
  

  

1 INTRODUCTION 
Since hypersonic vehicles are intended to become a more 
reliable and cost efficient way to access space, 
investigations have raised various interests all over the 
world. Recently, the flexible air-breathing hypersonic 
vehicle (FAHV) model was explored by Bolender and 
Doman [1]. This model focuses on the flexible dynamics of 
the vehicles, which may severely affect the flight safety. 
Besides, due to the complex design and severe flight 
conditions, FAHVs are sensitive to changes in the flight 
conditions as well as the aerodynamic parameters [2]. As a 
result, the control system design for FAHVs becomes a real 
challenge. 
Recently, several control strategies based on feedback 
linearization technique have been proposed for hypersonic 
vehicles. Xu et al. developed an adaptive sliding mode 
controller based on an input-output linearized longitudinal 
model [2]. Pu et al. proposed an advanced inversion control 
for hypersonic vehicles based on PSO and arranged 
transient process [3]. Although feedback linearization 
technique is an efficient way for nonlinear control system 
design, high order derivatives of the outputs are usually hard 
to obtain in real applications, which few papers have taken 
into consideration. Li et al. employed linear high gain 
observer to estimate the auxiliary error signals of the hyper- 
sonic vehicles [4]. He et al. applied linear high gain 
observer to formulate an adaptive output feedback fault- 
tolerant control system [5]. However, they did not consider 
the side effects of the flexible dynamics. 
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Fuzzy logic systems (FLSs) have been widely utilized for 
dealing with uncertainties. Compared with type-1 fuzzy 
logic systems (T1-FLSs), which use only type-1 fuzzy sets 
(T1-FSs), type-2 fuzzy logic systems (T2-FLSs), which use 
at least one type-2 fuzzy set (T2-FS), have stronger 
capability of modeling vagueness and unreliability of 
information [6]. Considering the computational costs in real 
time control, interval type-2 fuzzy logic systems (IT2-FLSs), 
which use interval type-2 fuzzy sets (IT2-FSs) instead, have 
attracted more attention than general T2-FLSs. 
In this paper, an adaptive interval type-2 fuzzy output 
feedback control (AIT2-FOFC) scheme is proposed for 
FAHVs in the presence of unknown flexibilities and 
parameter uncertainties. After calculating the derivatives of 
the velocity and altitude repeatedly, the FAHV longitudinal 
model is completely input-output linearized. Due to the 
unmeasurable high order derivatives of the outputs, the 
design can be separated into two tasks based on the separate 
principle. First, a state feedback dynamic inversion 
controller is formulated as the basic nominal controller to 
stabilize the system. An adaptive interval type-2 fuzzy logic 
system (AIT2-FLS) is further constructed to approximate 
the unknown uncertainties in the FAHV longitudinal model. 
Then, a nonlinear high gain observer is applied to directly 
estimate the unavailable high order derivatives of the 
velocity tracking error and altitude tracking error. The 
whole AIT2-FOFC scheme is finally achieved through 
combining the state feedback controller and the nonlinear 
high gain observer. Simulation results validate the 
robustness of our AIT2-FOFC scheme against unknown 
flexible dynamics as well as parameter uncertainties. 
The rest of this paper is organized as follows. Section 2 
briefly states the preliminaries of this study. From Section 3 
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to Section 5, we introduce our design process in details, 
including output feedback formulation, state feedback 
control design and AIT2-FOFC design. Simulation results 
are presented in Section 6, after which we draw our 
conclusions. 

2 PRELIMINARIES 

2.1  Longitudinal Dynamics of FAHV 

In this paper, the following nonlinear longitudinal dynamics 
of the FAHV, which contain five rigid-body states and six 
flexible states, are considered [7]: 
 ( )cos sinV T D m gα γ= − −ɺ  (1) 

 ( )sin cosL T mV g Vγ α γ= + −ɺ  (2) 

 sinh V γ=ɺ  (3) 

 qα γ= −ɺ ɺ  (4) 

 /yy yyq M I=ɺ  (5) 

 22 , 1,2,3i i i i i i iN iη ζ ωη ω η= − − + =ɺɺ ɺ  (6) 

where V  denotes the velocity, γ  denotes the flight path 

angle, h  denotes the altitude, α  denotes the angle of 

attack, q  denotes the pitch rate, and [ 1 1 2 2η η η η= ɺ ɺηηηη  

]3 3

Tη ηɺ  stands for the first three flexible modes. , ,L D T  

and yyM  represent the lift, the drag, the thrust and the 

pitching moment, respectively, while 1 2,N N  and 3N  are 

the three generalized forces. The approximate expressions 
of the above terms are given as follows: 
 20.5 ( , , )LL V sCρ α≈ δ ηδ ηδ ηδ η  (7) 

 20.5 ( , , )DD V sCρ α≈ δ ηδ ηδ ηδ η  (8) 

 2
,0.5 ( ) ( )T T TT V s C C η
φρ α φ α ≈ + + ηηηηC  (9) 

 20.5 ( , , )yy T MM z T V scCρ α≈ + δ ηδ ηδ ηδ η  (10) 
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ρ α α δ δ≈ + + +


+ + ηηηηN
 (11) 

where [ ]= ,
T

c eδ δδδδδ  represents the canard deflection and 

elevator deflection respectively, φ  denotes the throttle 

setting, and 

 
3 23 2

, ( )T T T T TC C C C Cφα φα φα φ
φ α α α α= + + +  (12) 

 3 3 2 2 1 0( )T T T T TC C C C Cα α α α= + + +  (13) 

 0( , , ) e c
L L L e L c L LC C C C Cδ δα ηα α δ δ= + + + +δ η ηδ η ηδ η ηδ η ηC  (14) 
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(15) 

2 2 0( , , ) e c
M M M M e M c M

M

C C C C C Cδ δα α

η

α α α δ δ= + + + +

+

δ ηδ ηδ ηδ η
ηηηηC

 (16) 

 31 20 0 0 , , , ,j j j jC C C j T L D Mηη ηη  = = C (17) 

 31 20 0 0 , 1,2,3.i i i iN N N iηη ηη  = = N  (18) 

Moreover, the canard deflection cδ  is set to be ganged with 

the elevator deflection eδ , with the relationship of cδ =  

( )e c
ec e L L ek C Cδ δδ δ= −  [8].  

The engine dynamics can be described by a second-order 
system using a new control input cφ : 

 2 22 .n n n n cφ ζ ω φ ω φ ω φ= − − +ɺɺ ɺ  (19) 

For detail information about each parameter, the reader can 
refer to [9]. 

2.2  Brief Description of IT2-FLS 

In this study, IT2-FLS is employed to approximate the 
flexibilities as well as the unknown uncertainties in the 
FAHV longitudinal model. The structure of IT2-FLS is 
displayed in Fig 1. It mainly consists of four parts: fuzzifier, 
rule bases, inference and output processing. Different from 
T1-FLS, at least one IT2-FS is employed in the rule bases of 
IT2-FLS, which enhances the ability of handling complex 
uncertainties. Besides, in the output processing part, the 
type reducer first maps the IT2 fuzzy output sets into 
T1-FSs, and then the crisp outputs can be obtained after 
defuzzification. 

For a Mamdani IT2-FLS with p inputs 1 1, ... ,fx X∈  

fp px X∈  and one output u U∈ , the sth rule can be 

expressed as follows: 

 
1 1: ... ,

1, 2, ...,

s s s
f fp p

s

R IF x is F and and x is F

THEN u is G s M=

ɶ ɶ

ɶ
 (20) 

where ( 1, 2, ... , )s
mF m p=ɶ  is the antecedent IT2-FS, with 

the upper membership function (UMF) and lower 
membership function (LMF) of ( )s

m
fmF

xµ
ɶ

 and ( )s
m

fmF
xµ

ɶ
 

respectively , while sGɶ  is the consequent IT2-FS, with the 

corresponding centroid of sθ . Then, if we use singleton 
fuzzification and product inference, the degree of firing 

1( , ... , )s
f fpf x x  can be written as follows: 

 
1 1 1

1 1

( , ... , ) ( , ... , ), ( , ... , )

= ( ), ( ) .s s
m m

s s s
f fp f fp f fp

p p

fm fmF Fm m

f x x f x x f x x

x xµ µ
= =

 ∈  

 
 ∏ ∏ɶ ɶ

(21) 

Define the fuzzy basic function (FBF) as follows: 

 1 11
( , ... , ) ( , ... , ).

Ms s s
f fp f fps

f x x f x xξ
=

= ∑  (22) 

Finally, by applying center-of-sets type reduction and center 
average defuzzification, we can obtain the crisp output of 
IT2-FLS: 

 ( ) ( )2 2T T T T
l r l ru = + = + =θ ξ θ ξ θ ξ ξ θ ξθ ξ θ ξ θ ξ ξ θ ξθ ξ θ ξ θ ξ ξ θ ξθ ξ θ ξ θ ξ ξ θ ξ  (23) 

where 1, ... ,
TMθ θ =  θθθθ and ( ) 2l r+ξ = ξ ξξ = ξ ξξ = ξ ξξ = ξ ξ . Besides, 

1, ... ,
TM

l l lξ ξ =  ξξξξ  and 1, ... ,
TM

r r rξ ξ =  ξξξξ  are the 

boundary FBF vectors which can be calculated through the 
Karnik-Mendel algorithm [10]. 
For the IT2-FLS’s capability of approximating a real 
continuous function on a compact domain, we have the 
following IT2-FLS approximation theorem: 



  

 
Fig 1. The structure of IT2-FLS. 

 
Theorem 1 [11]: The IT2-FLS can uniformly approximate 
any function ( )f x  which is continuous in [ 1,1]rC −  to any 

degree of accuracy. In other words, for 0ε∀ > , there exists 
an IT2-FLS as (23) such that 

 
[ 1, 1]

sup ( ) ( ) .
r

T

x C

f ε
∈ −

− <θ ξθ ξθ ξθ ξx x  (24) 

3 OUTPUT FEEDBACK FORMULATION 

The control objective of this paper is to design an output 
feedback control scheme which can make the velocity V and 
altitude h of the FAHV track the reference commands Vc 
and hc respectively in the presence of unknown flexibilities 
as well as parameter uncertainties. In the following three 
sections, we will introduce our proposed control scheme in 
details, including output feedback formulation, state 
feedback control design and AIT2-FOFC design. 
The overall control scheme is depicted in Fig 2. For the 
FAHV longitudinal model, the control inputs are =u  

[ ],
T

c eφ δ , while the system outputs are [ ],
T

V h=y . Besides, 

since the measurements of flexible dynamics are difficult 
and costly, here we treat them unknown. 
It is not difficult to find that the nonlinear longitudinal 
dynamics of the FAHV (1)-(6) satisfy the relative degree 
condition [12]. Therefore, the system can be completely 
input-output linearized. After differentiating V and h three 
times and four times respectively, the FAHV longitudinal 
dynamics can be transformed into the following affine 
nonlinear form: 

 11 12

(4)
21 22

v c

h e

f b bV

f b bh

φ
δ

      
= +      

     

ɺɺɺ

 (25) 

where 

 ( )1 0 2
T

vf mω= + Ωɺɺ ɺ ɺx x x (26) 

( ) ( )1 0 2 1 0 2

2

3

sin cos

3 cos 3 sin 3 cos

3 sin cos

T T
hf m V

V V V

V V

ω γ π γ

γ γ γ γ γ γ
γγ γ γ γ

= + Ω + + Π

+ − +
− −

ɺɺ ɺ ɺ ɺɺ ɺ ɺ

ɺɺ ɺ ɺɺ ɺ ɺɺ

ɺɺɺ ɺ

x x x x x x

(27) 

 
2

11 cosn T
b

m

ω α
φ

∂=
∂

(28) 

2

12 cos sin
2

e

e c

c

L
M M

yy L

CV sc T D
b T C C

mI C

δ
δ δ

δ
ρ α α

α α
 ∂ ∂ = − − −  ∂ ∂  

(29) 

 
2

21 sin( )n T
b

m

ω γ α
φ

∂= +
∂

(30) 

2

22 cos sin sin
2

sin cos cos
e

e c

c

yy

L
M M

L

V sc T D
b T

mI

CL T
T C C

C

δ
δ δ

δ

ρ α α γ
α α

α α γ
α α

 ∂ ∂ = − −  ∂ ∂ 

 ∂ ∂  + + + −   ∂ ∂    

 (31) 

in which [ ]T
V hγ α φ=x  and 0 0 0

T
V hγ α φ =  

ɺɺɺɺɺɺɺɺ ɺɺ ɺɺx . 

Although input-output linearization makes the control 
problem less complicated, the accurate model information is 
needed during the control development. In addition, high 
order derivatives of the velocity and altitude are necessary 
as well, which are not measurable from the on-board sensors. 
When complex nonlinear uncertainties exist, these values 
even become incomputable. Motivated by the results in [5, 
13], we can separate the design into two tasks based on the 
separation principle. First, a state feedback controller is 
developed to stabilize the system, which will be introduced 
in Section 4. Then, a nonlinear high gain observer is applied 
to estimate the high order derivatives of the velocity 
tracking error and altitude tracking error, which can be seen 
in Section 5. 

4 STATE FEEDBACK CONTROL DESIGN 

4.1 Dynamic Inversion Controller Design 

Considering the effects of unknown flexible dynamics and 
parameter uncertainties, we rewrite (25) in the following 
form: 

 11 12

(4)
21 22

v c v

h e h

f b bV

f b bh

φ
δ

∆        
= + + = +         ∆       

ɺɺɺ

F Bu  (32) 

where 

 11 12

21 22

, ,v v v

h h h

F f b b

F f b b

+ ∆     
= = =     + ∆     

F B  (33) 

v∆  and h∆  denote the total unknown uncertainties, 

including flexibilities and parameter uncertainties, in the 
velocity channel and altitude channel, respectively. Let 

 ( ) ( )0 1 2, , , ,
T T

v v v v v v ve e e e e e= = ɺ ɺɺe  (34) 

,V α

,c cV h ,e cδ φ,v he e
[ ]T

y V h=

[ ]T
qα γ

ˆ ˆ,v hF F

0 1 2ˆ ˆ ˆ, ,v v ve e e

0 1 2 3ˆ ˆ ˆ ˆ, , ,h h h he e e e

11 12 21 22, , ,b b b b

ˆ ˆ, , ,v h e cF F δ φ

 
Fig 2. The block diagram of the AIT2-FOFC scheme. 



  

 ( ) ( )0 1 2 3, , , , , ,
T T

h h h h h h h h he e e e e e e e= = ɺ ɺɺ ɺɺɺe  (35) 

where v ce V V= −  and h ce h h= −  are the velocity tracking 

error and altitude tracking error respectively. Suppose B is 
invertible, then the dynamic inversion controller, which can 
lead to the exponentially stable dynamics, can be formulated 
as the basic controller: 

 

21
1011 12

3 (4)
21 22 20

v i vi cic

e h j hj cj

F k e Vb b

b b F k e h

φ
δ

−
=

=

 − − +     = =     − − +  
 

∑

∑

ɺɺɺ

u  (36) 

where 1 ( 0,1, 2)ik i =  and 2 ( 0,1, 2, 3)jk j =  are set as the 

coefficients of Hurwitz polynomials. 

4.2 AIT2-FLS Design 

Since [ ],
T

v hF F=F  contains unknown model uncertain- 

ties v∆  and h∆ , the accurate values of F is unavailable in 

reality. Thus, here we use AIT2-FLS to estimate the 
uncertain term F, and (36) becomes: 

 

21
1011 12

3 (4)
21 22 20

ˆ

ˆ

v i vi cic

e h j hj cj

F k e Vb b

b b F k e h

φ
δ

−
=

=

 − − +     = =     − − +  
 

∑

∑

ɺɺɺ

u  (37) 

where v̂F  and ĥF  denote the outputs of IT2-FLS. 

According to the detail expressions of the FAHV 
longitudinal model (1)-(18), a two-inputs two-outputs 
IT2-FLS can be constructed, with the rule bases of: 

 
1 1 2 2

1 2

: ,

ˆ ˆ 1, 2, ...,

s s s
f f

s s
v h

R IF x is F and x is F

THEN F is G and F is G s M=

ɶ ɶ

，

 (38) 

where V  and α  are chosen for 1fx  and 2fx  respectively. 

The antecedent fuzzy sets 1
sFɶ  and 2

sFɶ  are set as Gaussian 

IT2-FSs, whose LMFs and UMFs are: 

 ( )2
2( ) exp 2s s s

m m m
fm fmF F F

x x mµ σ = − − 
 

ɶ ɶ ɶ
 (39) 

 ( )2
2( ) exp 2 , 1, 2s s s

m m m
fm fmF F F

x x m mµ σ = − − = 
 

ɶ ɶ ɶ
 (40) 

respectively, while the consequent fuzzy sets 1
sG  and 2

sG  

are Gaussian T1-FSs, with the corresponding centroids of 
s
vθ  and s

hθ  respectively. Then, if we use singleton fuzzifi- 

cation, product inference, center-of-sets type reduction and 
center average defuzzification, the estimation of Fv and Fh 
can be obtained: 

 ˆ ˆ, .T T
v v v h h hF F= =θ ξ θ ξθ ξ θ ξθ ξ θ ξθ ξ θ ξ  (41) 

Let 

 

10 11 12

0 1 0 0

0 0 1 , 0 ,

1
v v

k k k

   
   = =   
   − − −   

A b  (42) 

 

20 21 22 23

0 1 0 0 0

0 0 1 0 0
, .

0 0 0 1 0

1

h h

k k k k

   
   
   = =
   
   − − − −   

A b  (43) 

Then substituting (41) into (37), we can obtain the following 
state feedback control algorithm: 

 

21
1011 12

3 (4)
21 22 20

.

T
v v i vi cic

T
e h h j hj cj

k e Vb b

b b k e h

φ
δ

−
=

=

 − − +     = =     − − +  
 

∑

∑

ɺɺɺ

u
θ ξθ ξθ ξθ ξ

θ ξθ ξθ ξθ ξ
(44) 

The adaptive laws for vθθθθ  and hθθθθ  can be designed as: 

 ( )0T
v v v v v v v v vγ σ= − −ɺ e P bθ ξ θ θθ ξ θ θθ ξ θ θθ ξ θ θ  (45) 

 ( )0T
h h h h h h h h hγ σ= − −ɺ e P bθ ξ θ θθ ξ θ θθ ξ θ θθ ξ θ θ  (46) 

where 0vγ > , 0hγ > , 0vσ >  and 0hσ > . 0
vθθθθ  and 0

hθθθθ  are 

the predefined consequent centroid vectors. Besides, Pv and 
Ph are the positive definite matrix solutions of the following 
Lyapunov functions: 
 ,T T

v v v v v h h h h h+ = − + = −A P P A Q A P P A Q  (47) 

where Qv and Qh are appropriate positive definite square 
matrices.  
Remark 1: The σ-modification terms of the form 

( )0
v v vσ− −θ θθ θθ θθ θ  and ( )0

h h hσ− −θ θθ θθ θθ θ  in the adaptive laws (45) 

and (46) can keep the adaptive parameters vθθθθ  and hθθθθ  in 

bound in the presence of model uncertainties. Besides, the 
better approximation of the optimal estimation vectors we 
make 0

vθθθθ  and 0
hθθθθ , the less tracking errors will be. 

4.3 Stability Analysis 

This subsection will explore the stability of the above state 
feedback control scheme. First, we define *

vθθθθ  and *
hθθθθ  as the 

optimal estimation vectors, while vε  and hε  as the minimal 

estimation errors. Then, Fv and Fh in (33) can be written in 
the following form: 
 * *= , = .T T

v v v v h h h hF Fε ε+ +θ ξ θ ξθ ξ θ ξθ ξ θ ξθ ξ θ ξ  (48) 

Next, combining (32), (44) and (48), the overall error 
dynamics of the system can be obtained: 

 ( )T
v v v v v v vε= + +ɶɺe A e b θ ξθ ξθ ξθ ξ  (49) 

 ( )T
h h h h h h hε= + +ɶɺe A e b θ ξθ ξθ ξθ ξ  (50) 

where *
v v v= −ɶθ θ θθ θ θθ θ θθ θ θ  and *

h h h= −ɶθ θ θθ θ θθ θ θθ θ θ . Finally, the stability 

characteristic is explored through the following theorem. 
Theorem 2: Consider the state feedback closed-loop system 
consisting of the FAHV longitudinal model (1)-(6), the 
control algorithm (44), together with the adaptive laws (45) 
and (46). Then, both the velocity tracking error and altitude 
tracking error are uniformly ultimately bounded (UUB). 
Proof: Choose the following Lyapunov function: 

 
1 1 1 1

.
2 2 2 2

T T T T
v v v h h h v v h h

v h

V
γ γ

= + + +ɶ ɶ ɶ ɶe P e e P e θ θ θ θθ θ θ θθ θ θ θθ θ θ θ  (51) 

Taking the time derivative of V, we can obtain 

( )

( )

0

0

1

2
1

2

T T T T T T
v v v v v v v v v v v v v v v v v

T T Tv
v v v h h h h h h h

v

T T T T Tv
h h h h h h h h h h h h h

v

V ε

σ ε
γ

σ
γ

= − + + −

− − − +

+ − − −

ɶ ɶɺ

ɶ

ɶ ɶ ɶ

θ ξ θ ξθ ξ θ ξθ ξ θ ξθ ξ θ ξ

θ θ θθ θ θθ θ θθ θ θ

ξ θ ξ θ θ θξ θ ξ θ θ θξ θ ξ θ θ θξ θ ξ θ θ θ

e Q e e P b e P b e P b

e Q e e P b

e P b θ e P b

 (52) 



  

( ) ( )0 * 0 *

1 1

2 2

.

T T T T
v v v v v v v h h h h h h h

T Tv v
v v v v h h h h

v v

ε ε

σ σ
γ γ
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Since 

 ( ) 20 * 0 *1 1
,

2 2
T T
v v v v v v v v
 − − ≤ − + − 

ɶ ɶ ɶ ɶθ θ θ θ θ θ θ θθ θ θ θ θ θ θ θθ θ θ θ θ θ θ θθ θ θ θ θ θ θ θ  (53) 

 ( ) 20 * 0 *1 1
,

2 2
T T
h h h h h h h h
 − − ≤ − + − 

ɶ ɶ ɶ ɶθ θ θ θ θ θ θ θθ θ θ θ θ θ θ θθ θ θ θ θ θ θ θθ θ θ θ θ θ θ θ  (54) 

the last equality of (52) is derived as 
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where 
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is a bounded term. By choosing 1 2( ) ( ) ,v vµ λ λ µ= =Q P  

3( ) ( ) ,h h vλ λ µ σ=Q P  and 4 hµ σ= , where λ  and λ  

denote the minimum and maximum eigenvalues 
respectively, we have 
 V V Wµ≤ − +ɺ  (57) 

with ( )1 2 3 4min , , ,µ µ µ µ µ= . Therefore, both the velocity 

tracking error and altitude tracking error are UUB. This 
completes the proof. 

5 AIT2-FOFC DESIGN 

As mentioned in Section 3, it is very hard to obtain the high 
order derivatives of the velocity and altitude in real 
applications. Thus, we employ the following nonlinear high 
gain observer to directly estimate the unmeasurable states 

ve  and he  which are used in (44): 

 ( )0 1 1 0 0ˆ ˆ ˆv v v v v ve e e eα ε= + −ɺ  (58) 

 ( ) 2
1 2 2 0 0ˆ ˆ ˆv v v v v ve e e eα ε= + −ɺ  (59) 

 ( ) 3
2 11 12 3 0 0ˆ ˆT

v v v c e v v v ve b b e eφ δ α ε= + + + −ɺ θ ξθ ξθ ξθ ξ  (60) 

where ˆ ( 0,1, 2)vie i =  is the estimation of vie , vε  is a small 

positive constant, ( 1)v iα +  is set as the coefficient of Hurwitz 

polynomial. In the same way, 

 ( )0 1 1 0 0ˆ ˆ ˆh h h h h he e e eα ε= + −ɺ  (61) 

 ( ) 2
1 2 2 0 0ˆ ˆ ˆh h h h h he e e eα ε= + −ɺ  (62) 

 ( ) 3
2 3 3 0 0ˆ ˆ ˆh h h h h he e e eα ε= + −ɺ  (63) 

 ( ) 4
3 21 22 4 0 0ˆ ˆT

h h h c e h h h he b b e eφ δ α ε= + + + −ɺ θ ξθ ξθ ξθ ξ  (64) 

where ˆ ( 0,1, 2, 3)hje j =  is the estimation of hje , hε  is a 

small positive constant, ( 1)h jα +  is set as the coefficient of 

Hurwitz polynomial. The stability analysis of the above 
nonlinear high gain observer can refer to [13]. After 
replacing vie  and hje  in (44) by ˆvie  and ˆhje  respectively, 

we finally obtain our AIT2-FOFC scheme based on the 
separation principle: 
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φ
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−
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=

 − − +     = =     − − +  
 

∑

∑

ɺɺɺ

u
θ ξθ ξθ ξθ ξ

θ ξθ ξθ ξθ ξ
(65) 

6 SIMULATION 

To validate the effectiveness of our AIT2-FOFC scheme, 
the results of the numerical simulation are presented in this 
section. The trimmed cruise conditions of the simulation are 
selected as 0 0 07846.4 / , 0 , 85000 ,V ft s rad h ftγ= = =  

0 0 1 20.0219 , 0 / , =0.594 , =rad q rad s ft slugα η η= =  

30.0976 , = 0.0335ft slug ft slugη− −  and 1 2 3= = =0η η ηɺ ɺ ɺ  

ft slug s . 300ft/s step signal and 1800ft step signal are 

chosen as the velocity reference command and altitude 
reference command respectively. In order to arrange a better 
transition process, we employ the tracking differentiators as 
follows [14]: 

( )( )( )1

1

( ) ( ) 3 ( ) 3 ( )

( 1) ( ) * ( )

( 1) ( ) * ( )
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c c
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V N V N V N

V N V N fs N
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τ
τ

 = − − + +

 + = +


+ = +
 + = +

ɺ ɺɺ

ɺ

ɺ ɺ ɺɺ

ɺɺ ɺɺ

(66) 
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 (67) 

where N  is the number of iteration, vλ  and hλ  are the 

“velocity factors” which are related with the speed of the 
arranged transition process, and τ  is the time step. Here, 
we choose =0.18vλ , =0.18hλ  and =0.01τ . 

The parameters of our controller are given as follows: 

10 11 12 20 21 22 231, 3, 3, 81, 108, 54, 12,k k k k k k k= = = = = = =

1 212, 0.02, 200 , , 0.01, 0.048,v h v hγ γ σ σ= = = = = =Q I Q I

while the parameters of the nonlinear high gain observer are 
selected as: 1 2 3 1 2 33, 3, 1, 4, 6,v v v h h hα α α α α α= = = = = =  

44, 1, 0.065, 0.05.h v hα ε ε= = =  Besides, each of the 

antecedent fuzzy sets of our AIT2-FLS 1
sFɶ  and 2

sFɶ  has 5 

MFs, namely NB, NS, ZO, PS and PB, with the parameter 
details shown in Table 1. The predefined consequent 
centroid vectors 0

vθθθθ  and 0
hθθθθ  as well as the initial values of 



  

the adaptive parameter vectors vθθθθ  and hθθθθ  are set as the 

desired ones of the nominal model. 
To verify the robustness of our proposed AIT2-FOFC 
scheme, additional uncertainties are added to the parameters 
in (7)-(10), with the drag D being 20% and the other three 
being -20%. The simulation results are displayed in Fig 
3-Fig 6. From Fig 3 we can see that both the velocity and 
altitude present a good tracking performance in the face of 
unknown flexible dynamics and parameter uncertainties. 
Although there exist small tracking errors, Fig 4 still shows 
the effectiveness and convergence of our nonlinear high 
gain observer. Fig 5 depicts the control inputs of the system, 
including elevator deflection and throttle setting. We can 
see that in the transition process both the control inputs have 
a little vibrations due to the existence of large model 
uncertainties, while in the steady state process both become 
smooth and stable. At last, the outputs of the AIT2-FLS are 
shown in Fig 6, which demonstrates its strong capability of 
approximating uncertainties. 

7 CONCLUSIONS 

This paper mainly proposes an AIT2-FOFC scheme based 
on nonlinear high gain observer for FAHVs. After 
calculating the derivatives of the outputs repeatedly, we 
formulate the state feedback dynamic inversion controller as 

Table 1. Parameters of the Antecedent Fuzzy Sets 

 
1 1

,s sF F
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NB 7846.4 18 32 0.0219 0.0012 0.0022 
NS 7921.4 18 32 0.0270 0.0012 0.0022 
ZO 7996.4 18 32 0.0322 0.0012 0.0022 
PS 8071.4 18 32 0.0374 0.0012 0.0022 
PB 8146.4 18 32 0.0426 0.0012 0.0022 
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Fig 3. Velocity and altitude responses. 

0 10 20 30 40 50 60 70 80 90 100
-30

-20

-10

0

10

20

30

a)    Time(s)

V
el

oc
ity

 T
ra

ck
in

g 
E

rr
or

(f
t/

s)

 

 
Estimate of ev0

Estimate of ev1
Estimate of ev2

0 10 20 30 40 50 60 70 80 90 100

-40

-20

0

20

40

60

80

b)    Time(s)

A
lti

tu
de

 T
ra

ck
in

g 
E

rr
or

(f
t)

 

 
Estimate of eh0

Estimate of eh1
Estimate of eh2
Estimate of eh3

 
Fig 4. Outputs of nonlinear high gain observer. 
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Fig 5. Control inputs. 
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Fig 6. Outputs of AIT2-FLS. 

the basic controller. Besides, the AIT2-FLS is constructed 
to approximate the unknown model uncertainties, including 
flexible dynamics and parameter uncertainties. Moreover, 
the nonlinear high gain observer is applied to estimate the 
unmeasurable high order derivatives of the outputs. The 
overall output feedback control scheme is finally obtained 
based on the separation principle. Simulation conducted at 
last validates the effectiveness of our proposed method. In 
our future work, measurement noises will be taken into 
consideration, which leads to a further research on noise 
reduction property of our AIT2-FOFC scheme. 
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