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Abstract—This paper investigates the time-varying formation 

control problem for multiple unmanned aerial vehicle 

(multi-UAV) systems with time-varying delays and jointly 

connected topologies. Firstly, a consensus based formation 

control law is proposed to realize and maintain the desired 

time-varying formation in presence of time-varying delays and 

jointly connected topologies. Then, a sufficient condition in 

terms of linear matrix inequalities (LMI) is derived for 

formation control and the stability of the close-loop system is 

analyzed by employing Lyapunov-Krasovskii function. Finally, 

two task-oriented formation transformation cases are simulated 

to verify the effectiveness of the proposed control law, where the 

first is to shape varying regular hexagon, and the second is to 

avoid multiple obstacles. 

I. INTRODUCTION 

Recently, formation flight for multiple unmanned aerial 
vehicle (multi-UAV) systems has received significant 
attention from both researchers and engineers, due to its 
outstanding advantages including wide area sensing coverage, 
low cost, good flexibility performance, strong robustness to 
system failure, and so on. Generally, the primary research 
concern in formation flight is to shape and stabilize the 
expected formations for multi-UAV systems by means of 
effective control methods. Consequently, considerable efforts 
in formation control have been made. Three typical strategies, 
namely, leader-follower based approach [1], behavior based 
method [2], and virtual structure based strategy [3], have been 
proposed and studied for formation control.  

However, it should be pointed out these three typical 
strategies have their own weaknesses [4]. Over the past 
several years, great development in consensus theory for 
multi-agent systems has been achieved, and increasing results 
based on consensus theory have been derived to deal with 
formation control problem. Through introducing a distributed 
finite-time observer based on consensus theory, a finite-time 
formation control was obtained for a group of nonholonomic 
mobile robots in [5]. Distributed invariant formation control 
problem for multi-UAV systems have been investigated in 
presence of time-varying delays and switching topologies in 
[6]. However, it should be pointed out that all of the 
formations in the results above are time-invariant, which often 
cannot satisfy various practical requirements. Therefore, it 
motivates some researches on time-varying formation control. 
Time-varying formation tracking control problem for multiple 
manipulators in finite time was studied in [7]. Under switching 
interaction topologies, the same problem for second-order 
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multi-agent systems has been investigated in [8], where the 
obtained results were applied to deal with the target enclosing 
problem for a multi-quadrotor system. 

As we all know, time delays are inevitable in reality during 
information exchanging, which can severely influence the 
formation control performance. Thus, it is meaningful to 
investigate formation control problems with time delays. Ref. 
[9] investigated a leader-following formation control problem 
for multi-agent systems with non-uniform time-varying 
communication delays. Ref. [10] proposed a consensus based 
algorithm to solve formation control problems for multiple 
unmanned underwater vehicles with time-varying delays.  

Besides, communication failures or new creations of 
communication links may occur in practice. In these cases, the 
interactions among UAVs will change, which results in a great 
significance to take switching communication topologies into 
consideration in formation control. Time-varying formation 
control for linear multi-agent systems under switching 
directed topologies was studied in [11]. Time-varying 
formation control for multi-UAV systems with switching 
connected topologies was investigated in [12].  

Nevertheless, to the best of our knowledge, there are few 
results available to simultaneously solve time-varying delays 
and switching topologies problems for time-varying flight 
formation control, which motivates this study. Ref. [6] took 
both time-varying delays and switching topologies into 
consideration in the formation control for multi-UAV systems, 
but the desired formation was invariant. Ref. [13] proposed a 
distributed time-varying formation control law for multi-UAV 
systems with time delays. However, switching topologies 
were not considered in this paper.  

Compared with the previous relevant results, the main 
contributions of this paper can be summarized as follows. 
Firstly, an integrated control law to simultaneously solve the 
problems of time-varying formation tracking, time-varying 
delays and switching topologies is proposed in this paper. 
Secondly, the stability analysis of the close-loop system under 
the proposed control law is explored with the aid of 
Lyapunov-Krasovskii function and LMI. Finally, numerical 
simulations of two task-oriented formation transformation 
cases, where one is to shape the varying regular hexagon, and 
the other is to avoid multiple obstacles, are established to 
verify the effectiveness of the proposed control law. 

II. PRELIMINARIES 

A. Basic Concepts on Graph Theory 

In this paper, the multi-UAV system comprising N UAVs 
can be regarded as a multi-agent system. Generally, we use a 
graph denoted by ( , , )G V E A to describe the information 

exchanges among the UAVs. Denote a single UAV as node 
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i , then 
1 2{ , , , }NV     is the set of UAVs, and 

E V V   represents the set of edges, where E is defined 

such that if ( , ) ,j i E j i    , there is an edge from UAV j  

to the UAV i, which means that UAV j  can deliver 

information to UAV i. In addition, [ ] N N

ijA a R    is the 

associated adjacency matrix with 0ija  . We set 

0,ija  j i  if and only if ( , )j i E   ; otherwise =0ija . In 

this case, UAV j is said to be the neighbor of UAV i if and 

only if 0ija  , and { : ( , ) }i j j iN V E      represents the 

neighbor set of the i th UAV. A graph is an undirected graph 

if and only if 
ij jia a . Define 

1 2,{ , , }ND diag d d d ，  

N NR   as the in-degree matrix, where 
id 

j i
ijN

a
  . Then, 

the Laplacian matrix of graph G  is defined as L D A  . A 

direct path from UAV i to j  is a sequence of successive 

edges in the form of {( , ),( , ), ,( , )}i k k l m j      . 

Furthermore, an undirected graph is called connected if there 
is a path between any two UAVs in the graph.  

In the case of leader-following, another graph G with a 

virtual leader (labled as UAV 0) and N UAVs should be 
considered. The adjacency matrix element associated with the 

edge from the ith UAV to the virtual leader is denoted by 
ib , 

with 0ib   if and only if the ith UAV can receive 

information from the leader.  

Note that the interaction topology may dynamically 
change in reality, so it is necessary to consider all of the 

possible topologies. Define :[0, ) {1 2 ,p}P    ，，  as 

the piecewise constant switching function, where p denotes 

the number of the possible graphs. Denote ( )tG , ( )ija t  and 

( )ib t  as the topology graph at time t, the time varying 

versions of ija  and 
ib , respectively. Consider a finite 

sequence of non-overlapping bounded and contiguous time 

intervals 
1[ , ) 0,1,2,n nt t n ，  with 

0 0t  , 
1 10 n nt t T   , 

1 0T  . Suppose that in each time interval 
1[ , )n nt t 

 there 

exists a sequence of non-overlapping subintervals 
10 1 1[ , ) [ , )  [ , )n nm ms s

n n n n n nt t t t t t ，，，，  with 0

n nt t , 1
nm

n nt t   

satisfying 1

2   0 1s s

n n nt t T s m      0，  for some integer 

0nm  . Meanwhile, the interaction graph ( )tG  is supposed 

to be invariant in each time subinterval 1[ , )s s

n nt t  , and to 

switch at time s

nt . The union graph 1-mG  of a collection of 

undirected graphs 1 2, , , ,  1mG G G m   with the same node 

set V , is a graph with node set V  and the edge set being the 

union of the edge sets of graphs 1 2, , , mG G G . Furthermore, 

the collection of the graphs 1 2, , , mG G G  is called jointly 

connected if 1-mG  is connected.  

Note that the graph G  in each interval 1[ , )s s

n nt t   might 

not be connected, but have multiple connected subgraphs. 
Throughout this paper, we suppose that the interaction 
network is satisfied with the following assumption. 

Assumption 1. The collection of the graphs in each 

interval 
1[ , )n nt t 

 is jointly connected. Moreover, in each 

interval 
1[ , )n nt t 

, there exists at least one UAV having a path 

to the leader in each connected subgraph. 

B. Notations 

Throughout this paper, the following notations are used. 

nI  represents the n dimensional identity matrix; ( )   and 

( )  is the maximum and minimum singular value of a matrix, 

respectively. 

III. PROBLEM DESCRIPTION 

In this section, a simplified model of the UAV will be 
presented first, which can be pre-linearized by adopting 
feedback linearization. Then, the formation control problem 
will be described. 

A. Model Description 

We consider the following simplified model of the ith 
UAV as follows [6]: 

 

( ) cos cos  ( ) cos sin

( ) sin  1 ( )

1 ( ),  1 ( ) 

i i i i i i i i

i i i i v i ci

i i ci i i ci

x t v y t v

z t v v v v

 

   

 

       

  


   


     

，

，   (1) 

where [ , , ]T

i i ix y z  represents the position vector of the ith 

UAV in 3D space, 
iv  is the flight velocity, 

i  is the flight 

path angle, and 
i  is the heading angle. 

civ , 
ci , 

ci  are 

commanded flight velocity, commanded flight path angle, and 
commanded heading angle, respectively. Moreover, 

[ , , , , , ]T

i i i i i i iX x y z v    is the state vector of the model for 

the ith UAV, and [ , , ]T

i ci ci ciU v    is the control input， 

1,2, ,i N  . , , 0v       are time constants. 

Note that the UAV model (1) is nonlinear. Consequently, 
input-output feedback linearization method is adopted first, 
and model (1) can be transformed as follows: 

 
( ) ( )

( ) ( )

i i

i i

x t v t

v t u t

 


 ，
  (2) 

where 3[ , , ]T

i i i ix x y z R   and
3( ) [ , , ]

i i i

T

i x y zv t v v v R  , are 

the position and the velocity vector of the i th UAV in 3D 

space, respectively. 
3[ , , ]

i i i

T

i x y zu u u u R   denotes the 

auxiliary control input vector of the i th UAV in 3D space, 

which can be transformed into the actual control input 

[ , , ]T

i ci ci ciU v    by the following expressions 

 

 

( cos cos + cos sin + sin ) +

( sin cos sin sin )

( sin cos ) cos .

i i i

i i

i i

ci x i i y i i z i v i

ci x i i y i i i i

ci x i y i i i i

v u u u v

u u v

u u v





     

      

     

 


   


   

 (3) 

B. Control Objective 

In this paper, we can choose any predefined point or 
specified UAV as the virtual leader with desired dynamics. 
Denote the position and velocity of the virtual leader as 



  

3

0 ( )x t R  and 3

0 ( )v t R  with 
0 0( )= ( )v t x t . In addition, the 

expected time-varying formation is specified by a command 

position vector 
1 2( ) [ ( ), ( ), , ( )]T T T T

x x x Nxh t h t h t h t , where 
3( )ixh t R  is a piecewise continuously differentiable vector. 

Besides, define 1 2, , ,
T

T T T

v v v Nvh h h h     with ( )= ( )iv ixh t h t .  

We define the formation tracking error as 

( ) [ ( ), ( )]T T T

x vt t t   , where 
1( ) [ ( ),..., ( )]T T T

x x Nxt t t    and 

1( ) [ ( ),..., ( )]T T T

v v Nvt t t    with 
0( )= ( ) ( ) ( )ix i ixt x t x t h t    

and 
0( )= ( ) ( ) ( )iv i ivt v t v t h t    are position and velocity 

formation tracking errors, respectively. 

Throughout this paper, we consider not only the transfer 

time delay ( )ij t  between the ith UAV and the jth UAV, but 

also the self-delay ( )ii t  caused by measurement or compu- 

tation. We suppose that ( )ij t  and ( )ii t  are particularly 

considered as the uniform time delay ( )i t , which is 

generally assumed in the multi-agent consensus control. 

We suppose the following assumption naturally holds in 
this paper. 

Assumption 2. 0 ( ) ,  1,2, ,i mt i N      for 0t  , 

where 
m  is a positive constant. 

Assumption 3: The derivate of the velocity of the virtual 

leader is bounded, that is, there exists a positive constant 
mv  

such that ( ) mf t v , where 0 0 0[ , , , ]T T Tf v v v ,   denotes 

the Euclidian 2-norm of a vector. 

Assumption 4: The derivate of 
vh  is bounded, that is, 

there exists a positive constant 
mh  such that v mh h , where 

1 2, , ,
T

T T T

v v v Nvh h h h    . 

The control objective of this paper is to design an 
consensus based formation control law such that the formation 

tracking error ( )t  can be rendered small in presence of 

varying time delays and jointly connected topologies, which 
leads to a successful time-varying formation tracking for 
multi-UAV system (1). 

IV. FORMATION CONTROL DESIGN AND ANALYSIS 

In this section, both formation tracking control law design 
and stability analysis problems for multi-UAV system (1) with 
time-varying delays and jointly connected topologies are 
investigated. 

In this paper, it is supposed that only local neighbor 
information with time delay can be used for the control law 
design, such that the formation control is fully distributed. 
Consequently, for the ith UAV, we define local neighborhood 
tracking position and velocity errors respectively as 

 

0

( )= ( ) ( ) ( ( ) ( ))

         ( ( ) ( ) ( ))

j i

ix ij i ix j jx

N

i i ix

e t a x t h t x t h t

b x t x t h t

 

    

  


  (4) 

and  

 

0

( )= ( ) ( ) ( ( ) ( ))

         ( ( ) ( ) ( )).

j i

iv ij i iv j jv

N

i i iv

e t a v t h t v t h t

b v t v t h t

 

    

  


  (5) 

Let 1 2, , ,
T

T T T

x x x Nxe e e e    , 1 2, , ,
T

T T T

v v v Nve e e e    . Then 

the system (2) can be written as follows 

 
 3( ) ( )

x v

v v

e e

e L B I u f h 




    

  (6) 

where L  is the Laplacian matrix of graph ( )tG  at time t, 

diag{ }iB b  ,   denotes Kronecker product. 

Hence, for the ith UAV, the formation control law is 
designed as follows: 

 
1 2( )i ix iv ivu t k e k e h        (7) 

where 
1 2, 0k k   are the control gains, , 

ixe  , 
ive   and ivh   are 

the short for ( )ix ie t   ( )iv ie t   and ( )iv ih t  . Then the 

closed-loop dynamics of the multi-UAV system (2) can be 
further written as follows under the control law (7): 

 
1 2 0( )

x v

v x v v v

e e

e H k e k e f h h   




     

  (8) 

where 
3( )H L B I     . 

Suppose the communication graph G  on interval 

1[ , )s s

n nt t   has 1l   connected subgraphs ,  1,2, ,jG j l    

containing 
jd  UAVs. The Laplacian matrix of the subgraph 

jG  is denoted by 
j jd djL R  




 . Then there exists a 

permutation matrix N NU R

  such that 

1 2

3 3( ) ( ) diag{ , , , },
lTU I H U I H H H 

         

1 1

3 3( ) [ , , ], ( ) [ , , ],
l T l TT T T T

x x x v v ve U I e e e U I e e 

          

1 1

3 3( ) [ , , ], ( ) [ , , ],
l T l TT T T T

x x x v v ve U I e e e U I e e 

          

1 1

3 3( ) [ , , ], ( ) [ , , ],
l T l TT T T T

v v v v v vh U I h h h U I h h 

         

1 1

3 6( ) [ , , ], ( ) [ , , ],
l T l TT T T

v vf U I f f U I 

          

1 2

1 2[ , , , ] [ , , , ] ,
lT T

N U 

          

where 3( )j j jH L B I      with jL  being the Laplacian 

matrix of corresponding connected subgraph and 

diag{ }j jB b  , 
jdjb R 

  . 
3

1 2[ , , , ]
j

j

dj jT jT jT T

x x x x d
e e e e R 


   
  , 

3

1 2[ , , , ]
j

j

dj jT jT jT T

v v v v d
e e e e R 


   
  , 1 2[ , , , ]j

j jT jT jT T

d
   
      

6 jd
R  , 

1 2[ , , , ] ,
j

j

dj j j j T

d
R 


   
      1 1[ ( ),j jT j

x xe e t     

2 2( ), , ( )]j j

jT j jT j T

x x d d
e t e t

 
   

    , 1 1[ ( ), ,j jT j

v ve e t      

( )]j j

jT j T

v d d
e t

  
 , 1 2[ , , , ]j

jT jT jT jT T

d
f f f f


   

 , 1[ ,j jT

v vh h   

2 , , ]j

jT jT T

v v d
h h


 

, 1 2[ , , , ]j

j jT jT jT T

v v v v d
h h h h


   
 ,  1,2, ,j l  . 



  

Then, in each interval 1[ , )s s

n nt t  , system (8) can be 

decomposed into the following l  subsystems:  

1 2( ), 1,2, , .

j j

x v

j j j j j j j

v x v v v

e e

e H k e k e f h h j l

 
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 


       

  (9) 

The following lemmas play an important role in the proof 
of the main results. 

Lemma 1 [14]. For any real differentiable vector function 

( ) ny t R , any differentiable scalar function  0( ) 0,t   

where 
0  is a positive constant, and any constant matrix 

0 T n nU U R    ，we have the following inequality: 

 

0

1

0 [ ( ) ( )] [ ( ) ( )]

( ) ( ) ,  0.

T

t
T

t

y t y t U y t y t

y Uy d t


  
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



   

 
  (10) 

Lemma 2 [15]. If the graph is connected, and there are at 

least one UAV connecting to the leader, then L B   is 

positive definite.  
Lemma 3 [16]: If the graph is connected, and there are at 

least one UAV connecting to the leader, then 

/ ( )x xe L B     and / ( )v ve L B    . 

Next, we present the main results of this paper. 

Theorem 1. Suppose Assumption 1 holds. Then under the 

control law (7), time-varying formation for multi-UAV 

system (1) with time-varying delays and switching topologies 

can be achieved, if for each connected subgraph in each 

interval 1[ , )s s

n nt t  , constants 
1 2,  , , , 0c c      with 2   

and 
1 2, 0k k   are chosen such that the symmetric matrix 

0jM  .where  
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Proof: Choose the following Lyapunov-Krasovskii 

functional candidate 1 2 3( ) ( ) ( ) ( )V t V t V t V t    with  

 1

1 1
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2 2

T T T

v v x x x vV t e e e e e e       (12) 
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Furthermore, 1( )V t , 
2 ( )V t , 

3 ( )V t  can be rewritten as  
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Differentiating 
1( )V t  with respect to t, we can get that 
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where j j j j

v vD f h h       . 

Applying Lemma 1, the derivatives of 
2V  and 

3V  are 

shown as  
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and 
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where [ , ]j jT jT T

     . 

Combining equations (15)-(20), we have 
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where the matrix M is shown as (11), and [ , ,jT jT

x xz e e   

, ]jT jT T

v ve e  , 2 2

1 2 2 2[ , , 2 , 2jT jT jT j jT

m ms D D k c H H D k c            

]jT j jT TH H D   , 2

22 jT jT j j

mc D H H D     . Under Assumptions 

3 and 4, s  and   are bounded. 

( )zV z  is positive definite if the matrix M is positive 

definite and 
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  (22) 

According to [17], we can draw the conclusion that ( )z t  

is bounded stable. Furthermore, it can be obtained that both 
j

xe   and j

ve   are bounded stable. Then following Lemma 3, 

the formation tracking error j

  is bounded stable in each 

interval 1[ , )s s

n nt t   as t  . Since the collection of graphs in 

each interval 
1[ , )n nt t 

 is jointly connected, it is easy to induce 

that   is bounded stable, as   t   in each interval 



  

1[ , )n nt t 
. That is,   is bounded stable, as   t  . As a 

result, we can achieve the expected time-varying formation 
under time-varying delays and jointly connected topology 
under the control law (7). 

This completes the proof. Next, we discuss the feasibility 

of 0jM   in Theorem 1. 

Remark 1. Evidently, matrix j jTM M  . It is also 

obvious that the diagonal elements of the matrix M are 

positive stable if 
1 2,  c c , 

1k , 
2k  are appropriately selected. 

Therefore, taking 
m  sufficiently small, and choose 

appropriately choose the values of 
1 2,  c c , 

1 2, ,k k   ,  , 

0jM   is feasible for each connected subgraph in each 

interval 1[ , )s s

n nt t  . Since the number of the possible 

interaction graphs is finite, the condition given in Theorem 1 
can be always satisfied. 

V. SIMULATION 

To illustrate the theoretical results obtained in the 
previous sections, two task-oriented formation transformation 
cases are simulated, where one is to achieve varying regular 
hexagon formation, and the other is to avoid multiple 
obstacles, to verify the effectiveness of the proposed control 
law. 

Consider a multi-UAV system with six UAVs where the 
dynamics of each UAV are described by (1). In addition, the 
virtual leader is set as the formation center. 

To verify the effectiveness of the proposed control law, in 

the following two cases, choose the interaction graphs as 

 1 2 3, ,G G G  which are shown in Fig. 1, and the union graph 

1 3G   of graphs 1 2 3, ,G G G  is also depicted in Fig. 1. Assume 

that the communication graphs switch in the following order: 

1 2 3 1G G G G   , and each graph stays active for 0.1s 

which conforms to reality. Such a scenario is to some extent 

really challenging since there are only a few communication 

links available at any time, which subsequently extends the 

control period of a complete loop. Moreover, it can be seen 

from Fig. 1 that the graphs 
1 2 3, ,G G G  are jointly connected, 

and for each connected subgraph, there exists a UAV 

receiving information from the leader, which implies that 

Assumption 1 is satisfied.  
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45

6 0
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0
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3

45

6

1 3G   
Figure 1.  Possible interaction graphs and the union graph. 

Besides, the different varying time delays are set as 

1 3= =0.03+0.02sin(0.1 )t  , 2 4= =0.04+0.01sin(0.1 )t   5 =  

6 =0.04+0.02sin(0.1 )t . In addition, Choose the same control 

gains in control law (7) as 1=1k , 
2 =3k . 

Case 1: Shaping varying regular hexagon formation. 

In this case, the six UAVs are supposed to keep a parallel 

hexagon formation at the same height and at the same time to 

keep rotating around the virtual leader whose trajectory is 

expressed by 
0 ( ) [5 ,5 ,5 ]Tx t t t t . Thus, the time-varying 

formation is specified by 

15cos(0.1 +( 1) 3)

( ) 15sin(0.1 +( 1) 3) ,  1,2, ,6.

0
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h t t i i
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In addition, the initial states are shown in Table I.  

TABLE I.  THE INITIAL POSITIONS AND VELOCITIES OF SIX UAVS 

Initial 

states 

UAV 

UAV1 UAV2 UAV3 UAV4 UAV5 UAV6 

[ (0), (0), (0)]i i ix y z  [-20,10,10] 
[20,-20,

10] 

[-20,20,

10] 

[15,15,

15] 

[-20,-15,

10] 

[-15,-10,

10] 

[ (0), (0), (0)]i i iv    [5,4,45] [5,4,45] [5,5,40] [5,1,60] [5,4,45] [5,4,45] 

The simulation results are shown in Figs. 2-3. Fig. 2(a) 
displays the positions of the six UAVs and the virtual leader 
at t=30s, 40s, 50s, 60s, 70s, 80s in X-Y plane, and Fig. 2(b) 
shows the time histories of the height of the six UAVs and the 
virtual leader, and Fig. 3 depicts the formation position 
tracking errors on X-axis, Y-axis and Z-axis. 
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(a).  Position snapshots of the six UAVs  (b) The trajectories of the height of 
and the virtual leader.                   the six UAVs and the virtual leader. 

Figure 2.  Position snapshots and the trajectories of the height of the six 
UAVs and the virtual leader. 
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Figure 3.  Formation position tracking errors on X-axis, Y-axis and Z-axis. 

From Figs. 2, the following phenomena can be observed: 
(i) the six UAVs successfully keep a parallel hexagon 
formation in X-Y plane even though there exist time delays 
and the topologies are changing; (ii) the parallel hexagon 
keeps rotation around the virtual leader; (iii) the virtual leader 
moves along a straight line, and keeps lying in the center of 
the formation, so that the formation moves along the same 
straight line in X-Y plane; (iv) the six UAVs keep flying at 
the same varying altitude as the leader. From Fig. 3, it can be 
seen that the formation position tracking errors converge to 
around 0 at t=20s, and the response time is a bit long which is 
reasonable because the initial positions are too far and the 
topology does not keep connected all the time and the 

30st 
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50st 
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80st 



  

information sharing among UAVs exists delays as well. 

Case 2: Formation transformation to avoid obstacles  

On various occasions, the formation needs to make 

corresponding adjustment when encountering obstacles or 

needing larger sensing coverage. In this case, the leader is 

supposed to track the trajectory expressed by 

0 ( ) [5 ,0,100]Tx t t . In addition, we assume that the six UAVs 

firstly keep a column formation at a height of 100 meters in 

which the distance between any two adjacent UAVs is 6 

meters, and then enlarge the distance to avoid three obstacles, 

lastly the UAVs also keep the column formation in which the 

distance between any two adjacent UAVs is 16 meters as 

expected. Fig. 4 illustrates the motion trajectories of the six 

UAVs and the positions of the obstacles. Thus, the 

time-varying formation can be specified by 

 1 1 1( ) [ ( ), ( ), ( ), , ( ), ( ), ( )] ,T

x x y z Nx Ny Nzh t f t f t f t f t f t f t  (23) 

where ( ) ( ) 0ix izf t f t  , 
1

15,  0s 20s

( ) 35, 20 < 60

40,  60s 100s

y

t

f t t s

t

 


 
  

, and 

according to Fig. 4, in the same way, we can get ( ),  2iyf t i  . 

In addition, to generate a smoother transient process for 
formation transformation and a more realizable command, the 

original formation vector command ( )xh t  needs to be 

processed through a command processor by adopting 
nonlinear tracking differentiator (NTD) technique [18]. 
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Figure 4.  The motion trajectories of the UAVs. 

In Fig. 4, it can be observed that the three predefined 
formations are successfully achieved by adopting the 
proposed control law. Besides, the formation varies due to 
three obstacles at t=20s for the first time and changes again at 
t=60s as expected. During the two processes of formation 
alternation, the trajectories are also very smooth, which can 
prevent UAVs in some extend from crashing with each other. 

Therefore, the two cases demonstrate the validity and 
effectiveness of the proposed control law. 

VI. CONCLUSION 

In comparison with time-invariant formation, time-varying 

formation is obviously more practical in many applications. 

For the purpose of achieving expected time-varying 

formation under time-varying delays and jointly connected 

topologies, we design a consensus based control law. Based 

on graph theory, the stability of the close-loop system with 

the proposed control law is analyzed by applying Lyapunov- 

Krasovskii function and LMI. Numerical simulation results 

of two task-oriented cases illustrate the validity and 

effectiveness of the obtained theoretical results. Future 

research directions include extending the results in this paper 

to the case where the condition of communication network is 

more general, such as directed topologies.  
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