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Abstract
Deep convolutional neural networks (CNNs) have shown ap-
pealing performance on various computer vision tasks in re-
cent years. This motivates people to deploy CNNs to real-
world applications. However, most of state-of-art CNNs re-
quire large memory and computational resources, which hin-
ders the deployment on mobile devices. Recent studies show
that low-bit weight representation can reduce much storage
and memory demand, and also can achieve efficient network
inference. To achieve this goal, we propose a novel approach
named BWNH to train Binary Weight Networks via Hash-
ing. In this paper, we first reveal the strong connection be-
tween inner-product preserving hashing and binary weight
networks, and show that training binary weight networks can
be intrinsically regarded as a hashing problem. Based on this
perspective, we propose an alternating optimization method
to learn the hash codes instead of directly learning binary
weights. Extensive experiments on CIFAR10, CIFAR100 and
ImageNet demonstrate that our proposed BWNH outper-
forms current state-of-art by a large margin.

Introduction
Since Alexnet (Krizhevsky, Sutskever, and Hinton 2012)
made a success in ILSVRC2012 (Russakovsky et al. 2015),
deep convolutional neural networks have become more and
more popular. After that, various CNN models have been
proposed such as VGGNet (Simonyan and Zisserman 2014),
Inception (Szegedy et al. 2016), ResNet (He et al. 2016) and
so on. Nowadays, these CNN models have been playing an
important role in many computer vision areas (Krizhevsky,
Sutskever, and Hinton 2012; Ren et al. 2015; Long, Shel-
hamer, and Darrell 2015).

Attracted by the great performance of CNN models, many
people try to deploy CNNs to real world applications. Yet
the huge computational complexity and large parameter size
make CNN models hard to deploy on resource limited de-
vices such as mobile phones and embedded devices. The
huge computational complexity of CNN models makes the
inference phase very slow, which is unacceptable for many
real-time applications. The large parameter size brings three
difficulties. First, the large parameter size means that de-
ploying CNN models will consume huge disk storage. Sec-
ond, much run-time memory is required, which is limited in
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many mobile devices. Third, large parameter size will cause
heavy DRAM access, which consumes more energy. Since
battery power is very limited in many mobile devices, this
severely affects devices’ battery life.

To alleviate these problems, a variety of methods have
been proposed to reduce the parameter size or acceler-
ate the inference phase. These methods can be divided
into three main categories: low-rank decomposition based
methods, pruning-based methods, and quantization based
methods. Low-rank decomposition based methods (Den-
ton et al. 2014; Jaderberg, Vedaldi, and Zisserman 2014;
Zhang et al. 2015; Wang and Cheng 2016) decompose a
weight matrix (tensor) into several small weight matrices
(tensors). These methods achieve good speed-ups for large
convolutional kernels, but usually perform poorly for small
kernels. Besides, the compression ratio of parameters is kind
of low by using low-rank based methods. Network prun-
ing has a long history and is still a widely used technique
for CNN compression and acceleration (Han et al. 2015;
Liu et al. 2015). The main idea of these methods is to
remove low-saliency parameters or small-weight connec-
tions (Han et al. 2015). In general, after the pruning step,
k-means clustering and Huffman coding are also required
to make a good compression ratio. The k-means cluster-
ing and Huffman coding bring inconvenience for inference
phase since we have to decode the Huffman codes and
use lookup table for k-means dictionary. As a result, the
decoding and lookup table will bring extra memory and
computational overhead. Quantization based methods in-
clude codebook based quantization methods and low-bit
weight representation. Codebook based quantization meth-
ods mainly use vector quantization algorithms such as K-
means, Product Quantization and so on (Gong et al. 2014;
Wu et al. 2016) to quantize the weight kernels. These meth-
ods require lookup tables to store the dictionary, and is un-
friendly to cache memory since accessing lookup tables is
random and unordered. Low-bit weight representation meth-
ods (Lin, Talathi, and Annapureddy 2015; Gupta et al. 2015;
Rastegari et al. 2016; Dong et al. 2017) represent weights
as low-bit fixed point even binary values. Low-bit weight
representation can reduce run-time memory and storage de-
mand as no decoding or lookup tables are required. As a
special case of low-bit weight representation, binary weight
can achieve about 32× compression ratio. In addition, since



weights are represented by binary values, multiplication op-
erations can be replaced by addition and subtraction op-
erations. Thus binary weight can also speed up the infer-
ence phase. Nevertheless,current weight binarization meth-
ods usually will bring significant network accuracy drop, es-
pecially for large CNN models.

In this paper, we propose a novel approach named BWNH
to train binary weight networks via hashing. We first trans-
form the binary weight learning problem into a hashing
problem. Then an alternating optimization algorithm is pro-
posed to solve the hashing problem. Finally, the whole bi-
nary weight network is fine-tuned to restore accuracy. Exten-
sive experiments on three datasets demonstrate that our al-
gorithm outperforms state-of-art algorithms. Our main con-
tributions are:
(1) We uncovered the close connection between inner-

product preserving hashing and binary weight neural
networks. Based on this view, training binary weight
networks can be transformed into a hashing problem. To
the best of our knowledge, it is the first to train binary
weight CNNs via hashing.

(2) To alleviate the loss brought by hashing, the binary
codes is multiplied by a scaling factor. To solve the bi-
nary codes and scaling factor, we propose an alternating
optimization method to iteratively update binary codes
and scaling factor.

(3) We conduct extensive experiments on CIFAR10, CI-
FAR100, and ImageNet. And the experimental results
demonstrate that our proposed BWNH outperforms the
state-of-art algorithms. Specifically, on ResNet-18, our
BWNH achieves 3.0% higher accuracy than the best re-
ported binary weight networks for ImageNet classifica-
tion task.

Related Work
While deep convolutional neural networks have achieved
quite good performance in many computer vision tasks, the
large computational complexity and parameter size have
hindered the deployment on mobile devices. A variety of
methods have been proposed to alleviate these problems.
Pruning Optimal Brain Demage (LeCun et al. 1989) and
Optimal Brain Surgeon (Hassibi and Stork 1993) are early
works of pruning. Both these two algorithms used Hessian
matrix of loss functions, which makes them hard to scale up
to large scale models. (Han et al. 2015) proposed the deep
compression framework and they introduced a three-stage
pipline: pruning, trained quantization and Huffman coding.
They demonstrated that such a three-stage method can
reduce the parameter size of AlexNet up to 35 times.
After pruning, the sparse connections of CNNs do not
fit well on parallel computation. To cure this problem,
a group-sparsity regularizer was proposed (Lebedev and
Lempitsky 2015). By using the group-sparsity regularizer,
they pruned the convolutional kernel tensor in a group-wise
fashion. After such pruning, convolutions can be reduced to
multiplications of thinned dense matrices, which can use the
Basic Linear Algebra Subprograms (BLAS) to get higher
speed-ups.

Low-rank Approximation Low-rank based methods
assume that the featuremaps or weights of CNNs lie on
a low-rank subspace. Based on this assumption, matrix
or tensor decomposition methods are applied to the con-
volutional kernels or featuremaps (Denton et al. 2014;
Jaderberg, Vedaldi, and Zisserman 2014;
Denil et al. 2013). By using biclustering and Singule
Value Decomposition (SVD), (Denton et al. 2014) achieved
1.6× speed-up of single layer. (Zhang et al. 2015) took
nonlinear layers into consideration and used an asymmetric
reconstruction method to approximate the low rank ma-
trix. (Lebedev et al. 2014) utilized CP-decomposition to
approximate the 4D convolutional kernel tensor. For large
models such as Alexnet, their methods only processed a
single layer and could not work well for the whole network.
(Kim et al. 2015) proposed to use Tucker decomposition
to reduce the computational complexity of CNN models.
By making a compromise between CP-decomposition and
Tucker decomposition, Block Term Decomposition was
used to accelerate the CNN models (Wang and Cheng
2016). (Novikov et al. 2015) used the Tensor-Train format
to decompose the fully connected layer, which achieved up
to 7 × compression ratio of the whole network.
Quantization-based Methods As mentioned
above, quantization-based methods can be di-
vided into two groups: codebook-based quantiza-
tion and low-bit quantization. (Gong et al. 2014;
Wu et al. 2016) are typical ones of codebook-based
quantization methods. (Gong et al. 2014) used vector quan-
tization to compress the fully-connected layers of CNNs.
And (Wu et al. 2016) proposed an product quantization
based algorithm to speed up and compress CNNs in the
meantime. For low-bit weight quantization, early works
focused on using fixed-point data format to represent the
weights of CNNs. (Gupta et al. 2015) introduced a stochas-
tic rounding scheme to quantize the weights to fixed-point
format. They showed that neural networks can be trained
using only 16-bit fixed-point format with little degradation
of classification accuracy. Later, a dynamic-precision data
quantization method was proposed by (Qiu et al. 2016),
and 8/4-bit quantization was achieved with little loss. These
methods assume that all layers share the same bit-width.
(Lin, Talathi, and Annapureddy 2015) showed that it’s better
that different layers have different bit-width. Binary weight
is a special case of low-bit quantization where weights are
quantized into binary values. (Courbariaux, Bengio, and
David 2015) proposed BinaryConnect to train CNNs with
binary weights, and their method demonstrated well per-
formance on small dataset such as MNIST, CIFAR10, and
SVHN. Later, (Lin et al. 2015) proposed ternary connect
to quantize the weights to ternary values, and they also
quantized the back propagation. Experiments demonstrated
that ternary connect achieved better result than binary con-
nect. (Zhou et al. 2017) proposed an incremental network
quantization method which consists of three operations:
weight partition, group-wise quantization and re-training.
These three operations are repeated on an iterative manner,
and experiments on ImageNet demonstrated that CNN
models can be quantized into 5 bits without accuracy drop.



(Rastegari et al. 2016) proposed Binary-Weight-Networks
whose weights are binarized and multiplied with a scaling
factor, and they also proposed XNOR-Net by binarizing
both activations and weights. (Cai et al. 2017) proposed
an Halfwave Gaussian quantizer (HWGQ) for forward
approximation. (Dong et al. 2017) introduced a stochastic
quantization scheme which quantizing weights with a
stochastic probability inversely proportional to the quanti-
zation error.
Hashing and Neural Networks (Chen et al. 2015) first
introduced hashing methods to compress CNNs, they used
the hashing trick to map the high dimensional features to a
low-dimensional dictionary. The weights in the dictionary
are still float-numbers, which has a large difference with our
method. (Spring and Shrivastava 2017) proposed a scalable
and sustainable deep learning framework via randomized
hashing. By using hash codes lookup table, they collected
a small portion of neural nodes called active set. Since
only these neural nodes required forward and backward
propagation, computational cost was reduced. Our method
is different with (Spring and Shrivastava 2017) in several
ways. First, the hashing method is used for different goals.
Our algorithm aims to learn binary weights while (Spring
and Shrivastava 2017) use hashing algorithm to select the
active set. Second, our method is a learning-based (data-
dependent) method while (Spring and Shrivastava 2017)
used a data-independent Locality-Sensitive Hashing (LSH)
method. Third, our method is different with (Spring and
Shrivastava 2017) in the inference phase. The multiplication
operation is replaced with add operation in our method
while (Spring and Shrivastava 2017) choose a subset of
neural nodes to do forward propagation.

Our Method
In this section, we first introduce the inner-product pre-
serving hashing, and uncover the close connection between
inner-product preserving hashing and learning binary convo-
lutional kernels. Then we give details about how the objec-
tive is transformed from learning binary weights to learning
hashing codes. A new objective function is proposed to com-
pensate the accuracy loss brought by hashing codes, then an
alternating optimization method is introduced to solve the
new objective function. Finally, we present our whole train-
ing scheme.

Inner-product preserving hashing

Given two sets of points X ∈ RS×M and W ∈ RS×N

where Xi ∈ RS×1 and Wi ∈ RS×1 represents ith point of
X and W respectively, we denote the inner-product similar-
ity of X and W as S ∈ RM×N . (Shen et al. 2015a) proposed
the inner-product preserving hashing by solving the follow-
ing objective function:

min ‖S− h(X)Tg(W)‖2F (1)

where h(·) and g(·) are hash functions for X and W respec-
tively.

Connection between hashing and binary weights
Suppose we have an L-layer pre-trained CNN model e.g.
Alexnet, and X ∈ RS×M is the input featuremap for lth
layer of the CNN model. We denote the real-value weights
of lth layer as W ∈ RS×N , and our goal is to get binary
weight B ∈ {−1,+1}S×N for lth layer of CNN model. A
naive method is to optimize the following objective function:

min L(B) = ‖W −B‖2F
s.t. B ∈ {+1,−1}S×N

(2)

where the solution is B = sign(W). Directly binarizing
W would cause severe accuracy drops, another choice is to
minimize the quantization error of inner-product similarity:

min L(B) = ‖XTW −XTB‖2F
s.t. B ∈ {+1,−1}S×N

(3)

Note Equation (3) has a close connection with Equation (1),
let S = XTW, B = g(W) and h(X) = X, then Equa-
tion (3) is equal to Equation (1). In other words, training bi-
nary weight networks can be intrinsically transformed into
a hashing problem. We notice that h(·) is an identity func-
tion, which means that we don’t learn the hash codes for X.
This is commonly used for asymmetric distances calculation
(ADC) in the hashing area. Now we have connected binary
weight networks with hashing together, thus we can solve
binary weight B by borrowing methods from hashing.

However, solving Eq. (3) still can cause somewhat accu-
racy drops. Inspired by (Rastegari et al. 2016), we multiply
a scaling factor to each hashing codes Bi:

g(W) = BA (4)

where A is a diagonal matrix and αi = Aii is the scaling
factor for Bi. Finally, our objective function is:

min L(A,B) = ‖S−XTBA‖2F

=

N∑
i

‖Si − αi ·XTBi‖2F
(5)

where S = XTW and Si ∈ RM×1 is ith column vector
of S. The Eq. (5) can be easily divided into N independent
sub-problems:

min Li(ai,Bi) = ‖Si − αi ·XTBi‖2F
s.t. Bi ∈ {+1,−1}S×1

(6)

Here we propose to use an alternating optimization method
to solve Eq.(6), i.e. update binary codes Bi with scaling fac-
tor αi fixed, and vice versa.
Initialization of Bi and αi At the beginning of alternating
optimization method, we initialize Bi with sign(Wi). For
αi, we take the average L1 norm of Wi as initialization.
Update αi with Bi fixed By expanding Eq.(6), we have

min Li(αi) = const+ α2
i ‖XTBi‖2F − 2αiSi

TXTBi.
(7)

Then the derivative of Li(αi,Bi) w.r.t αi is:



∂Li(αi)

∂αi
= 2αi‖XTBi‖2F − 2Si

TXTBi (8)

By setting it to zero, we get the solution of αi:

αi =
Si

TXTBi

‖XTBi‖2F
(9)

Solving Bi with αi fixed By expanding Equation (6), we
can get:

min Li(Bi) = const+ ‖ZTBi‖2F − 2Tr (Bi
Tq)

s.t. Bi ∈ {+1,−1}S×1
(10)

where Z = α ·X ,Tr() is the trace norm, and q = α ·XSi.
Eq. (10) can be solved by discrete cyclic coordinate descent
(DCC) method which is proposed in (Shen et al. 2015b) for
solving hashing codes. Let b be the jth element of Bi, and
Bi
′ the column vector of Bi excluding b. Similarly we de-

note the jth element of q as qj, and let q′ as the q excluding
qj. Let vT be the jth row of matrix Z and Z′ be matrix Z
excluding vT. Then problem (10) can be written as:

min (Bi
′TZ′v − qj)b

s.t. b ∈ {+1,−1}
(11)

Then we can get the solution for the jth element of Bi:

b = sign(qj −Bi
′TZ′v) (12)

By using this method, each element of Bi can be iteratively
updated with other S − 1 elements of Bi fixed.

The convergence of our proposed alternating optimiza-
tion method is guaranteed theoretically. And It can be easily
proven since every update step decreases the objective func-
tion value and the objective function has a lower bound. Em-
pirical results demonstrate that the algorithm takes a few it-
erations to converge. Figure 1 shows the convergence curves
on different convolutional neural networks via the proposed
alternating optimization method. It’s clear that our algorithm
get converged in a few iterations.

Layer-wise optimization
By using the proposed alternating optimization method, we
optimize the binary weight layer by layer. One concern is
the quantization error will be accumulated across multiple
layers. More specifically, quantizing the weights of lth layer
will cause quantization error of output featuremaps which
are the input featuremaps of (l + 1)th layer, consequently
affects the optimization procedure of (l+1)th layer. To solve
this problem, the hashing codes are supposed to adapt to the
input featuremaps which are affected by binary weights of
the previous layer.

Here we adopt the similar training scheme as (Wu et al.
2016). Suppose we have a pre-trained L-layer CNN model
and a binarized CNN model whose first lth layers have been
binarized, we denote the input featuremaps of (l+1)th layer
for pre-trained CNN model and binarized CNN model as
Xl+1 and X̃l+1. The objective function would be:

minL(A,B) = ‖(Xl+1)TWl+1 − (X̃l+1)TBl+1Al+1‖2F
= ‖Sl+1 − (X̃l+1)TBl+1Al+1‖2F

(13)

On one hand, the target similarity matrix Sl+1( in a hashing
view) is calculated between Wl+1 and input featuremaps
Xl+1. On the other hand, the realistic similarity is calcu-
lated between X̃l+1 and binary codes Bl+1. Thus the binary
codes is trained to adapt to quantization error of the input
featuremaps. By such a layer by layer training scheme, the
quantization error explosion is avoided.

The Whole Training Scheme
For a given pre-trained CNN model, we first use the pro-
posed method to binarize weights of CNN model layer by
layer. Then we fine-tune the binarized CNN model to get a
better result. For the fine-tuning procedure, the weights of
convolution layer is initialized by the learned binary codes.
The scaling factor is used to initialize the weights of scale
layer which is added right after the convolutional layer. We
summarize the overall training algorithm in Algorithm 1.

Algorithm 1: Training Binary weight Convolutional
Neural Networks via Hashing

Input: Pre-trained convolutional neural networks
weights {Wl}Ll=1 and Max Iter

Output: Learned binary weights {Bl}Ll=1 and scaling
factors {Al}Ll=1

for l = 1; l ≤ L do
Sampling a mini-batch images from database
Forward propagation to get X̃l and Xl

Calculate S with X̃l

for i = 1; i ≤ N do
Initialize Bi with sign(Wi)
Initialize αi with mean L1 norm of Wi

while iter ≤ Max Iters do
Update αi with Eq.(9)
for j = 1; j ≤ S do

Update jth element of Bi with Eq.(12)
end

end
end

end
for l = 1; l ≤ L do

Initialize lth layer of binarized CNN model with Bl

Add a scale layer right after the lth layer
Initialize weights of the scale layer with Al

end
Fine-tune the binarized CNN model
return {Bl}Ll=1 and {Al}Ll=1;

Experiments
In this section, we first give details of experiment settings
including datasets, network architectures, training settings
and so on. Then experimental results on three datasets are
analysed, showing that our proposed method outperforms
the state-of-art algorithms. Finally, we analyse the effect of
scaling factor A.



Figure 1: The optimization loss vs Iteration using the proposed alternating optimization method on different networks
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(a) optimization loss of VGG9 on CIFAR10
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(b) optimization loss of AlexNet
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(c) optimization loss of ResNet-18

Datasets
To evaluate our proposed method, we conduct extensive ex-
periments on three public benchmark datasets including CI-
FAR10, CIFAR100, and ImageNet.

• CIFAR10 dataset consists of 60,000 colour images in 10
classes. Each class contains 6000 images in size 32× 32.
There are 5000 training images and 1000 testing images
per class.

• CIFAR100 dataset is like CIFAR10 except it has 60,000
colour images in 100 classes. There are 500 training im-
ages and 100 testing images per class.

• ImageNet dataset (ILSVRC2012) has about 1.2M train-
ing images from 1000 classes and 50,000 validation im-
ages. Compared to CIFAR10 and CIFAR100, the images
in ImageNet have higher resolution and complex back-
ground.

Network Architectures
For ImageNet (ILSVRC2012), two state-of-art networks
i.e. AlexNet and ResNet-18 are adopted to evaluate the
proposed method. For CIFAR10 and CIFAR100, we adopt
the VGG-9 network following (Dong et al. 2017).
AlexNet AlexNet consists of 5 convolutional layers and
three fully-connected layers. Following (Rastegari et al.
2016; Dong et al. 2017), we use AlexNet coupled with
batch normalization layers.
ResNet-18 Recently (He et al. 2016) proposed ResNet
architecture which is more efficient and powerful. Base on
this architecture, very deep convolutional neural networks
can be trained efficiently. The ResNet architecture is built
with residual blocks, which is quite different with AlexNet.
Here we adopt the ResNet-18 architecture.
VGG-9 The architecture of VGG-9 is denoted as
“(2×64C3)-MP2-(2×128C3)-MP2-(2×256C3)-MP2-
(2×512C3)-10FC-Softmax”. Here ‘64C3’ denotes convo-
lutional layer with 64 kernels of size 3×3. MP denotes
max-pooling layer and FC denotes the fully-connected layer.
Batch Normalization layer is added after each convolutional
or fully-connected layer.

Training Settings
We implement our proposed method based on the Caffe
framework, and the proposed alternating optimization algo-
rithm is implemented using CUDA. All experiments are con-
ducted on a GPU Server which has 8 Nvidia Titan Xp GPUs.
During layer-wise optimization, we set maximum iterations
of the proposed alternating optimization method to 20 which
is enough for training according to Figure 1. We adopt dif-
ferent fine-tuning settings for different network architecture.
AlexNet We fine-tune AlexNet using a SGD solver with mo-
mentum=0.9, weight decay=0.0005. The learning rate starts
at 0.001, and is divided by 10 after 100k, 150k, and 180k it-
erations. The network is fine-tuned for 200k iterations with
batch-size equals to 256. Before training, images are resized
to have 256 pixels at their smaller side. Random cropping
and mirroring are adopted in the training stage and center
cropping is used in the testing stage.
ResNet-18 We fine-tune the ResNet-18 using a SGD solver
with momentum=0.9, weight decay=0.0005. The learning
rate starts at 0.0005, and is divided by 10 every 200k it-
erations. We run the training algorithm for 650k iterations
with batch size equal to 128. We use random cropping and
mirroring for data augmentation. Like AlexNet, images are
resized to have 256 pixels at their smaller side.
VGG-9 We use a SGD solver with momentum=0.9, weight
decay=0.0001 for fine-tuning the VGG-9 network. The
learning rate starts at 0.1, and is divided by 10 every 15K
iterations. Following (Dong et al. 2017), the network is fine-
tuned for 100K iterations with batch-size equals to 100.

Table 1: Test error rate of VGG9 on CIFAR10 and CI-
FAR100

Method Test error rate
CIFAR10 CIFAR100

Full-Precision 9.01 30.45
BinaryConnect 11.15 37.70

BWN 10.67 37.68
SQ-BWN 9.40 35.25

BWNH (Ours) 9.21 34.35



Figure 2: Top1 Accuracy of VGG9, AlexNet, and ResNet-18
with or without fine-tuning

Experimental Results
To evaluate our proposed method, we compare our method
with BC (Courbariaux, Bengio, and David 2015), BWN
(Rastegari et al. 2016), SQ-BWN (Dong et al. 2017), and
HWGQ-BWN (Cai et al. 2017). Table. 1 shows the classi-
fication accuracy of VGG9 network on CIFAR10 and CI-
FAR100 dataset via different methods. From Table. 1, it’s
clear that our proposed method outperforms other state-of-
art algorithms.

Since CIFAR10 and CIFAR100 both are small dataset,
we mainly verify our proposed method and tune the hyper-
parameters on these two datasets. Here we focus on the ex-
periment results on ImageNet. Table. 2 demonstrates the
Top1 and Top5 classification accuracy of AlexNet on Im-
ageNet dataset for different methods. And our proposed
method outperforms the state-of-art methods in both Top1
and Top5 accuracy.

Table. 3 compares our proposed BWNH with other meth-
ods on ResNet-18 network. We can find that our proposed
method outperforms the state-of-art method by a large mar-
gin (3% in top1 accuracy).

Table 2: Classification Accuracy of AlexNet for different
methods

Method Classification Accuracy
Top1 Top5

BinaryConnect 35.4 61.0
BWN 56.8 79.4

SQ-BWN 51.2 75.1
HWGQ-BWN 52.4 75.9
BWNH (Ours) 58.5 80.9

Figure. 2 shows the Top1 accuracy of different networks
by using proposed BWNH with or without using a fine-
tuning step. From Figure. 2, we notice that our proposed
BWNH has achieved a relatively high accuracy without the
fine-tuning step, which demonstrates the usefulness of learn-
ing binary weights via hashing. The binary weights learned

Table 3: Classification Accuracy of ResNet-18 for different
methods

Method Classification Accuracy
Top1 Top5

Full-Precision 69.3 89.2
BWN 60.8 83.0

SQ-BWN 58.3 81.6
HWGQ-BWN 61.3 83.9
BWNH (Ours) 64.3 85.9

Figure 3: Accuracy of VGG9 Network on CIFAR10 and CI-
FAR100 after layer-wise optimization from conv1 to conv6

by hashing can be used as initialization of CNNs, and a
fine-tuning step will improve the accuracy of networks.
Other training binary weights algorithms can also be com-
bined with our methods by simply using our learned binary
weights as initialization, which can get higher accuracy.

The Effect of Scaling Factor
In this subsection, we explore the effect of scaling factor.
Figure. 3 shows the accuracy of VGG9 network on CIFAR10
and CIFAR100 by using proposed BWNH with or without
scaling factor. We denote the result without using scaling
factor as non scale. From Figure. 3, it’s clear that the scal-
ing factor is very important for the proposed method. With-
out the scaling factor, the accuracy of network degrades very
quickly and reaches the random accuracy ( 0.1 for CIFAR10
and 0.01 for CIFAR100) after optimizing several layers. Be-
sides, the scaling factor can be merged into the Batch Nor-
malization layer in the inference phase, thus it won’t add
extra memory or storage overhead. Another interesting phe-
nomenon in Figure. 3 is that the accuracy after optimizing
conv1 and conv2 is higher than the accuracy after optimizing
conv1. This is because the binary weights in conv2 compen-
sates the accuracy drop by adapting to the input featuremaps
generated by binary weights in conv1.



Conclusion and Future Work
In this paper, we first uncovered the close connection be-
tween inner-product preserving hashing and binary weight
networks and showed that training binary weight networks
can be transformed into a hashing problem. A scaling fac-
tor is multiplied to the binary codes to improve the accu-
racy, then we propose an alternating optimization method to
solve the problem. Experiments on CIFAR10, CIFAR100,
and ImageNet show that our proposed method outperforms
the state-of-art algorithms.

At present, our method aims to quantize the weights of
CNNs to 1 bit (-1 or +1). In fact, our method can also be
used to train a binary neural network (BNN) where the fea-
turemaps and weights of CNN are all quantized to 1 bit. In
the future, we will try to train binary neural networks using
our proposed method.
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