

min

1

2 4
d g

g


       (42) 

is a bounded term. By choosing 
min ( ) 2 Q , we can get the 

following result: 

 
2 22

1.V d   e   (43) 

Thus, according to Definition 1, V is an ISpS-Lyapunov 

function of subsystem (27), with 
1 2( ) ( ) ( )s V s s   , 

2

3 ( )s s   and 2 2

4 ( )s s   of class K
. At the same time, 

subsystem (27) is proved to be ISpS. Furthermore, we can 

obtain a nonlinear L
 gain ( )z s  of subsystem (27) 

satisfying [16]: 

 1 1

1 2 3 4( ) ( ), 0z s s s         (44) 

where  represents the composition operator between two 
functions. 

For subsystem (28), it is easy to obtain a similar form to 
(17): 

 1 1
ˆm

x    A e e z  (45) 

Therefore, the gain function of subsystem (28) is 
1( )s s  . 

According to (18), if we make ( ( ))z s s    satisfied, that 

is, 
1 1  , then the composite feedback system is ISpS. 

Furthermore, since 1 1m

x  A  is always true, by choosing 

1  , the composite feedback system (26) can be ensured to 

be ISpS. 

Next, substituting (45) into (41), we have 
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where  1 min maxmin ( 2 ) ( ),c    Q I P , 
max  denotes 

the maximum eigenvalue. Thus, all the signals in the close- 
loop system are UUB. This completes the proof. 

Remark 1: Although ( )f x  and ( )g x  are both unknown 

for control design, only ( )f x  is approximated by the IT2-A2- 

C0-TSK-FLS. That is, we do not need another IT2-FLS to 

approximate ( )g x  in our control scheme, which simplifies 

the design in practical. 

Remark 2: Different from the works in [1] and [10], we do 
not adapt the consequent parameters of our IT2-A2-C0-TSK- 

FLS online. Instead, only one new developed parameter ̂  is 

adapted, which can greatly lessen the computation burden of 
the controller. 

IV. NUMERICAL SIMULATIONS 

In this section, the following pole-balancing robot system 
model is applied to illustrate the effectiveness of our proposed 
method: 
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where 
1x  is the angular position from the equilibrium position, 

2x  is the angular velocity, while 

 

2

2 1 1
1

2

1

cos sin
sin

( )
cos4

3

c

c

mlx x x
g x

m m
f

m x
l

m m





 

 
 

x  (48) 

 

1

2

1

cos

( )
cos4

3

c

c

x

m m
g

m x
l

m m




 
 

 

x  (49) 

are supposed to be unavailable for control designing. ( , )d tx  

 2 2

1 20.5 sinx x t  is the uncertain disturbance of the system. 

0.1m kg , 1cm kg , 0.5l m  and u represent the mass of 

the vehicle, the mass of the pendulum, half of the length of the 
pendulum and the applied force, respectively. The reference 

command is given as 0.3sincy t . 

Since our theorem has been proposed in the previous 
section, the applied force and the adaptive law can be 
developed as (29) and (31) respectively. Here, all the 
antecedent fuzzy sets in the IT2-A2-C0-TSK-FLS are set as 
Gaussian IT2-FSs, with the LMF and UMF are 

    
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2( ) exp 2s s s
i i i

i iF F F
x x m 

 
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 
    

 
 (51) 

respectively. 
1x  and 

2x  each has 5 antecedent fuzzy sets, with 

their centers s
iF

m  being evenly spaced in  6,  

  6 6, 6    . Thus, there are 25 rules in total. Besides, 

 26 2s
iF

   and  23 2s
iF

   are chosen. Other 

parameters in our control scheme are set as follows: 

 1, 2 , 30 , 0.5, 0.5, 10, 0.01
T

        k Q I  and 

0 0  . 

By choosing 
1 2(0) 0.2, (0) 0x x   and ˆ(0) 0   as the 

initial states, the simulation results of our proposed method are 
shown in Fig. 1-3. Fig. 1 shows the successful tracking 
performances of the angular position and angular velocity of 
the pole-balancing robot system. Fig. 2 depicts the changes of 
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Figure 1. Responses of a) angular position and b) angular velocity. (Solid red 

line: actual states of system. Dashed black line: reference commands.) 
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Figure 2. Applied force and adaptive parameter ̂ . 
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Figure 3. Angular tracking error. 

TABLE I.  PERFORMANCE CRITERIA 

Type of FLS 
Performance Criteria 

ISE IAE ITAE 

IT2-FLS 0.02453 0.31505 1.20935 

T1-FLS 0.02456 0.31578 1.21546 

 

the applied force and adaptive parameter ̂ , which 

demonstrates the convergence of the close-loop system. The 
angular tracking error can be seen in Fig. 3. We can see that, 
the angular tracking error keeps around 0 after about 4 seconds, 
which indicates a satisfying performance through our method. 

Finally, to verify the advantages of IT2-FLS over T1-FLS, 
a counterpart controller employing T1-TSK-FLS instead is 
used as a comparison. Meanwhile, integral of square error 
(ISE), integral of the absolute value of the error (IAE) and 
integral of the time multiplied by the absolute value of the 
error (ITAE) are utilized to evaluate the performances of the 
two systems. The results can be seen in Table I. We can find 
that, although the T1-FLS successfully shows its robustness 
and good performance against uncertainties, all the criteria of 
our proposed method are even better, which demonstrates the 
superiorities of IT2-FLS. 

V. CONCLUSIONS 

In this study, a novel robust adaptive control scheme based 
on IT2-FLS and small gain approach is proposed for a class of 
uncertain nonlinear systems. The IT2-A2-C0-TSK-FLS is 
applied to approximate the unknown dynamics of such a 
system, while the small gain theorem is utilized to develop the 
robust adaptive control scheme. Although the dynamic 

functions of the system are unavailable for us, the proposed 
method can still keep all the signals in the close-loop system 
UUB. Meanwhile, only one parameter needs to be adapted 
online, which is easy to realize in applications. Simulation 
results verify the effectiveness and superiority of our proposed 
control scheme. In our future work, the proposed method will 
be promoted to MIMO nonlinear systems. Besides, measure- 
ment noises will be taken into consideration, and anti-noise 
robust adaptive control design for unknown nonlinear systems 
will be investigated. 
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