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Abstract—Volumetric integration method is widely used to fuse
depth maps in dense 3D reconstruction systems. High memory
footprint is one of its main disadvantages. We introduce a method
to de-noise depth maps and save memory usage during volumetric
integration of depth maps with the use of plane priors. We
develop a new planar region detection method with the use of
depth gradients and then de-noise the planar region of depth
maps. During volumetric integration we allocate the voxels and
integrate depth maps with the use of plane priors as well.
Extensive experiments show that our method saves approximately
30% memory footprint and has higher reconstruction quality
compared with some of the current state-of-the-art systems. These
characteristics enable our method to be used for 3D scanning on
mobile devices which have limited memory resources. 1

I. INTRODUCTION

High quality 3D scanning of small objects or large scale
scenes is key to robotics and augmented reality applications.
Traditional image-based reconstruction algorithms are less
promising for indoor applications because they usually fail
to reconstruct textureless scenes [1]–[4]. These years with the
development of depth sensors such as Microsoft Kinect and
processing devices, the 3D scanning technology has witnessed
a great progress. Scholars propose 3D reconstruction methods
that operate on-line or off-line. On-line 3D scanning enables
the user to visualize the 3D reconstruction results instantly
on a PC or a mobile device instantly. Among the on-line
3D scanning methods, KinectFusion is an outstanding one to
generate photorealistic dense 3D models in real-time with the
depth maps as input [5]. This method integrates depth maps
into a volumetric representation [6], which turns out to have
the advantages of computational efficiency and algorithmic
simplicity. We adopt the volumetric representation method to
integrate the depth maps and the basic pipeline of KinectFu-
sion in our work.

Though KinectFusion has many advantages, it has some
disadvantages such as large memory footprint and drift accu-
mulation. In order to reduce memory footprint, Kintinuous
allows the fixed volume to be dynamically changed [7].
Other methods allocate the voxels around the actual surface
and use Octrees [8] or hash tables [9], [10] to retrieve
the allocated voxels. In order to reduce accumulated drift,
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some researchers utilize other kinds of sensors such as color
cameras. Dense Visual Odometry (DVO) estimates camera
poses by minimizing the combined sum of the RGB-D and
ICP cost [11]. Some other researchers propose to solve motion
estimation problems with the use of line features [12] and
plane features [13], [14]. The methods above haven’t solved
the problem that many allocated voxels correspond to depth
noise. These allocation wastes much memory and restricts the
application of 3D scanning on devices with limited memory
resources. Depth maps captured by consuming-grade depth
sensors are corrupted by noise and the noise varies based
on distance and angle to the observed surface [15]. More
specifically, the standard deviation (STD) of depth noise over
distance is roughly quadratic in real-world units. Besides, man-
made indoor scenes contain many planar regions which are
convenient to be detected and modeled. These characteristics
are helpful for de-noising depth maps and saving the memory
footprint.

In our work we firstly detect planes and associate them
with pixels in depth maps. To detect planes we develop a new
planar region detection approach which makes use of the depth
gradients in depth maps. After that we de-noise depth maps
by calculating the intersection of pixel ray with the pixel’s
corresponding plane. In the volumetric integration procedure
we allocate the voxels and integrate depth maps with the use
of plane priors. This method saves memory and enable us to
reconstruct large scenes with less memory resources.

II. RELATED WORK

In this section we firstly discuss related work on the
3D reconstruction with volumetric representation. Secondly
we discuss some other plane detection methods. Thirdly we
discuss some methods in SLAM using plane priors.

3D reconstruction with volumetric representation: New-
combe et al. propose a dense 3D reconstruction framework
named KinectFusion [5]. The pipeline of KinectFusion con-
sists of four main modules: depth map conversion, camera
tracking, volumetric integration and 3D rendering. In order to
reduce the memory footprint, InfiniTAM [10] and CHISEL
[16] allocate and update the voxels around the actual surface.
These two methods store TSDF data as a two-level structure
in which static 3D voxel blocks are dynamically allocated and
apply hash tables to retrieve the allocated voxel blocks. We
adopt the ideas of these two methods in our method. However,
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Fig. 1. System overview.

these methods haven’t solved the problem that many allocated
voxels correspond to depth noise.

Plane detection methods: Plane detection is a very useful
preprocessing when given 3D point clouds. RANdom SAmple
Consensus (RANSAC) is a basic method to detect planes
[17]. Several algorithms apply RANSAC on local regions
of the point cloud and then grow the local planes to the
whole point cloud [18]. Region-growing methods are other
kind of choice [19]. Feng et al. propose an agglomerative
hierarchical clustering (AHC) algorithm which finds block-
wise planar regions with least squares fitting and then merges
the local regions to complete planes [20]. Dzitsiuk et al.
propose a approach of fitting planes directly to SDF grids
with RANSAC or weighted least squares [14]. Because plane
detection methods with RANSAC cost much time and methods
using surface normal deviation are sensitive to noise, we
need to develop a new plane detection method which is
computational efficient and more robust to noise.

SLAM using plane priors: Plane features are utilized to
solve visual simultaneous localization and mapping (V-SLAM)
problems in recent years. CPA-SLAM tracks camera motion
through direct image alignment towards a keyframe and a
global plane model [13]. It also uses a soft labeling technique
to reduce the effect of incorrect plane association on camera
tracking. Dzitsiuk et al. apply a plane prior during SDF-based
3D reconstruction to de-noise and complete 3D reconstructions
[14]. These methods have good performance among SLAM
systems. However, none of these methods de-noise the depth
maps using plane priors.

We develop a new planar region detection method with
the use of depth gradients. Then we de-noise depth maps
and integrate depth maps based on the plane priors. For
3D reconstruction we adopt the ideas of voxel hashing to
improve the KinectFusion. Our method reduces noise in the
3D reconstructions and reduces the memory footprint when
performing 3D scanning.

III. METHOD

In this section we firstly discuss our system overview. Then
we discuss depth map conversion, planar region detection and
volumetric integration in detail.

A. System Overview

Our system consists of five modules. The system overview
is shown in Figure 1 and is discussed in detail as follows:

a) Depth Map Conversion: When a depth map is input, we
calculate the 3D vertex and normal in the camera coordinate
system for each pixel. Additionally, we calculate the STD of
the depth noise and gradient for each pixel.
b) Planar Region Detection: In this module we aim to detect
planar regions in the depth map. We firstly generate local
plane candidates and merge them to global planes. Then we
de-noise depth maps by the associations between pixels and
global planes.
c) Camera Tracking: We register the input depth map and
the ray-casted depth map from the proceeding camera pose
through the well-known ICP algorithm to get a 6-DoF rigid
relative transformation between them.
d) Volumetric Integration: After estimating the camera
poses, we allocate voxels that are around the actual surface and
index them by a hash table. During allocation we also make
use of the plane priors. Then the depth maps are integrated
into a volumetric representation through a weighted running
average procedure.
e) 3D Rendering: The volumetric representation is ray-casted
to extract views of the implicit surface for camera tracking
and visualization in this module.

Because the camera tracking module and 3D rendering
module in our system are the same with KinectFusion, we
discuss the other three modules in the next sections.

B. Depth Map Conversion
In the beginning we apply a bilateral filter [21] to the

incoming depth map D. Then we back-project every pixel
u = (u, v)T and its depth value d(u) into a 3D vertex v(u)
in the camera coordinate system as follows:

v(u) = d(u)K−1[u, 1]T (1)

where K is the intrinsic calibration matrix. Meanwhile, each
normal vector is generated as:

n(u) = (v(u+ 1, v)−v(u, v))× (v(u, v+ 1)−v(u, v)) (2)

n(u) = n(u)/‖n(u)‖ (3)

n(u) is normalized to unit length.
We also calculate the STD of the depth noise for each

pixel based on the noise model [15]. For Microsoft Kinect,
the calculation goes as follows:

σ(u) = 0.0012 + 0.0019(d(u)− 0.4)2 +
0.0001√
d(u)

θ(u)2

(π2 − θ(u))2

(4)
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Algorithm 1 Plane Detection
Input A depth map D
Output Global planes in D

1: Uniformly divide D into W windows
2: for each window Wi in parallel do
3: Calculate average gradient ḡ of pixels in Wi

4: for gradient g(u) of each pixel u do
5: if |g(u)− ḡ| > θ(u) then
6: Add v(u) to local inlier set Ii

7: Ninl ← Ninl + 1

8: if Ninl > N then
9: Model the local plane πi with Ii

10: for each global plane πj do
11: if ni ·nj > cosφ and

∣∣pi · nj + dj
∣∣ < ϕ then

12: Add Ii to the inlier set Ij of πj

13: if πi isn’t associated to current global planes then
14: Add πi as a new global plane
15: Set Ii as its corresponding inlier set
16: Refine global planes with new inlier sets
17: return Global planes in D

For Occipital Structure Sensor, we fit the depth precision
curve on its website2 and calculate the STD of the depth noise
as:

σ(u) = 0.003d2(u) (5)

Furthermore, in the procedure of plane detection we need
calculate the gradient of each pixel as:

g(u) = Sobel(u) (6)

Sobel() is the Sobel gradient operator, which is chosen owing
to its robustness to noise.

C. Planar Region Detection

Man-made indoor scenes contain many planar regions which
are convenient to be detected and modeled. These plane priors
help to de-noise depth maps and save the memory occupied
by noise. In this module we firstly detect planes through the
analysis of gradients in depth maps and secondly de-noise the
depth maps with the plane priors.

In our work we represent a plane in the camera coordi-
nate system as π = (nx, ny, nz, px, py, pz)

T , where nπ =
(nx, ny, nz)

T is the unit plane normal and pπ = (px, py, pz)
T

is a point on the plane. The distance from the plane to the
origin is d = −nπ · pπ .

1) Plane Detection: Plane detection method based on
RANSAC is commonly used. This method ignores the con-
nectivity of points and costs much time because of many
iterations. Region-growing methods based on the surface nor-
mal deviation is effective but aren’t applicable in our system
because the noise of normals is large. We apply a new plane
detection method which is more robust to noise. The basic idea

2https://s3.amazonaws.com/io.structure.assets/structure sensor precision.
pdf

of our plane detection method is that pixels on the same plane
have similar depth gradients. The overall method is described
in Algorithm 1. Our method is computational efficient due to
its parallelism and more robust to noise.

We generate local plane candidates at first. we uniformly
divide a depth map into small windows (20× 20 pixels in our
implementation). This window size is small enough to contain
a local plane and large enough to robustly model a plane. For
each window we calculate the average gradient. It is noted that
we select the Sobel gradient because of its robustness to noise.
For each pixel in this window, if the difference of its gradient
with the average gradient is smaller than a threshold θ(u), its
corresponding vertex is considered as an inlier on the local
plane. If the number of inliers is larger than N , there exists
enough inliers to model the local plane. After determining
enough inliers in a window, we model the local plane with all
the inliers through the least square method. We calculate the
mean value of all vertexes and regard it as pπ . In the process
above, θ(u) is chosen due to the STD of the depth noise, that
is:

θ(u) = ασ(u) (7)

where α is a scaling parameter and σ(u) is the STD of depth
noise for pixel u. The other threshold N is determined as
a proportion of all valid pixels in a window. We set this
proportion as a small number 0.5 in order to generate many
plane candidates in depth maps.

Then the local plane candidates need to be merged to global
planes. Though the detection method above is robust to noise,
the local plane candidates corresponding to an actual plane are
typically not identical. As we want to de-noise the raw depth
images with plane priors, we need to merge local planes at
a global level to refine the plane model. If the plane normal
difference and the Euclidean distance between plane πi and
plane πj meet two strict criteria separately, we merge them by
adding inliers together. The plane normal difference criteria is:

ni · nj > cosφ (8)

The Euclidean distance criteria is:∣∣pi · nj + dj
∣∣ < ϕ (9)

We set φ = 10◦ and ϕ = 5mm in our experiment. The values
of these parameters are set small enough to filter out outliers
and generate high-quality planes. Then we refine the global
planes using all the inliers.

2) Depth Map De-noising: In this section we firstly de-
termine planar regions in the depth map by associating 3D
vertexes with the detected global planes and then refine the
depth map by calculating the intersection of pixel ray with
the pixel’s corresponding plane.

We associate a 3D vertex v(u) with the global plane πj if
they meet the following Euclidean distance criteria:∣∣v(u) · nj + dj

∣∣ < ε(u) (10)
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Fig. 2. Depth map de-noising. Red curve depicts a local part of the measured
surface and green line depicts the plane fitting the local measured surface. We
modify the depth of the pixel with red cross from the depth of point b to the
depth of point a to de-noise the depth of this pixel.

In this equation the distance threshold is adaptively determined
according to the STD of the depth noise as:

ε(u) = βσ(u) (11)

where β is a scaling parameter. If v(u) is associated with
πj , we regard it on the plane. Then the depth of u is
refined as the depth of the intersection point between the
pixel ray corresponding to u and πj . This process is depicted
in Figure 2. If there are no planes exist, the raw depth map
will be used in camera tracking, which means the following
procedures have the same performance with InfiniTAMv2.

D. Volumetric Integration of Depth Maps

The next procedure in our system is the camera tracking.
We register the input depth map and the ray-casted depth map
from the proceeding camera pose through the traditional ICP
algorithm. It is noted that we use the raw depth measurements
to do registration so as to decrease the impact of the depth map
de-noising on camera tracking. After estimating the camera
poses, we fuse the de-noised depth maps by the volumetric
integration method. As in InfiniTAM and CHISEL, we allocate
and update the voxels around the actual surface and apply hash
tables to retrieve the allocated voxels. In volumetric integration
we use a truncation distance to account for the noisy data and
use plane priors to reduce voxel allocation. In the following
we discuss voxel allocation, voxel retrieval and depth map
integration in detail.

1) Voxel Allocation and Retrieval: We aim to allocate and
update the voxel blocks around the actual surface. A voxel
block is composed of N×N×N voxels. For each depth d(u),
we create a line segment within d(u)±µ and allocate the voxel
blocks on this line segment. Here µ is the TSDF truncation
value, which is used to account for depth uncertainty. In most
works µ is fixed to be an integral multiple of voxel size. In
our experiment the voxel size is 5mm and µ is 20mm.

If a depth map contains many large depth values, most
allocated voxel blocks are occupied by depth noise. The waste
of memory restricts the application of 3D scanning on devices
with limited memory resources. Some methods truncate the
depth to a fixed range to overcome this disadvantage. However,
these methods sacrifice much information of the captured
depth maps. We retain most useful information and save the
memory with the use of plane priors. If the noise is very
large, the noise would cover up high frequency structure and
there is no need to reconstruct this part of scenes. Besides, the
backgrounds of scanned indoor scenes are always composed
of planes. These parts of the scenes are useful for tracking
and mapping. For a depth d(u) > L and v(u) isn’t on any
plane, we do not allocate the voxel blocks corresponding to
u. The threshold L is determined by the STD of the depth
noise and the TSDF truncation value. In our experiment we
use L = 3560mm for Microsoft Kinect and L = 2580mm for
Occipital Structure Sensor. In this way we save the memory
occupied by depth noise and retain planar information.

Voxel blocks are indexed by a hash table. The hash value
of a voxel block is calculated as:

h(bx, by, bz) = p1bx ⊕ p2by ⊕ p3bz mod K (12)

Where (bx, by, bz) are the integer coordinates of the voxel
block, (p1, p2, p3) are very large prime numbers, K is the
maximum size of the hash table, ⊕ and mod are the modulo
and the XOR operators.

2) Depth Map Integration: The depth maps are integrated
into a TSDF model. The SDF value is calculated as follows:

sdfi = di(u)− v(z) (13)

The superscript (z) means to selects Z-component of a vector.
If sdfi > −µ(u), the TSDF value is updated using a weighted
running average [6]:

tsdfi =
tsdfi−1wi−1 +min(1, sdfiµ(u) )

wi−1 + 1
(14)

Where w is the number of observations. In our experiment if
v(u) is on a plane, we set w = 3; otherwise, we set w =
1. Through these procedures, the captured depth images are
fused into a TSDF model. Then the TSDF model is ray-casted
to extract views of the implicit surface for visualization and
camera tracking in the 3D rendering module. Details can be
found in [5].

IV. EXPERIMENT

We test our method on the synthetic ICL-NUIM dataset
(living room kt0-kt3 sequences) [22] and on our dataset
(Office1 and Office2 sequences) captured by an Occipital
Structure Sensor in an office room. We use the noise model of
Occipital Structure Sensor for our dataset. For the ICL-NUIM
dataset, we use ε(u) = 5mm. Then we compare the tracking
accuracy, 3D reconstruction and the memory requirements
with some of the current state-of-the-art systems. We perform
the 3D scanning at 10 FPS on an Apple iPad Air 2 which has
three cores clocked at 1.5 GHz. Besides, the Apple iPad Air
2 has 2 GB RAM and the PowerVR GPU has 8 cores.
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TABLE I
TRACKING ACCURACY (UNIT: M) ON THE LIVING ROOM SEQUENCE. BOLD

SHOWS THE BEST RESULT.

Method kt0 kt1 kt2 kt3
DVO SLAM 0.104 0.029 0.191 0.152
Kintinuous 0.072 0.005 0.010 0.355
InfiniTAMv2 0.083 0.005 0.015 0.119
Our Method 0.024 0.005 0.013 0.122

TABLE II
3D RECONSTRUCTION ACCURACY (UNIT: M) ON THE LIVING ROOM

SEQUENCE. BOLD SHOWS THE BEST RESULT.

Method kt0 kt1 kt2 kt3
DVO SLAM 0.032 0.061 0.119 0.053
Kintinuous 0.011 0.008 0.009 0.150
InfiniTAMv2 0.012 0.006 0.009 0.058
Our Method 0.009 0.006 0.008 0.071

A. Tracking Accuracy Evaluation

In order to evaluate the tracking performance of our method,
we compare the tracking accuracy obtained by our system with
some of the other methods such as the DVO SLAM [11],
Kintinuous [7] and InfiniTAMv2 [10] on the synthetic ICL-
NUIM benchmark. For InfiniTAMv2, we run the open source
code 3 and use the ICP tracker in this system. DVO SLAM
and Kintinuous use color and depth information to track the
camera poses while InfiniTAMv2 and our method only use
depth information.We use the absolute trajectory (ATE) root-
mean-square error metric (RMSE) to quantitatively evaluate
the tracking accuracy. ATE RMSE measures the root-mean-
square value of the Euclidean distances between the estimated
camera poses and the ground truth poses [23]. The ATE RMSE
of these methods are shown in Table I.

B. 3D Reconstruction Evaluation

As the ICL-NUIM benchmark provides the ground truth
3D model of the synthetic living room, we evaluate the 3D
reconstruction results of our method quantitatively on the
living room sequence. We compare the 3D reconstruction
accuracy with some other methods in Table II. Qualitative
results of living room kt0 are shown in Figure 3. The results
show that our method has better details and less noise while
InfiniTAMv2 has more smooth details. Because the geometric
features in the living room kt3 are insufficient, our method has
a worse result compared with DVO SLAM which takes color
information into consideration. In addition to the synthetic
scenes, we also test our method on the real-world scenes.
Figure 5 is two images and the 3D reconstruction results of our
dataset. Both of the results show that the models reconstructed
by our method has high quality as well.

3https://github.com/victorprad/InfiniTAM

Fig. 3. 3D reconstruction results of the ICL-NUIM living room sequence.
From left to right are details of InfiniTAMv2 and details of our result.

Fig. 4. Comparison of memory consumption between InfiniTAMv2 and our
method. From left to right are the comparisons on the ICL-NUIM living room
kt0-kt3 sequences and on our Office1-2 sequences.

C. Memory Requirements

We compare the memory consumption between our method
and InfiniTAMv2 on different datasets in Figure 4. The results
show that our method saves approximately 10% on the ICL-
NUIM living room sequence and 30% memory on our dataset
compared with InfiniTAMv2 while our method retains most
useful information. A reduction of 30% memory is meaningful
for applications on mobile devices. Because synthetic depth
maps of the ICL-NUIM dataset contain less noise than the
depth maps captured by consuming-level depth sensors, the
results show a smaller memory decrease on the ICL-NUIM
dataset. If there are no planes existed or only a small area
of planes existed, our method may fail to de-noise the depth
maps and fail to reduce the memory footprint.

V. CONCLUSION

In this paper, we introduce a method to de-noise depth
maps and save memory usage during volumetric integration
of depth maps with the use of plane priors. At first we
describe a new planar region detection method using the
depth gradient. Then we de-noise the planar region of depth
maps. In the volumetric integration procedure we allocate
the voxels and integrate depth maps with the use of plane
priors. Extensive experiments show that our method has high-
quality 3D reconstruction results and saves approximately 30%
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Fig. 5. 3D reconstruction results on our dataset, first row for the Office1 sequence and second row for the Office2 sequence. From left to right are the color
image, the depth image, the reconstruction result of InfiniTAMv2 and the reconstruction result of our method.

memory footprint compared with some of the current state-of-
the-art systems. Our method is applicable for 3D scanning on
mobile devices which have limited memory resources.
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