
Parallel Polar Encoding in 5G Communication

Yang Guo1 2, Shaolin Xie1, Zijun Liu1, Lei Yang1 2, Donglin Wang1
1 Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China

2 University of Chinese Academy of Sciences (UCAS), Beijing, China
E-mail:{guoyang2014, shaolin.xie, zijun.liu, yanglei2013, donglin.wang}@ia.ac.cn

Abstract—Because of its theoretical capacity-achieving
property, polar code has become the coding scheme of the control
channel in the 5G communication standard. Although its encoding
complexity is low, the data dependency in polar code makes it
difficult to parallelize. This paper proposes a parallel polar
encoding method for 5G communication and evaluates its
performance with extended digital signal processor (DSP)
instructions. Compared with the existing field-programmable gate
array (FPGA) implementation, the performance improved by
300× with negligible area and power overhead. The extended
instructions are based on our in-house DSP architecture, but the
parallel scheme is applicable to other single instruction multiple
data (SIMD) architectures.

Key words—Polar code, 5G communication system, DSP, SIMD

I. INTRODUCTION

Polar code [1] is the first provable capacity-achieving
channel code and has become one of the most attractive
codewords in the coding theory community. At the 3GPP
RAN1# 87 conference in Las Vegas in November 2016, polar
code became the coding scheme for control channels in the 5G
eMBB (enhanced mobile broadband) scenario [2]. Although
polar encoding has lower computational complexity than other
channel codes (such as turbo code and low-density parity-check
[LDPC]), its intrinsic data dependency makes it difficult to
parallelize, which results in high latency and affects the overall
throughput.

Polar encoding has been studied in several other works, but
most of them targeted filed-programmable gate arrays (FPGAs).
Sarkis et al. [3] reduced the complexity of systematic encoding
via matrix transformation. Other groups [4-6] partially
parallelized basic polar encoding based on the fast Fourier
transform (FFT) folding transformation. Zhang et al. [7]
designed a hardware pipeline structure of the basic polar encoder.

Our work optimizes the polar encoding for a programmable
digital signal processor (DSP), taking advantage of the wide
single instruction multiple data (SIMD) data planes to parallelize
the encoding while maintaining programmability. The
optimization is based on our in-house mathematic processing
unit (MaPU) architecture [8], but the parallel scheme is
applicable to other SIMD architectures. In addition, our work
focuses only on 5G standard polar code that uses basic polar
instead of systematic polar [9-10], and the code length is limited
to 1024 bits [11-12]. Few works meet the 5G standard [13].
Table I shows a comparison with other related works.

TABLE I. RELATED WORK

Related Work Coding Scheme Implement
Optimal Code

Length

Sarkis, et al [3] systematic polar FPGA 16384

Yoo, et al [4] basic polar ASIC 8192

Raj, et al [5] basic polar FPGA Not specified

Arpure, et al [6] basic polar FPGA Not specified

Zhang, et al [7] basic polar FPGA Not specified

Polaran[13] basic polar FPGA 128,1024

Our Work basic polar DSP 128,1024

Compared to other studies, our work optimizes polar
encoding for DSP that operates with general register in byte
granularity. The contributions of our work are as follows.

 We proposed the parallel polar encoding scheme with
300× performance improvement for 5G communication
standard.

 We proposed the DSP instructions that can efficiently
support the proposed encoding algorithm.

 We evaluated the overall performance at circuit level
implementation.

The paper is organized as follows. The basic operation in
polar encoding is introduced first, and then we present our
parallel encoding scheme for DSP. Next, we describe the DSP
instructions for polar encoding, and finally discuss the
evaluation method and results.

II. PRELIMINARIES

Polar code is a linear block code. A code block is identified
by a parameter vector (N, K, �, ���) , as shown in Fig.1. N is
the code length. K is the number of message bits in a code block.
K/N is the bit rate. The set � and �� represents the position of
the message bits and frozen bits in the code block respectively.
The set �� is message bit vector. The set ��� is the frozen bit
vector, which is usually fixed to zero. Its generator matrix GN

is the n-order Kronecker product [14] of � = �
1 0
1 1

�, denoted

by �� = �⊗� , Where � = ����� . The equation may be
written as (1).

 � = ����(�) ⊕ �����(��) (1)

⊕denotes mod-2 sum. ��(�) represents the sub-matrix
that is indexed by set A. The complexity of encoding based on
matrix multiplication is �(��).

The Strategic Priority Research Program of Chinese Academy of
Sciences (under Grant XDA-06010402) and Youth Innovation Promotion
Association of Chinese Academy of Sciences (Y5S7061G51)

Frozen Bit
Insertion

Message Bits μA

Frozen Bit Mask AC

N Bits

K Bits
Butterfly

XOR
Network

N Bits N Bits
Encoded Bits

Fig.1 Basic polar encoding. K bits message is inserted with frozen bits
according to the N bits mask. The N bits result is then fed into the butterfly
XOR network.

To reduce the complexity of the algorithm to �(������), it
is generally processed via a butterfly XOR network [1]. The
encoding process includes two main steps: Frozen Bit Insertion
and Butterfly XOR Network, as shown in Fig.1

A. Frozen Bit Insertion

The operands of frozen bit insertion are an N-bit mask string
and a K-bit message string. The bit “0” in mask indicates the
position of a frozen bit, and the bit “1” indicates the position of
a message bit. Take a code block (N=32, K=24) as an example:

Message: 11100110_01101101_00010010

Mask: 11111011_11110110_11111000_11111010

Result: 11100011_00110010_10100000_01001000

The bold bits in the result come from the message string,
which corresponds to the bit “1” in mask. The other bits (which
are all zeros) correspond to the bit “0” in mask. This operation
is described with Algorithm 1.

Algorithm 1: Frozen Bits Insertion

Input: mask string P (N bits), message string μ (K
bits).
Output: result string W (N bits).

1 Initialize W[0:K-1] ← μ and W[K:N-1] ← 0
2 for i = 0 : N-1
3 if P[i] = 0 then
4 W[i+1:N-1] ← W[i:N-2]
5 W[i] ← 0
6 end if
7 end for

Fig.2 XOR butterfly network example for N = 8.

B. Butterfly XOR Network

After frozen bits insertion, the message is processed by a
butterfly XOR network. Fig.2 shows that it takes multiple stages.
For bit length N, it includes log�� stages. In the ith (0≤ i ≤
log��-1) stage, the N bits are divided into 2��� blocks. In each
block, the top half will XOR with the bottom half to generate the
top half output, whereas the bottom half output is just the copy
of the bottom half input. Although the network is intrinsically
parallel, its bit-level addressing pattern is difficult to implement
with DSP. The solutions are discussed in the following sections.

III. FROZEN BIT INSERTION PARALLELIZATION

In Algorithm 1, the position of one message bit depends on
that of the previous bit, which makes it difficult to parallelize.
When N increases, the latency of the serial increases in a linear
manner. The directly mapped circuit will show very poor
performance and is not adaptable to different code lengths.

The principle of our idea is two-fold. First, we divide the
long operation into several parallel group operations. The size
of the group can be flexible. It can be byte, word or other size.
An array of specially designed units can process the group
operations in parallel so we can easily incorporate this scheme
into DSP and take advantage of the massive parallel data planes
in SIMD. The logic level of each group operation is low; thus, it
can be done in 1 clock cycle and can be fully pipelined.

Second, we pre-compute the parameters, which is an
intrinsic serial operation, and then parallel apply these
parameters in real time encoding, converting the serial frozen bit
insertion to fully parallel. This idea originates from two
important observations: First, the data dependency is only
related to the mask; and second, the 5G standard [11] defined a
fixed number of masks for different lengths and rates.
Combining these two factors, we found that frozen bit insertion
can be parallelized in real time processing.

To break down long bit stream operations into parallel group
operations, we found in Algorithm 1 that the number of bits “1”
in one group of mask is one group size at most, which means
that the message bits in one group of the result will be derived
from only two adjacent groups at most. We call these two
adjacent groups the Low group and the High group.

For each result group, we can calculate the indices of the
corresponding adjacent groups. For the result group vector, the
indices of the low groups and the high groups are stored in an L
and H vector respectively. The position of the first bit “1” in each
mask group corresponding bit in a message group can also be
calculated and stored in an M vector. The L, H, and M vectors
are only related to the mask and are independent of the message
string; thus, for a fixed mask, these vectors can be calculated in
advance and stored in memory for later use.

The 3GPP TSG-RAN WG1#88 [11] conference proposed
fixed masks for different lengths and rates. In our proposed
scheme, the L, H, and M vectors of these masks are pre-
computed and stored in the data memory. The DSP will load
these vectors to facilitate frozen bits insertion in parallel. Fig.3
shows bits grouping and how to utilize parameters to get result
string. And Fig.4 shows the processing each group including
three steps.

X 1 0

Groupi+1 Groupi Groupi-1

Hi Li

Mi=2

Legend:

MSB LSB

Mask:

Message:

Result:

Fig.3 Bit Grouping and Parameters: The bits in Mask, Message, and Result are
divided into groups that have the same size (4 in this example). �� and �� are
the Message (Low and High) group indices for Result group i. In this example,
Mask group i have 3 ones and 1 zero, which means the Result group i needs 3
bits from Message. The location of these bits in the Message stream is
determined by how many bits has been consumed by the previous Result groups
(group i-1 to group 0). In this example, Result group i need 2 bits from the Low
group and 1 bits from High group. The value of �� is the first bits location in
Low group, which is equal to total bits consumed modulo by group size.

7 6 5 4 3 2 1 0

Hi Li

Message

Get (H & L)
Group

Mi=2

Right Shift
M Bits

5 4 3 2

Maski

Resuiti

4 3 2

X 1 0

Legend:

Step 1 Step 2

Step 3

Fig.4 Processing in Each Group: The step 1 is that the corresponding message
groups are extracted to 2-group-size intermediate result by indices (L and H
vectors). The step 2 is that intermediate result is right shifted according to M
vectors. The step 3 is that each group data expand according to corresponding
mask group.

IV. HARDWARE IMPLEMENTATION AND INSTRUCTIONS

To evaluate the parallelization schemes above, we extended our
in-house MaPU [8] instruction set and implemented it with
register transfer level (RTL) and pushed the design through a
standard chip flow. MaPU is a novel DSP architecture that uses
512-bit SIMD vector processing units, as shown in Fig.5. It
includes several function units (FUs) that operate in parallel. The
microcode pipeline uses coarse grain reconfigurable architecture
(CGRA), in which multiple FUs are connected by a configurable
compact crossbar. The inputs and outputs of FUs can be chained

Scalar
Register File

Scalar Controller

Microcode Fetch

Microcode Memory

FU2

FU5

FU6

FU7

FU8

FU1

FU9

FU0

FU3

FU4

Local
Memory

CSU

Microcode
Controller Microcode

Pipeline

Bus
Interface

Bus
Interface

Bus
Interface

Scalar Pipeline

Fig.5 MaPU Architecture: Scalar pipeline supports 32-bit SIMD, whereas
microcode pipeline supports 512-bit SIMD. The operations and interconnection
of FUs are controlled by the microcode.

together to handle complex signal processing kernels like FFT
without accessing the local memory. Intermediate data are
stored in temporary registers referenced with “T” and a suffix
(for example, T0, Tm, Tn, and Ts). More details about the MaPU
architecture were given by Wang et al. [8].

A. Frozen Bit Insertion Implementation

Taking into account the architecture of MaPU and the degree
of parallelism of the algorithm, the size of a group in Frozen Bit
Insertion is designed to be one byte.

The process of frozen bit insertion: Longitudinal
Concentration, Concatenation and Right Shifting, and
Insertion in Byte as shown in Fig.7.

Longitudinal Concentration is corresponded to the step 1
in Fig.4. The Shuffle unit (shown in Fig.6) [8] uses vectors L and
H as the indices to select the adjacent bytes in a message string.
The message bits of each byte in the result string are
longitudinally concentrated into two T registers. High bytes are
concentrated into T1, and low bytes are concentrated into T0 as
shown in Fig.7 (a).

Concatenation and Right Shifting is corresponded to the
step 2 in Fig.4. Two T registers are longitudinally concatenated
in byte granularity, where the byte from T1 is placed in the high
position and the byte from T0 is placed in the low position. These
two bytes are then right-shifted, and the result only takes the low
byte after shifting. The Concatenation and Right Shifting of one
byte is shown in Fig.7 (b). M contains the amount of shifting.

In this way, the serial zero insertion operation in a long string
is converted into several parallel byte operations. The step 3 in
Fig.4 is corresponded to Insertion in Byte, as shown in Fig.7
(c). Its inputs are data stored in the T2 register and a mask stored
in another T register. If the corresponding bit of the mask is 0,
the result bit is 0; otherwise, the result bit is from T2.

B. Butterfly XOR Network Implementation

To implement the XOR butterfly network in an SIMD
manner, we optimize the original network shown in Fig.2. The
ith stage now includes 2��� blocks, and a bit interleave substage
is introduced.

In the bit interleave substage, the blocks are interleaved in an
even-odd manner, in which the even blocks are extracted into
the top half operand and the odd blocks are extracted into the
bottom half operand. In the XOR substage, the blocks in the top
half will XOR with the bottom half to generate the top half input
of the next stage, whereas the bottom half input is just a copy of
the bottom half blocks.

Byte 1 Tm (64 bytes)

Tn (64 bytes)

Result (64 bytes)

...Byte 23 Byte 0 ...Byte 62 Byte 63 Byte 24

620... 2324163 ...

Byte 62 Byte 0 ... Byte 23 Byte 24 Byte 1 Byte 63 ...

Tm Index Tn

Fig.6 The original shuffle unit operates in byte granularity, in which Result[i]
= Tm[Tn[i]]. For example, Tn[0]= 23, so the value of Result[0] =
Tm[23]=Byte23.

 Message string: Byte 2 Byte 1 Byte 0Byte 3

L: … 0012 … 1H: 123

Byte 1 Byte 0 Byte 0Byte 2…
T0:

Byte 2 Byte 1 Byte 1Byte 3…
T1:

…

T1[7:0] T0[7:0]

Concatenate

{T1[7:0],T0[7:0]} k

M

>>

Right Shift and
Take Lower Byte

{T1[k-1:0],T0[7:k]}

T2:

Mask

(a) Longitudinal Concentration

(b) Concatenation and Right Shifting (c) Insertion in Byte

T2

1 0 1 1 0 1 1 0

0 0 0Result

Fig.7 Parallel scheme of frozen bits insertion: (a) Data in message string are
extracted into T0 and T1 in byte granularity according to vectors L and H,
respectively. (b) 512 bits T0 and T1 are divided into 64 bytes of segment. Each
byte performs the same operation. The corresponding bytes of T0 and T1 are
concatenated into half-words of intermediate result. The intermediate results are
then shifted right, and the number of the shifted bits is determined by the
corresponding byte data in vector M. The lowest 8 bits of the half word after
right shifting are taken as the final result. (c) 512 bits T2 and mask string are
divided into 64 bytes of segment. To form the resulting byte, each byte of T2 is
inserted with zero according to the corresponding mask string byte.

Fig.8 shows an example in which N = 1024. At stage 0, the
N-bit code block is divided into two blocks with a size of N/2.
The even block (block 0) is placed in the Tm register, and the
odd block (block 1) is placed in the Tn register. The XOR result
and Tn become the N-bit inputs of stage 1, in which the N bits
are divided into 4 blocks with a size of N/4. At stage 1, the even
blocks (block 0 and block 2) are placed in the Tm register, and
the odd blocks (block 1 and block 3) are placed in the Tn register.

C. Optimized Instruction Design

To optimize the parallel polar encoding on MaPU, we first
implemented the algorithm without any extended instructions
and found that the performance is limited by serial frozen bit

0

2

4

6

1

3

5

7

0

1

2

3

4

5

6

7

0

2

1

3

0

1

2

3

0

1

Tm

Tn

Tm

Tn

Tm

Tn Tn

Stage 0
512 bits/block

Tm Tm Tm Tm

Stage 1
256 bits/block

Stage 3
128 bits/block

Stage 9
1 bit/block

Tn Tn Tn

0
1

510
511

512
513

1022
1023

0
2

1020
1022

1
3

1021
1023

Fig.8 Scheme of butterfly XOR network: In each stage, the even blocks are
extracted into the top half operand and the odd blocks are extracted into the
bottom half operand. The blocks in the top half will then XOR with the bottom
half to generate the top half input of the next stage, whereas the bottom half input
is just a copy of the bottom half blocks.

TABLE II. EXTENDED INSTRUCTIONS IN MAPU

Instruction Memo Operations Inputs
CRS Concatenate and Right Shift Tm, Tn, Tk

BitExpd Bit Expansion Tm, Tn
IND Cross-Border Indexing Tm, Tn, Tk

StepExt Interval Step Extraction Tm,Tn

insertion. To boost the MaPU performance in processing polar
encoding, several new instructions are proposed here, as shown
in Table II.

 Concatenate and Right Shift Instruction (CRS)

This instruction is designed for Concatenate and Right Shift
operation. The specific behavior is shown in Fig.7 (b). Each byte
of Tn and Tm is concatenated and right-shifted. The degree of
the right shift is specified by the lower three bits of each byte in
Tk. The lower byte is the result.

 Bit Expansion Instruction (BitExpd)

This instruction is designed for the Insertion in Byte
operation, whose specific behavior is shown in Fig.7 (c). In
BitExpd, the data in Tm are inserted with zeroes according to the
mask in Tn. The operation is similar to Algorithm 1, in which N
is 8. The hardware structure is shown in Fig.9.

 Cross-Border Indexing (IND)

The indices of the original shuffle unit described in Fig.6
only support 512-bit input. However, the maximum length of the
polar code in the 5G standard is 1024, and parallel
implementation of Fig.7 (a) and Fig.8 shows 1024 bits of
interleaving. Taking these factors into account, we extended the
original shuffle unit. This extended instruction is the same with
Fig.6, except that the inputs are two T registers that are
concatenated to form a 128-byte vector instead of a single 64-
byte T register.

Tm (8 Bits)

<< 1

1 0

<< 1 1 Bit

<< 1 7 Bits

Result

Tk[0]

Tk[1]

Tk[7]

Tk[2]

<< 1 2 Bits

1 0

1 0

1 0

Fig.9 Hardware structure of bit expansion instruction. Algorithm 1 (when N is 8)
is its behavior description. There is an 8-level operation in this instruction
implementation. Each level of operation is controlled by 1 bit of Tk orderly. If
the corresponding bit of Tk is “0”, the substring left shift. If the corresponding
bit of Tk is “1”, the string remains unchanged.

Tn (512 bits) Tm (512 bits)

Even block

Odd block

4 bits 2bits 1bit

Result (512 bits) for mode

2 4 6

4 bits 2bits 1bit

Result (512 bits) for mode

1 3 5

Fig.10 Six modes of bit-level interleaving: The inputs are two 512-bit registers
Tm and Tn. For mode {1, 2}, {3, 4}, {5, 6}, the 1024-bit input are divided into
4, 2, 1 bits blocks respectively. Shadowed blocks are even blocks, and the others
are odd blocks. For mode {1, 3, 5}, the results are even blocks from the input;
for mode {2, 4, 6} the results are odd blocks from the input.

 Interval Step Extraction (StepExt)

This StepExt instruction is much the same as the
aforementioned IND instruction, except that StepExt is designed
for bit interleaving operation. As depicted in Fig.6, the bits in a
block at the earlier stages are more than 8, and we can use IND
instruction for interleaving. At later stages when the bits in a
block are less than 8, we use StepExt instruction for interleaving.
StepExt supports 3 bit-level granularities (1, 2, 4 bits) and two
block types (even and odd). Combined with the granularity and
block types, StepExt supports six interleaving modes, as shown
in Fig.10.

The FUs used in polar encoding are shown in Fig.11. They
include integer ALU (IALU), integer and float ALU (IFALU),
integer MAC (IMAC), three bus interface units (BIUs), and
three shuffle units. To accommodate parallel XOR operations in
the polar encoding, IMAC is augmented with XOR instruction.
The input data and the parameters (L, H and M vectors) are
stored in the local memory. BIU is responsible for accessing the
memory. The dashed box on the left shows the pipeline for
frozen bit insertion, and that on the right shows the pipeline for
butterfly XOR.

V. RESULT AND DISCUSSION

In this section, the performance of the new instructions is
compared with that of the original instructions and with other
works. The hardware overhead is also analyzed.

BIU0 BIU1 BIU2

Message Mask
Parameter
 (L,H,M)

Shuffle
Unit 0

Shuffle
Unit 1

Shuffle
Unit 2

IND
IALU

CRS

IFALU

BitExpd

BIU2

Local Memory Local Memory

Load

Store

BIU0

IFALU

Load

IMACIALU
XOR

9 times 9 times 9 times

StepExt

BIU2

Store

Local Memory

Frozen Bit
Insertion

Butterfly XOR

IALU IFALU IMAC

XOR

Shuffle
Unit 0

Shuffle
Unit 1

Shuffle
Unit 2

Fig. 11 FU cascading for parallel polar encoding: All FUs run in parallel with
512-bit SIMD support. To increase throughput, all FUs are pipelined and run at
1.4 GHz.

Because the longest code length in the 5G communication
standard is 1024 [11-12], only 128 and 1024 bits are discussed
and compared.

A. Performance Comparison

To evaluate the performance with the extended instructions,
we augmented our original MaPU tool chain, coded them in
RTL, implemented the polar encoding algorithm in assembly
code, and then ran the simulation. The DSP with extended
instruction was pushed through standard chip implementation
flow in which the resulting circuit can run at 1.4 GHz with
TSMC (Taiwan Semiconductor Manufacturing Company) 16-
nm nodes.

The simulation results are compared with the FPGA
implementation of [13] and the original MaPU [8] without
extended instructions. The existing polar encoding
implementation [13] meets the 5G protocol and agreement [9-
12]. It has been implemented on Kintex-7 (XC7K325T-
2FFG900C) Xilinx FPGAs at 308 MHz. We attempted to
compare the results with other works, but either it uses
systematic polar encoding [3], or it optimized only for long bit
streams in which the performance of a short bit stream is not
directly available [3-4]. Other studies [5-7] focused only on
hardware resources without providing any data on performance.

As shown in Table III, the performance of our work is
improved by almost 300× over that in the literature [13] and by
10× over that with the original MaPU architecture without
extended instructions.

The performance gain benefits from three aspects; the first is
the parallel encoding algorithm with a wide SIMD. With pre-
computed parameters as described in Section III, we actually
converted the intrinsic serial encoding to fully parallel. The
MaPU architecture supports 512-bit SIMD, so it can take full
advantage of these parallel operations. With a wide SIMD, the
input data (≤1024 bits) can be completely placed in registers, and
multiple FUs can run in parallel to increase the overall
throughput. For example, Fig.11 shows that three shuffle units
can work in parallel to output 3×512 bits result in one clock
cycle.

Second, as we break down the long bit stream operations into
parallel byte operations, the circuit can run at a high frequency
with pipelines. While supporting other complexed instructions,
the augmented FUs still can run at 1.4 GHz without a customized
circuit.

TABLE III. THROUGHPUT OF DIFFERENT SCHEMES

Code Length
(bits)

Scheme
Performance

(Gbps)
Speedup

128

Polaran [13] 0.44 1×
MaPU Without

 Extended Instructions
13.57 31×

MaPU With
Extended Instructions

134.88 307×

1024

Polaran [13] 0.36 1×
MaPU Without

Extended Instructions
11.92 33×

MaPU With
Extended Instructions

105.33 293×

TABLE IV. THE RELATIVE AREA AND POWER OVERHEAD OF EACH FU

Area (um2) Power (mW)

IALU IFALU Shuffle unit Total IALU IFALU Shuffle unit Total

Orignial FUs 61,882 72,098 63,686 325,039 20.602 30.583 28.953 138.044

FUs with new instructions 65,420 76,252 66,294 340,556 21.512 31.956 30.032 143.564

Absolute overhead 3,538 4,154 2,608 15,517 0.910 1.373 1.079 5.52

Relative overhead 5.72% 5.76% 4.09% 4.78% 4.42% 4.49% 3.72% 3.99%

Third, the extended instructions also contribute to the
performance improvement. As we can see in Table III, with the
extended instructions, the throughput increased by 10×.

We believe that our parallel polar encoding is not limited to
MaPU architecture or DSP architecture. If the algorithm is
implemented in ASICs, it can run at an even higher frequency
with less power consumption.

B. Overhead Analysis

Table IV shows the area and power overhead of the three
FUs. The result is evaluated after synthesizing with Design
Compiler of Synopsys, with a 16-nm logic library. Because the
augmented FUs heavily reuse existing logic resources, we can
see that the overhead with the extended instruction is negligible,
only 4.78% for area and 3.99% for power.

VI. CONCLUSIONS

In this paper, we present parallel polar encoding with
remarkable performance for the 5G communication standard.
We also propose DSP instructions that can be efficiently
implemented in the proposed encoding algorithm. The
performance and the hardware implementation are evaluated at
a detailed circuit level, which showed up to 300× performance
improvement compared with the existing FPGA implementation
with negligible overhead.

Although we only evaluated the parallel polar encoding
algorithm with MaPU architecture, the encoding scheme and
extended instructions are applicable to other SIMD architectures.

MaPU architecture [8] is flexible and extensible with fully
open-sourced tool chains (https://github.com/mapu/toolchains).
In future studies, more instructions can be extended to optimize
other algorithms like polar decoding and LDPC
encoding/decoding.

ACKNOWLEDGMENT

This work is supported by the Strategic Priority Research
Program of Chinese Academy of Sciences (under Grant XDA-
06010402) and Youth Innovation Promotion Association of
Chinese Academy of Sciences (Y5S7061G51). We also thank
Dr. Hongyu Meng, Yinping Jiang, and Jing Feng for useful
discussions.

REFERENCES

[1] Arikan, Erdal. "Channel Polarization: A Method for Constructing
Capacity-Achieving Codes for Symmetric Binary-Input Memoryless
Channels." IEEE Transactions on Information Theory 55.7(2008):3051-
3073.

[2] 3GPP TSG RAN WG1 #87 Meeting MMC. Final Report of 3GPP TSG
RAN WG1 #87 v1.0.0 [DB/OL]. [2017-6-30].
http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Report/

[3] Sarkis, Gabi, et al. "Flexible and Low-Complexity Encoding and
Decoding of Systematic Polar Codes." IEEE Transactions on
Communications 64.7(2015):2732-27

[4] Yoo, Hoyoung, and I. C. Park. "Partially Parallel Encoder Architecture
for Long Polar Codes." IEEE Transactions on Circuits & Systems II
Express Briefs 62.3(2015):306-310.

[5] Raj, U. Mahendra Narasimha, and E. V. Narayana. "An advanced
architecture with low complexity of partially parallel polar encoder."
International Conference on Communication and Electronics Systems
IEEE, 2017:1-5.

[6] Arpure, Alok, and S. Gugulothu. "FPGA implementation of polar code
based encoder architecture." International Conference on Communication
and Signal Processing IEEE, 2016:0691-0695.

[7] Zhang, Chuan, et al. "Pipelined implementations of polar encoder and
feed-back part for SC polar decoder." IEEE International Symposium on
Circuits and Systems IEEE, 2015:3032-3035.

[8] Wang, Donglin, et al. "MaPU: A novel mathematical computing
architecture." IEEE International Symposium on High Performance
Computer Architecture IEEE, 2016:457-468.

[9] 3GPP TSG RAN WG1 #89 Meeting MMC. Final Report of 3GPP TSG
RAN WG1 #88bis v1.0.0 [DB/OL]. [2017-6-30].
http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88b/Report/

[10] Huawei, HiSilicon. Polar Coding Design for Control Channel [DB/OL].
[2017-6-30].
http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88b/Docs/

[11] 3GPP TSG RAN WG1 #88 Meeting MMC. Final Report of 3GPP TSG
RAN WG1 #88 v1.0.0 [DB/OL]. [2017-6-30].
http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88/Report/

[12] Samsung. Maximum Polar Code Size [DB/OL]. [2017-6-30].
http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_88/Docs/

[13] Polaran. Polar Encoder [EB/OL], [2017-6-21].
http://polaran.com/documents/PB-PE-NE-1.0.pdf

[14] Du, Juan, X. Fan, and S. Feng. "Kronecker product of special matrices."
Journal of Sichuan Normal University 32.1(2009):56-59.

