
A Distributed Register File Architecture Based on
Dynamic Scheduling for VLIW Machine

Yang Guo1 2, Donglin Wang1, Zijun Liu1, Hongyu Meng1 2,
1 Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China

2 University of Chinese Academy of Sciences (UCAS), Beijing, China
E-mail: {guoyang2014, donglin.wang, zijun.liu, menghongyu2014}@ia.a.cn

Abstract—Distributed register files have the advantages of area
and power compared with centralized register files in very long
instruction word (VLIW) machine. But it may complicate the
internetwork. A distributed register file architecture based on
dynamic scheduling is proposed in our work. A portion of
latency on internetwork is shifted to the latency among registers
by latency transfer. And the decrease in the fanout of writing
ports leads to a reduction in the power of the internetwork. To
ensure the external compatibility of the distributed register file
interface, the register was redirection designed. A dynamic
scheduling strategy is designed to avoid conflicts between
physical entities and logical entities that redirect registers. The
optimization was evaluated on our in-house processor. The
register file based on distributed dynamic scheduling reduces
15.48% of latency. The system frequency is raised from 1.19
GHz to 1.41 GHz. The power decreased by 27.42%.

Keywords- distributed register file; VLIW machine; dynamic
scheduling; system frequency; power

I. INTRODUCTION

Extremely expanding application’s requirements to
computational performance is endless. Nowadays the demand
for the ability to handle intensive computing in lots of areas
such as communications, multimedia and artificial
intelligence is growing. VLIW (Very Long Instruction Word)
[1] architecture is the combination of multiple instructions that
can be operated in parallel by the compiler after mining the
potential parallelism between instructions to form a very long
instruction word with more than one opcode field which
improves the performance. Organization of traditional VLIW
machine register file is that a number of functional units share
a centralized global register file [2]. Because the centralized
global register files are flawed in terms of area and power, the
structure of distributed register file is proposed. It allocates
traditional register files to different functional units. Each
functional unit has a distributed local register file. Scott
Rixner and others have done related research on centralized
global register file and distributed register file [3].

The VLIW architecture in [4] uses a distributed register
file implementation. Due to the characteristics of the
distributed register file, the function units should be able to
access the register files to each other, which makes the
interconnection between the function units more complex. As
shown in Fig.1, (1) is the interconnection structure of the
functional unit with the centralized global register file, and (2)
is the interconnection structure of the functional units with the

FU0

FU1

FU2

FU5

FU4

FU3

Regfile

FU0

LRF FU5

LRF

FU4

LRF

FU1

LRF

FU2

LRF
FU3

LRF

(1) (2)

Figure 1. The internetwork of two register file architectures. (1): The
centralized global register file. (2): The distributed register file. The
connection of distributed register file is much more than centralized global
register file.

distributed register file. It can be seen that the number of
connections to functional units in the distributed registers has
increased significantly.

With the advent of nanometer times, interconnects are
becoming one of the most critical issues in the design of
electronic circuits and systems. Performance, power and area
are deeply affected by the interconnection, especially for the
global internetwork [5]. It is reported that interconnection is
more than 50% of the overall dynamic power in a
microprocessor [6]. How to reduce internetwork latency and
power has been a key issue in VLIW processor core design.
The entire system structure is divided into several logical
clusters called islands in [7-8]. Each island contains input
logic, local register files, and functional units. The local
register file is used to store the calculation results generated
by the internal functional unit. It is also responsible for
providing operands to the internal functional units and
external functional units located on other islands. And an
algorithm is proposed to optimize inter-island interconnects
and limit register reading ports to reduce system power.
However the latency between islands is ignored in [7-8]. A
novel type of single-compartment latency model was
proposed in [9].

At this stage most of the researches proceed from the
structure of the internetwork and find the optimal clustering
method through algorithm optimization to realize the
optimization of latency and power. Rarely research the
hardware structure of the register file to optimize. The register
file is the connection of the internetwork to the functional unit.
The latency and power of the internetwork are closely related
to the interface to the register file. Our work focus on the

The Strategic Priority Research Program of Chinese Academy of
Sciences (under Grant XDA-06010402) and Youth Innovation Promotion
Association of Chinese Academy of Sciences (Y5S7061G51)

hardware structure and access patterns for register file to
optimize the power and latency of the internetwork.

II. NOVEL DISTRIBUTED REGISTER FILE ARCHITECTURE

A. Latency Transfer

The novel distributed register file architecture reduces
latency and power that the internetwork creates at the interface
to register files by latency transfer. The traditional writing
structure of the distributed register as shown in dashed box of
Fig.2 (1). The amounts of register file’s writing port, reading
port and depth are assumed as 8, 4 and 8 respectively in the
paper. Distributed register files connect external networks and
functional units. The external network transfers data to the
register file by writing operation. The local functional unit get
the data in the register file to execute the operation in the
instruction by reading operation. The functional unit can send
the processed result to the internet to write to the register file
of other unit, and can also write the result back to the local
register file. The functional unit can send the processed result
to the register file of other unit through internetwork, and can
also write the result back to the local register file. The writing
logic is in the dashed box, we can see that there is a multi-
layer selection logic. This greatly increases the latency of the
internetwork at the register file interface. And the long wire of
the internetwork at writing ports of the high fan-out also
brought considerable power.

To simplify the writing port logic of the register file, the
register file of each writing port binds a register input. In the
current cycle, if the writing port is enabled, the corresponding
data will be unconditionally written to the register. The
existing data in the register is judged. If the data are logically
overwritten, no scheduling is needed. Otherwise it must be
dispatched to other registers. The destination register to be
dispatched must be a register whose write enable is not valid
for the current cycle and original reserved data can be
overwritten.

The idea of latency transfer is to transfer the multi-level
selection logic before register file to register-to-register data
scheduling. As Fig.2 (2) shows, the selection logic between
the internetwork and the register file is reduced to only one
level of latency and there is no high fan-out. Instead, there is
a scheduling logic between the registers inside the register file.
The network is inside the register file. so there is no long wire.
The power of scheduling internal is much lower relatively.

FU

FU
External
Network

Internal Scheduling
Logic

Reading
Logic

External
Network

Writing
Logic

of Other
Registers

Reading
Logic

(1) (2)

Figure 2. The structure of two register files. (1): The traditional structure
of register file. (2): The redirection register file. The writing logic of
redirection register file is much simpler than traditional one.

because its timing path is among registers, it does not take the
internetwork timing latency, eased the timing pressure of the
internetwork. And there is no other inherent latency in the
timing path among the registers except for the scheduling
logic. So it can not be the critical path that affect system
frequency.

B. Register Redirection

According to the idea of latency transfer and the structure
of novel register file described above, the meaning of each
register changes. Each register’s physical and logical meaning
of the traditional register file in Fig. 2 (1) is the same, that is,
the data stored in each register physical represents the data
stored in the logical register. The same property applied to the
structure in Fig.2 (2) obviously leads to data storage errors.
Therefore, the structure of register and the way of data stored
must be changed. The concept of register redirection is
proposed.

The ��� physical register is denoted as ��, 0≤i≤7. Three
bits are added to each physical register to indicate its logical
meaning. Fig.3 shows the structure after register redirection.
High-K bits are logical labels that represent the label of the
logical register where the data in this physical register resides,
denoted ��[K]. The lower M bits represent the data stored in
the logical register represented by the logical label of the
physical register. The lower M bits are the same as the data in
the traditional register file, denoted by ��[M]. That is to say,
a K-bit logical label is added to redirection register compared
to the traditional register. The K is related to the depth of the
register file. If the depth of the register file is N, K = log��.
In this paper, K = 3. Since VLIW machines generally handle
vector operations, M is large generally. Distributed registers
are local registers for each functional unit. Their depths is
shallow. The overhead of K-bit after taking the logarithm is
minimal compared to M.

C. Reading Logic

According to the structure of the redirection register, it can
be seen that the logic of reading and writing changes. The
logical meaning of each physical register is different in
different clock cycle. Changes in writing logic involve the
dynamic scheduling strategy, which is discussed in section 3.
The characteristics of reading logic is discussed in this section.

The reading logic of traditional register file is that the
reading address is regarded as the address of multiplexer
directly. However, the physical number of the redirection
register does not represent the logical number of the data
stored. So in the process of reading, the reading address must
be compared with the logical label of each register. The
physical register whose logical label matchs is selected. The
stored data is read out.

III. DYNAMIC SCHEDULING STRATEGY

The novel register file structure described above reduces
the latency of the internetwork and the power of long wire fan-

M Bits of DataK Bits of Logical Tags

Figure 3. The structure of single redirection register.

outs. But to ensure that requirement of reading, writing and
storage, the interface of the novel register file must be the
same as traditional register file. A strategy for dynamic
scheduling of redirection registers is presented in this chapter.
Under the premise of normal access, we try to make a minimal
amount of overhead.

A. Register Classification

To assure the correctness, two types of registers must be
identified before scheduling. One is the physical registers
whose data stored have to be scheduled. These registers are
call as α-type. When a logical register is written to a new value,
the original value will be overwritten. Thus, in the novel
register file architecture, the necessary and sufficient
conditions for the physical register �� is an α-type are as
follows.

(���� = 1)	&	�∄j ∈ P	�. �. (���� = 1�&(���� = ��[K])) (1)

The registers whose stored data can be erased is the second
type. It also means that the register can be used to accept other
data. These registers are call as β-type. When the data in the
register is overwritten by the newly written data, the old value
of the data is meaningless and can be erased. Therefore, the
necessary and sufficient conditions for the physical register
�� is a β-type register are as follows.

(���� = 0)	&	�∃j ∈ P	�. �. (���� = 1�&(���� = ��[K])) (2)

B. Conflict Analysis

Scheduling may conflict. A conflict occurs when multiple
scheduled data are selected to the same physical register to be
received. Conflicts can cause data storage errors. The focus of
the scheduling strategy is to resolve conflicts. When the
number of physical registers is 8, the maximum amount of
registers to be scheduled is analysed.

The amount of the enabled writing port is denoted as n.
When 1 ≤ n ≤ 4, it is possible to schedule data only when
writing port is enabled according to expression (1). So the
amount of physical registers that need to be scheduled is at
most n. When 5 ≤ n ≤ 8, it can be analysed that if the amount
of the data scheduled is 4, there must be 4 writing port is
enabled, and there are 4 new data to be written to the register
file. Then the 4 scheduled data and the 4 newly written data
constitute all the data stored in the 8 logical registers. So the
amount of physical registers that need to be scheduled is 4 at
most in this case. In summary, the maximum value ���� of
physical registers that need to be scheduled is as follows.

																															���� = �
�														1 ≤ n ≤ 4
4															5 ≤ n ≤ 8

 (3)

According to the equation (3), the maximum amount of
data to be scheduled clock cycle is 4. When there are 4 data to
be scheduled at the same time, any two of these data will not
be scheduled to the same physical register have to be
guaranteed. Each data scheduled must finds its own unique
register to be accepted.

C. Priority Scheduling Channel

According to the conflict analysis in the previous section,
the maximum amount of data to be scheduled in each cycle is
4. Therefore, four scheduled channels can meet all the

Scheduling
Channel

Scheduling
Channel 0

Scheduling
Channel 1

Scheduling
Channel 2

Scheduling
Channel 3

(b)(a)

Entry
Priority

Exit
Priority

Figure 4. (1): The structure of entry logic. (2): The structure of exit logic.

conditions. There are two ports for each channel. The entry is
connected to the source register for scheduled data. And the
exit is connected to the destination register for scheduled data.
The process of scheduling is divided into two steps. The first
step is entry logic. Each channel chooses to receive a data to
be scheduled in α-type registers according to its priority as
shown in Fig.4 (1). The second step is exit logic. Each β-type
register chooses to receive a data in four channels according
to its priority as shown in Fig.4 (2). The address signal of
multiplexer is controlled by priority. The priority determines
directly whether the process of scheduling can avoid conflicts.

The entry priority for Fig.4 (1) is specified as �� to ��
in descending order for channel 0. �� has the highest priority.
Signal Schedule [7:0] is used to indicate whether ��~�� is
an α-type register. If Schedule [0] is true, the data in �� goes
directly to channel 0. If Schedule [0] is false, ��is considered.
If Schedule [1] is true, the data in �� goes directly to channel
0. In accordance with the law, the �� to �� are considered
sequentially. The entry priority is specified as �� to �� in
descending order for channel 1. Do not care about �� .
Because if Schedule [0] is true, the data in �� goes directly
to channel 0 and not to channel 1. However, not only Schedule
[i] to be judged, but also the data in �� has entered channel 0
needs to be considered. Accordingly, the entry priority is
specified as �� to �� in descending order for channel 2. Not
only Schedule [i] to be judged, but also the data in �� has
entered channel 0 and channel 1 needs to be considered. The
priority for channel 3 is to follow this law. The behavioural
description of priority judgment discussed above is expressed
as algorithm 1.

The logic of high-priority requires fewer selectors. The
highest priority logic only needs one address signal to be
judged. If the condition is met, the data is selected. Otherwise,

Algorithm 1: Entry priority

Input: Scheduling signal Schedule [7:0] and the value in registers reg [7:0].
Output: Channel value channel [3:0].

1 Initialize channel [3:0] ← 0 and FlagIn [7:0] ← 0;
//FlagIn indicates whether the value in register has found a channel
//to be scheduled

2 for i = 0 : 3
3 for j = i : 7
4 if Schedule [j] = 1 and FlagIn [j] = 0
5 channel [i] ← reg [j]
6 FlagIn [j] ← 1
7 end if
8 end for
9 end for

Algorithm 2: Exit priority

Input: Accepting signal Accept [7:0] and the value in channel channel [3:0].
Output: Register value Reg[7:0].

1 Initialize FlagOut[3:0] ← 0;
// FlagOut indicates whether the value of the channel has found the
//target register

2 for i = 7 : 0
3 for j = 0 : 3
4 if Accept [i] = 1 and FlagOut [j] = 0
5 channel[i] ← reg[j]
6 FlagOut [j] ← 1
7 end if
8 end for
9 end for

the next priority is judged. So the higher priority, the lower
latency. From the entry logic, it can be seen that the latency of
the timing path starting with �� is the lowest, and the timing
path with �� as the starting point has the highest latency. The
longest timing path is the critical path that determines the
system frequency. So in determining the exit priority, the
timing balance to be noticed.

Signal Accept [7:0] is used to indicate whether ��~�� is
a β-type register. For the exit priority of Fig.4 (2), the ��
with the longest entry logic is considered first. If Accept [7] is
true, channel 0 data is directly written to ��. Otherwise, ��
is considered. The exit priority is specified as �� to �� in
descending order. Each register judges channel 0 to channel 3
successively. The condition for writing data in channel to ��
is that accept [i] is true and the data in channel is not written
to a register of higher priority than �� . The behavioural
description is expressed as algorithm 2.

The scheduling strategy discussed above can guarantee the
compatibility of the novel register file to the external interface.
And it make little latency and low power overhead.

IV. RESULT AND DISCUSSION

Mathematic processing unit (MaPU) is our in-house
VLIW processor whose data format is 512-bit single
instruction multiple data (SIMD). Its Dpath module is used as
an experimental object to compare timing and power in this
chapter. The MaPU core is composed of 8 Dpath modules.
Each Dpath is 64 bits. There are 4 funtion units in a Dpath
module. They are two 64-bit arithmetic logical units (ALUs)
and two 64-bit multiply-accumulators (MACs). And there are
4 input channels and the interconnection among functional
units and input channels. Each FU has a local distributed
register file whose depth is 8. And it has 8 writing ports. Two
identical Dpath modules were used to experiment. FUs of one
were equipped with the traditional register file. FUs of the
other were equipped with the register file based on dynamical
scheduling. The result is evaluated after synthesizing with
Design Compiler and place & route with IC Compiler, with a
16-nm logic library. The data of experiment are shown in
Table 1 below.

It can be seen from the data in Table 1, the register file
based on dynamic scheduling optimizes the latency of the
internetwork from 0.84 ns to 0.71 ns. The 15.48%
optimization in latency raised the system frequency from 1.19

TABLE I. EXPERIMENT COMPARISON

Frequency
(GHz)

Latency
(ns)

Power
(mW)

Traditional register file 1.19 0.84 43.24

Register file based on
dynamic scheduling

1.41 0.71 31.38

Absolute optimization - 0.13 11.86

Relative optimization - 15.48% 27.42%

GHz to 1.41 GHz. The DPath module power is reduced from
43.23 mW to 31.78 mW. It is optimized by 27.42%. It can be
seen from the experiment that the register file based on
dynamic scheduling can effectively reduce the latency and
power in the processor.

CONCLUSION

For the problem of excessive latency and power in the
internetwork, a distributed file architecture based on dynamic
scheduling is proposed. The architecture transfers a portion of
logic on the internetwork to the close range scheduling logic
among the registers which relieves timing pressure and power
overhead on the internetwork. And a register redirection
architecture and a set of dynamic scheduling strategy are
designed to ensure the compatibility of the interface. The
architecture is evaluated for the timing and power information
by synthesis and place & route. The register file based on
dynamic scheduling optimizes 15.48% latency compared with
the traditional distributed register file which improves system
frequency from 1.19 GHz to 1.41 GHz. System power reduces
by 27.42%. The register file architecture is suitable for any
VLIW processor. Dynamic scheduling strategy for different
parameters of the register file is valid.

REFERENCES

[1] Techcon, Arm. "Implementing the Viterbi algorithm in modern digital
communications systems." Eetimes Com (2009).

[2] Yang, Yan. "Design and Implementation of VLIW Processor System
Level Verification Platform." Journal of Electronic Measurement &
Instrument 21.2(2007):81-85.

[3] Rixner, Scott, et al. Register organization for media processing.
Register Organization for Media Processing. 2000:375-386.

[4] Wang, Donglin, et al. "MaPU: A novel mathematical computing
architecture." IEEE International Symposium on High
PERFORMANCE Computer Architecture IEEE, 2016:457-468.

[5] Bottoms, Bill. "The International Roadmap for Semiconductors 2007."
International Conference on Electronic Packaging Technology IEEE,
2007:1-1.

[6] Magen, Nir, et al. "Interconnect-power dissipation in a microprocessor.
" System Level Interconnect Prediction (2004):7-13.

[7] Cong, Jason, Y. Fan, and J. Xu. "Simultaneous resource binding and
interconnection optimization based on a distributed register-file
microarchitecture." Acm Transactions on Design Automation of
Electronic Systems 14.3(2006):824-833.

[8] Huang, Juinn Dar, et al. "Communication Synthesis for Interconnect
Minimization Targeting Distributed Register-File Microarchitecture."
Ieice Transactions on Fundamentals of Electronics Communications &
Computer Sciences 94-A.4(2011):1151-1155.

[9] Huang, Juinn Dar, et al. "Performance-driven architectural synthesis
for distributed register-file microarchitecture considering inter-island
delay." International Symposium on Vlsi Design Automation and Test
IEEE, 2012:169-172.

