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Abstract—Distributed register files have the advantages of area 
and power compared with centralized register files in very long 
instruction word (VLIW) machine. But it may complicate the 
internetwork. A distributed register file architecture based on 
dynamic scheduling is proposed in our work. A portion of 
latency on internetwork is shifted to the latency among registers 
by latency transfer. And the decrease in the fanout of writing 
ports leads to a reduction in the power of the internetwork. To 
ensure the external compatibility of the distributed register file 
interface, the register was redirection designed. A dynamic 
scheduling strategy is designed to avoid conflicts between 
physical entities and logical entities that redirect registers. The 
optimization was evaluated on our in-house processor. The 
register file based on distributed dynamic scheduling reduces 
15.48% of latency. The system frequency is raised from 1.19 
GHz to 1.41 GHz. The power decreased by 27.42%.  

Keywords- distributed register file; VLIW machine; dynamic 
scheduling; system frequency; power  

I.  INTRODUCTION  

Extremely expanding application’s requirements to 
computational performance is endless. Nowadays the demand 
for the ability to handle intensive computing in lots of areas 
such as communications, multimedia and artificial 
intelligence is growing. VLIW (Very Long Instruction Word) 
[1] architecture is the combination of multiple instructions that 
can be operated in parallel by the compiler after mining the 
potential parallelism between instructions to form a very long 
instruction word with more than one opcode field which 
improves the performance. Organization of traditional VLIW 
machine register file is that a number of functional units share 
a centralized global register file [2]. Because the centralized 
global register files are flawed in terms of area and power, the 
structure of distributed register file is proposed. It allocates 
traditional register files to different functional units. Each 
functional unit has a distributed local register file. Scott 
Rixner and others have done related research on centralized 
global register file and distributed register file [3]. 

The VLIW architecture in [4] uses a distributed register 
file implementation. Due to the characteristics of the 
distributed register file, the function units should be able to 
access the register files to each other, which makes the 
interconnection between the function units more complex. As 
shown in Fig.1, (1) is the interconnection structure of the 
functional unit with the centralized global register file, and (2) 
is the interconnection structure of the functional units with the 
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Figure 1.  The internetwork of two register file architectures. (1): The 
centralized global register file. (2): The distributed register file. The 
connection of distributed register file is much more than centralized global 
register file.   

distributed register file. It can be seen that the number of 
connections to functional units in the distributed registers has 
increased significantly. 

With the advent of nanometer times, interconnects are 
becoming one of the most critical issues in the design of 
electronic circuits and systems. Performance, power and area 
are deeply affected by the interconnection, especially for the 
global internetwork [5]. It is reported that interconnection is 
more than 50% of the overall dynamic power in a 
microprocessor [6]. How to reduce internetwork latency and 
power has been a key issue in VLIW processor core design. 
The entire system structure is divided into several logical 
clusters called islands in [7-8]. Each island contains input 
logic, local register files, and functional units. The local 
register file is used to store the calculation results generated 
by the internal functional unit. It is also responsible for 
providing operands to the internal functional units and 
external functional units located on other islands. And an 
algorithm is proposed to optimize inter-island interconnects 
and limit register reading ports to reduce system power. 
However the latency between islands is ignored in [7-8]. A 
novel type of single-compartment latency model was 
proposed in [9]. 

At this stage most of the researches proceed from the 
structure of the internetwork and find the optimal clustering 
method through algorithm optimization to realize the 
optimization of latency and power. Rarely research the 
hardware structure of the register file to optimize. The register 
file is the connection of the internetwork to the functional unit. 
The latency and power of the internetwork are closely related 
to the interface to the register file. Our work focus on the 
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hardware structure and access patterns for register file to 
optimize the power and latency of the internetwork.  

II. NOVEL DISTRIBUTED REGISTER FILE ARCHITECTURE 

A. Latency Transfer 

The novel distributed register file architecture reduces 
latency and power that the internetwork creates at the interface 
to register files by latency transfer. The traditional writing 
structure of the distributed register as shown in dashed box of 
Fig.2 (1). The amounts of register file’s writing port, reading 
port and depth are assumed as 8, 4 and 8 respectively in the 
paper. Distributed register files connect external networks and 
functional units. The external network transfers data to the 
register file by writing operation. The local functional unit get 
the data in the register file to execute the operation in the 
instruction by reading operation. The functional unit can send 
the processed result to the internet to write to the register file 
of other unit, and can also write the result back to the local 
register file. The functional unit can send the processed result 
to the register file of other unit through internetwork, and can 
also write the result back to the local register file. The writing 
logic is in the dashed box, we can see that there is a multi-
layer selection logic. This greatly increases the latency of the 
internetwork at the register file interface. And the long wire of 
the internetwork at writing ports of the high fan-out also 
brought considerable power. 

To simplify the writing port logic of the register file, the 
register file of each writing port binds a register input. In the 
current cycle, if the writing port is enabled, the corresponding 
data will be unconditionally written to the register. The 
existing data in the register is judged. If the data are logically 
overwritten, no scheduling is needed. Otherwise it must be 
dispatched to other registers. The destination register to be 
dispatched must be a register whose write enable is not valid 
for the current cycle and original reserved data can be 
overwritten. 

The idea of latency transfer is to transfer the multi-level 
selection logic before register file to register-to-register data 
scheduling. As Fig.2 (2) shows, the selection logic between 
the internetwork and the register file is reduced to only one 
level of latency and there is no high fan-out. Instead, there is 
a scheduling logic between the registers inside the register file. 
The network is inside the register file. so there is no long wire. 
The power of scheduling internal is much lower relatively.  
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Figure 2.  The structure of two register files. (1): The traditional structure 
of register file. (2): The redirection register file. The writing logic of 
redirection register file is much simpler than traditional one. 

because its timing path is among registers, it does not take the 
internetwork timing latency, eased the timing pressure of the 
internetwork. And there is no other inherent latency in the 
timing path among the registers except for the scheduling 
logic. So it can not be the critical path that affect system 
frequency. 

B. Register Redirection 

According to the idea of latency transfer and the structure 
of novel register file described above, the meaning of each 
register changes. Each register’s physical and logical meaning 
of the traditional register file in Fig. 2 (1) is the same, that is, 
the data stored in each register physical represents the data 
stored in the logical register. The same property applied to the 
structure in Fig.2 (2) obviously leads to data storage errors. 
Therefore, the structure of register and the way of data stored 
must be changed. The concept of register redirection is 
proposed. 

The ��� physical register is denoted as ��, 0≤i≤7. Three 
bits are added to each physical register to indicate its logical 
meaning. Fig.3 shows the structure after register redirection. 
High-K bits are logical labels that represent the label of the 
logical register where the data in this physical register resides, 
denoted ��[K]. The lower M bits represent the data stored in 
the logical register represented by the logical label of the 
physical register. The lower M bits are the same as the data in 
the traditional register file, denoted by ��[M]. That is to say, 
a K-bit logical label is added to redirection register compared 
to the traditional register. The K is related to the depth of the 
register file. If the depth of the register file is N, K = log��. 
In this paper, K = 3. Since VLIW machines generally handle 
vector operations, M is large generally. Distributed registers 
are local registers for each functional unit. Their depths is 
shallow. The overhead of K-bit after taking the logarithm is 
minimal compared to M.  

C. Reading Logic 

According to the structure of the redirection register, it can 
be seen that the logic of reading and writing changes. The 
logical meaning of each physical register is different in 
different clock cycle. Changes in writing logic involve the 
dynamic scheduling strategy, which is discussed in section 3. 
The characteristics of reading logic is discussed in this section.  

The reading logic of traditional register file is that the 
reading address is regarded as the address of multiplexer 
directly. However, the physical number of the redirection 
register does not represent the logical number of the data 
stored. So in the process of reading, the reading address must 
be compared with the logical label of each register. The 
physical register whose logical label matchs is selected. The 
stored data is read out.  

III. DYNAMIC SCHEDULING STRATEGY 

The novel register file structure described above reduces 
the latency of the internetwork and the power of long wire fan- 
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Figure 3.  The structure of single redirection register. 



outs. But to ensure that requirement of reading, writing and 
storage, the interface of the novel register file must be the 
same as traditional register file. A strategy for dynamic 
scheduling of redirection registers is presented in this chapter. 
Under the premise of normal access, we try to make a minimal 
amount of overhead. 

A. Register Classification 

To assure the correctness, two types of registers must be 
identified before scheduling. One is the physical registers 
whose data stored have to be scheduled. These registers are 
call as α-type. When a logical register is written to a new value, 
the original value will be overwritten. Thus, in the novel 
register file architecture, the necessary and sufficient 
conditions for the physical register ��  is an α-type are as 
follows. 

(���� = 1)	&	�∄j ∈ P	�. �. (���� = 1�&(���� = ��[K]))   (1) 

The registers whose stored data can be erased is the second 
type. It also means that the register can be used to accept other 
data. These registers are call as β-type. When the data in the 
register is overwritten by the newly written data, the old value 
of the data is meaningless and can be erased. Therefore, the 
necessary and sufficient conditions for the physical register 
�� is a β-type register are as follows. 

(���� = 0)	&	�∃j ∈ P	�. �. (���� = 1�&(���� = ��[K]))   (2) 

B. Conflict Analysis 

Scheduling may conflict. A conflict occurs when multiple 
scheduled data are selected to the same physical register to be 
received. Conflicts can cause data storage errors. The focus of 
the scheduling strategy is to resolve conflicts. When the 
number of physical registers is 8, the maximum amount of 
registers to be scheduled is analysed. 

The amount of the enabled writing port is denoted as n. 
When 1 ≤ n ≤ 4, it is possible to schedule data only when 
writing port is enabled according to expression (1). So the 
amount of physical registers that need to be scheduled is at 
most n. When 5 ≤ n ≤ 8, it can be analysed that if the amount 
of the data scheduled is 4, there must be 4 writing port is 
enabled, and there are 4 new data to be written to the register 
file. Then the 4 scheduled data and the 4 newly written data 
constitute all the data stored in the 8 logical registers. So the 
amount of physical registers that need to be scheduled is 4 at 
most in this case. In summary, the maximum value ����  of 
physical registers that need to be scheduled is as follows.  

																															���� = �
�														1 ≤ n ≤ 4
4															5 ≤ n ≤ 8

           (3) 

According to the equation (3), the maximum amount of 
data to be scheduled clock cycle is 4. When there are 4 data to 
be scheduled at the same time, any two of these data will not 
be scheduled to the same physical register have to be 
guaranteed. Each data scheduled must finds its own unique 
register to be accepted. 

C. Priority Scheduling Channel 

According to the conflict analysis in the previous section, 
the maximum amount of data to be scheduled in each cycle is 
4. Therefore, four scheduled channels can meet all the  
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Figure 4.  (1): The structure of entry logic. (2): The structure of exit logic. 

conditions. There are two ports for each channel. The entry is 
connected to the source register for scheduled data. And the 
exit is connected to the destination register for scheduled data. 
The process of scheduling is divided into two steps. The first 
step is entry logic. Each channel chooses to receive a data to 
be scheduled in α-type registers according to its priority as 
shown in Fig.4 (1). The second step is exit logic. Each β-type 
register chooses to receive a data in four channels according 
to its priority as shown in Fig.4 (2). The address signal of 
multiplexer is controlled by priority. The priority determines 
directly whether the process of scheduling can avoid conflicts. 

The entry priority for Fig.4 (1) is specified as �� to �� 
in descending order for channel 0. �� has the highest priority. 
Signal Schedule [7:0] is used to indicate whether ��~�� is 
an α-type register. If Schedule [0] is true, the data in �� goes 
directly to channel 0. If Schedule [0] is false, ��is considered. 
If Schedule [1] is true, the data in �� goes directly to channel 
0. In accordance with the law, the �� to �� are considered 
sequentially. The entry priority is specified as �� to �� in 
descending order for channel 1. Do not care about �� . 
Because if Schedule [0] is true, the data in �� goes directly 
to channel 0 and not to channel 1. However, not only Schedule 
[i] to be judged, but also the data in �� has entered channel 0 
needs to be considered. Accordingly, the entry priority is 
specified as �� to �� in descending order for channel 2. Not 
only Schedule [i] to be judged, but also the data in �� has 
entered channel 0 and channel 1 needs to be considered. The 
priority for channel 3 is to follow this law. The behavioural 
description of priority judgment discussed above is expressed 
as algorithm 1. 

The logic of high-priority requires fewer selectors. The 
highest priority logic only needs one address signal to be 
judged. If the condition is met, the data is selected. Otherwise, 

Algorithm 1: Entry priority 

Input: Scheduling signal Schedule [7:0] and the value in registers reg [7:0]. 
Output: Channel value channel [3:0]. 

1  Initialize channel [3:0] ← 0 and FlagIn [7:0] ← 0;              
//FlagIn indicates whether the value in register has found a channel  
//to be scheduled                         

2  for i = 0 : 3 
3    for j = i : 7 
4      if Schedule [j] = 1 and FlagIn [j] = 0 
5       channel [i]  ←  reg [j] 
6       FlagIn [j]   ←  1  
7      end if 
8    end for 
9  end for 



Algorithm 2: Exit priority 

Input: Accepting signal Accept [7:0] and the value in channel channel [3:0]. 
Output: Register value Reg[7:0]. 

1  Initialize  FlagOut[3:0] ← 0;                                
// FlagOut indicates whether the value of the channel has found the 
//target register 

2  for i = 7 : 0 
3   for j = 0 : 3 
4     if Accept [i] = 1 and FlagOut [j] = 0 
5       channel[i] ←  reg[j] 
6       FlagOut [j] ←  1 
7     end if 
8   end for 
9  end for 

the next priority is judged. So the higher priority, the lower 
latency. From the entry logic, it can be seen that the latency of 
the timing path starting with �� is the lowest, and the timing 
path with �� as the starting point has the highest latency. The 
longest timing path is the critical path that determines the 
system frequency. So in determining the exit priority, the 
timing balance to be noticed.  

Signal Accept [7:0] is used to indicate whether ��~�� is 
a β-type register. For the exit priority of Fig.4 (2), the �� 
with the longest entry logic is considered first. If Accept [7] is 
true, channel 0 data is directly written to ��. Otherwise, �� 
is considered. The exit priority is specified as �� to �� in 
descending order. Each register judges channel 0 to channel 3 
successively. The condition for writing data in channel to �� 
is that accept [i] is true and the data in channel is not written 
to a register of higher priority than �� . The behavioural 
description is expressed as algorithm 2. 

The scheduling strategy discussed above can guarantee the 
compatibility of the novel register file to the external interface. 
And it make little latency and low power overhead. 

IV. RESULT AND DISCUSSION 

Mathematic processing unit (MaPU) is our in-house 
VLIW processor whose data format is 512-bit single 
instruction multiple data (SIMD). Its Dpath module is used as 
an experimental object to compare timing and power in this 
chapter. The MaPU core is composed of 8 Dpath modules. 
Each Dpath is 64 bits. There are 4 funtion units in a Dpath 
module. They are two 64-bit arithmetic logical units (ALUs) 
and two 64-bit multiply-accumulators (MACs). And there are 
4 input channels and the interconnection among functional 
units and input channels. Each FU has a local distributed 
register file whose depth is 8. And it has 8 writing ports. Two 
identical Dpath modules were used to experiment. FUs of one 
were equipped with the traditional register file. FUs of the 
other were equipped with the register file based on dynamical 
scheduling. The result is evaluated after synthesizing with 
Design Compiler and place & route with IC Compiler, with a 
16-nm logic library. The data of experiment are shown in 
Table 1 below. 

It can be seen from the data in Table 1, the register file 
based on dynamic scheduling optimizes the latency of the 
internetwork from 0.84 ns to 0.71 ns. The 15.48% 
optimization in latency raised the system frequency from 1.19  

TABLE I.  EXPERIMENT COMPARISON 

 

Frequency 
(GHz) 

Latency 
(ns) 

Power 
(mW) 

Traditional register file 1.19 0.84 43.24 

Register file based on 
dynamic scheduling 

1.41 0.71 31.38 

Absolute optimization - 0.13 11.86 

Relative optimization - 15.48% 27.42% 

GHz to 1.41 GHz. The DPath module power is reduced from 
43.23 mW to 31.78 mW. It is optimized by 27.42%. It can be 
seen from the experiment that the register file based on 
dynamic scheduling can effectively reduce the latency and 
power in the processor. 

CONCLUSION 

For the problem of excessive latency and power in the 
internetwork, a distributed file architecture based on dynamic 
scheduling is proposed. The architecture transfers a portion of 
logic on the internetwork to the close range scheduling logic 
among the registers which relieves timing pressure and power 
overhead on the internetwork. And a register redirection 
architecture and a set of dynamic scheduling strategy are 
designed to ensure the compatibility of the interface. The 
architecture is evaluated for the timing and power information 
by synthesis and place & route. The register file based on 
dynamic scheduling optimizes 15.48% latency compared with 
the traditional distributed register file which improves system 
frequency from 1.19 GHz to 1.41 GHz. System power reduces 
by 27.42%. The register file architecture is suitable for any 
VLIW processor. Dynamic scheduling strategy for different 
parameters of the register file is valid. 
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