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Abstract—Unsupervised domain adaptation aims to leverage the labeled source data to learn with the unlabeled target data. Previous
trandusctive methods tackle it by iteratively seeking a low-dimensional projection to extract the invariant features and obtaining the
pseudo target labels via building a classifier on source data. However, they merely concentrate on minimizing the cross-domain
distribution divergence, while ignoring the intra-domain structure especially for the target domain. Even after projection, possible risk
factors like imbalanced data distribution may still hinder the performance of target label inference. In this paper, we propose a simple
yet effective domain-invariant projection ensemble approach to tackle these two issues together. Specifically, we seek the optimal
projection via a novel relaxed domain-irrelevant clustering-promoting term that jointly bridges the cross-domain semantic gap and
increases the intra-class compactness in both domains. To further enhance the target label inference, we first develop a ‘sampling-and-
fusion’ framework, under which multiple projections are independently learned based on various randomized coupled domain subsets.
Subsequently, aggregating models such as majority voting are utilized to leverage multiple projections and classify unlabeled target
data. Extensive experimental results on six visual benchmarks including object, face, and digit images, demonstrate that the proposed
methods gain remarkable margins over state-of-the-art unsupervised domain adaptation methods.

Index Terms—Unsupervised domain adaptation, domain-invaraint projection, class-clustering, sampling-and-fusion.
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1 INTRODUCTION

T RADITIONAL machine learning methods often assume
that the training and testing data lie in the same feature

space and have the same distribution [1]. However, this
assumption does not always hold in massive real-world
scenarios. For example, it is really challenging to recognize
the adult faces while exploiting a set of labeled face images
captured from their childhood. When this assumption
is not verified, domain shift or covariate shift (i.e., the
distributions of training and testing data are not identical
when the conditional distributions are the same) largely
affects the performance at test time. To address this issue,
acquisition of annotated data (e.g., adult faces) is critical,
however, data labeling is expensive and time-consuming.
Hence one can resort to another strategy, transfer learning,
which tries to explore the heterogeneous knowledge hidden
in target data. Recently, considerable research efforts have
been devoted to this topic, and impressive progress has been
made in a wide range of applications, e.g., computer vision
[2], [3], [4], [5], natural language processing [6], [7], [8].
Typically, unsupervised domain adaptation (DA) that aims
to transfer the same task from supervised source domains
to unsupervised target domains, has drawn increasing
attention in computer vision literature [4], [5], [9], [10], [11],
[12], [13]. The common practice of discriminative training
is not generally feasible, however, making it especially
challenging to describe the cross-domain relationship.

To handle the covariate shift, early domain adaptation
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works compute the probability of each sample belonging
to the source or target domain via likelihood ratio
estimation. One favorite principle for instance re-weighting
is Maximum Mean Discrepancy (MMD) in two-sample
statistical test [14]. Such instance re-weighting strategies
are intuitive, however, they are always separated from the
classifier training procedure. To deal with this drawback,
Chu et al. [3] propose to jointly re-weight the training
samples and learn a classifier. Meanwhile, Long et
al. [9] learn a domain-invariant projection while both
the conditional distribution and marginal distribution
divergences are minimized. Due to the lack in labeled target
data, the pseudo labels on target data and the projection
function are optimized alternately. Baktashmotlagh et al.
[15] investigate the Gaussian kernel into MMD, and
minimize the within-class variance that encourages class
clustering in source domain simultaneously.

Generally speaking, bridging the gap between the source
and target domain and preserving the discriminative power
for the labeled source data are two critical components
for unsupervised DA methods. Some works [9], [10],
[16] experimentally have proved that the pseudo labels
of target data involved in the optimization process can
significantly boost the adaptation performance. Specifically,
the pseudo labels are exploited to minimize the empirical
conditional distribution divergences (i.e., the differences
between class-wise means), nevertheless, none of them
have ever investigated the class clustering objective for the
target domain. Therefore, we investigate a novel domain-
irrelevant class clustering objective that is theoretically
related to both the distribution divergence and the variance
minimization terms involved in both domains. To illustrate
the necessity of the target clustering structure, we also
provide a toy example in Fig. 1, where the differences
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between class-wise means are minimized in both subspaces.
Clearly, in the left subspace, the classification performance
is expected to be much worse than it in the right one due
to its small margin for projected target data. The proposed
objective is further decomposed into three terms, i.e.,
the empirical conditional distribution divergence and two
intra-domain class-clustering terms. We naturally obtain
a relaxed domain-irrelevant class-clustering objective by
introducing a balancing parameter for the intra-domain
terms. Obviously, to infer the optimal projection, we still
need to know the pseudo target labels. As such, we jointly
learn the domain-invariant projection via the proposed
objective and infer the pseudo target labels in a loop. In each
iteration, the pseudo labels are inferred via the classifier
trained on the projected source data.

Fig. 1. A toy example of the sought subspaces with different structures,
(a). promoting source class-clustering, (b). promoting domain-irrelevant
class-clustering (confusion), respectively. (Best viewed in colors.)

Apart from the domain-invariant projection inference,
how to label target data is also a critical issue for
unsupervised domain adaptation. Nevertheless, this issue
has long been overlooked, and a classifier is usually
trained on the whole projected source data to classify the
projected target data. Classifiers trained in this manner
are likely to be overfitting for a homogeneous task, let
alone the heterogeneous task on the projected source and
target domains. Benefiting from the combination of multiple
feature representations, previous works [4], [17] achieve
promising performance in domain adaptation. Inspired
by these methods and classical ensemble models such as
bootstrap aggregating (bagging) [18], we further exploit
several coupled source-target sub-domain pairs to learn
various local domain-invariant projection functions. To
further increase the robustness, we also adopt the idea of
random feature selection in random forest [18] that has been
proven to be less overfitting. Hence, the original problem
has been distributed into many small-sized problems,
which decreases the time complexity dramatically and is
also desirable for unsupervised DA tasks with large-scale
instances and high-dimensional features.

Towards this end, we first propose a novel domain-
invariant projection ensemble framework for unsupervised
domain adaptation. Concerning the domain-invariant
projection, we propose a novel objective function that
considers both the conditional distribution divergence
and class clustering promoting terms involved in both
domains. To further enhance the performance, a ‘sampling-
and-fusion’ strategy in Fig. 2 is developed to improve
the generalization ability. Especially, to infer the domain-
invariant projection for each cross-domain subset, we arrive
at a generalized eigenvalue decomposition problem, which
has a closed-form solution. To label the target data in a
loop, we adopt a Nearest Neighbor (NN) classifier on the

Fig. 2. Overview of the proposed ‘sampling-and-fusion’ framework.
Several coupled source-target domain subsets are generated via
randomly instances and feature sampling. Then for each source-target
domain pair, we learn the optimal domain-invariant projection via the
proposed domain-invariant object function. Finally these classifiers are
trained on the whole source data and be fused in an ensemble manner
to predict the whole unlabeled target data. (Best viewed in colors.)

projected subspace for simplicity. Finally, we provide two
popular strategies, i.e., feature concatenation and majority-
voting scheme in the fusion step. Overall, the problem is
also computationally efficient, and is flexible to large-scale
unsupervised domain adaptation. The contributions of this
paper are summarized as follows.

• To compensate for the lack of target structure
constraint, we propose a novel objective function
relaxed from a Domain-Irrelevant Class clustEring
(DICE) term for unsupervised domain adaptation.
The optimal projection and pseudo target labels
are alternately optimized, and in each iteration the
projection is computed in closed-form via solving a
generalized eigenvalue problem.

• An ensemble strategy is first exploited for
unsupervised domain adaptation problems,
where we construct various domain adaptation
tasks via randomly selecting the instances and
identical features for both domains and infer
the corresponding domain-invariant projections,
making the ensemble method faster and trivially
parallelizable in the projection inference step.

• Extensive empirical experimental results on several
benchmark datasets demonstrate that the proposed
methods achieve performances superior to state-of-
the-art unsupervised domain adaptation methods
and the ensemble method always outperforms
its single-projection one with noticeable margins.
Particularly, on the challenging cross-view PIE
database, DICE advances the best accuracies from
58.8% [19], 65.1% [20] to 80.6%. When combined with
deep features, DICE is even competitive with current
state-of-the-art deep methods.

The remainder of this paper is organized as follows.
In Section 2, we provide a brief review on previous
unsupervised domain adaptation methods. Section 3 is
dedicated to introducing some background knowledge. In
Section 4, we introduce the proposed methods with the
novel objective formulation and some sampling-and-fusion
strategies. Section 5 is devoted to the experimental setting,
comparisons, and analysis, which demonstrate the superior
performance of our methods. Section 6 concludes this paper
with possible future research directions.
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2 PRIOR WORK

In this section, we mainly review previous unsupervised
domain adaptation methods and divide them into two main
categories: shallow methods (e.g., instance re-weighting,
feature augmentation, and feature transformation methods)
and end-to-end deep adaptation methods.

Despite the distribution difference among domains,
instance re-weighting methods usually assume the identical
conditional distributions. Maximum entropy density
estimation is exploited to infer the re-sampling weights
[21], while [22] estimates the re-sampling weights by
matching training and test distribution feature means in
a reproducing kernel Hilbert space, i.e., Maximum Mean
Discrepancy (MMD). Besides optimizing the weights, [3]
also learns the optimal parameters of a classifier.

One incredibly simple approach [7] firstly augments the
features for both domains, then adopts the trained classifier
on source domain to predict unknown target data, this easy
strategy even beats state-of-the-art approaches at that time.
[23] extends [7] by utilizing two newly proposed feature
mapping functions for heterogeneous domain adaptation.
Besides, [2], [4] propose to embed each domain into one
d-dimensional linear subspace, subsequently, a geodesic
path between the source and target domain is built. Then
new feature representations are obtained via sampling
points in the path and concatenating these intermediate
domains. GFK [24] further defines a geodesic-flow kernel
that integrating over all the intermediate subspaces lying on
the geodesic path without sampling. Besides, [17] chooses
different amounts of source samples from coarse to fine via
MMD, and generates several new feature representations
via GFK for each level. [25] proposes a pioneering semi-
supervised cross-domain kernel learning framework which
can incorporate many existing kernel methods.

Additionally, feature transformation that aligns source
and target domains is a more natural choice for DA.
SA [26] discovers an optimal transformation matrix to
minimize the Bergman matrix divergence between two PCA
subspaces. Recently, CORAL [27] investigates the second-
order statistics instead of first-order MMD, which equips the
target domain with the same covariance matrix of the source
domain. [28] further utilizes the second-order and higher-
order scatter tensor to learn the optimal transformation.
Besides direct alignment transformations, another popular
paradigm attempts to infer domain-invariant features
via dimensionality reduction. Following this idea, [29]
learns a transformation matrix that minimizes the distance
between the source and target domains via MMD and
preserves the data variances. JDA [9] firstly considers the
conditional distribution, where the class means besides the
total means are also required to be close to each other.
Taking into consideration both the supervised source class
clustering and the inter-domain MMD term, [15] further
formulates this objective with an orthogonal constraint as
an optimization problem on the Grassmann manifold. The
Hellinger distance and polynomial kernel are investigated
to increase the robustness of manifold-based DA methods
in [5]. [11] discovers the projection via inter-domain second-
order information on the SPD manifold. [16] further extends
[9] to address that the inter-domain class means belonging

to different classes should be pushed far away. By contrast,
JGSA [10] learns two different transformation matrices for
each domain, thus, a subspace alignment constraint in [26]
is further developed to be combined with other statistical
alignment objectives. SCA [30] takes the between and within
class scatters of the source domain into consideration.

More recently, deep learning techniques have achieved
remarkable successes for computer vision [31], [32].
Benefiting from the powerful deep neural networks, [33],
[34], [35], [36], [37], [38] obtain promising classification
performance on several benchmark domain adaptation
datasets. [35] extends [27] by leveraging the second-order
correlation alignment loss into the deep framework. [34]
considers the multi-kernel MMD defined among several
layers, while [33] merely utilizes linear MMD on a single
layer. Furthermore, [36] focuses on the joint distribution
discrepancies instead of the marginal one. [39] describes an
end-to-end deep learning framework for jointly optimizing
the optimal deep feature representation, cross domain
transformation, and the target label inference for state-
of-the-art unsupervised domain adaptation. Besides these
discrepancy-based methods, adversarial loss functions are
also favored in deep domain adaptation methods [40], [41],
[42], [43]. Generally, adversarial models aim to introduce a
novel domain discriminator to promote domain confusion,
namely, this discriminator cannot determine which domain
the data come from. In this manner, these two domains are
considered to be drawn from the same distribution [44].
Existing adversarial DA methods attempt to jointly reduce
the domain divergence and preserve the discriminative
ability of source data, and a summarization of these
methods can be referred in [43]. Regarding the loss function,
[42], [43], [45] exploit the min-max loss, inverted label
GAN loss and confusion loss, respectively. By contrast,
[46] proposes to learn a joint distribution of multi-domain
images with a weight-sharing constraint on generators.

Apart from the aforementioned feature-level methods,
[47] only exploits the black-box source classifier learned
on source domain to preserve the privacy of source data.
Although most existing DA methods are proposed for
homogeneous transfer learning problems, there are still
some approaches that leverage feature augmentation [23]
or learn an intermediate domain [48], [49] to bridge the
gap across domains for heterogeneous DA. In addition,
webly-supervised DA methods [50], [51] extract privileged
information from freely available web videos for action and
event recognition, which is a fertile research direction.

Generally, despite the promising performance, there
are some limitations for these shallow methods, 1). the
target structure is usually ignored in adaptation models;
2). they can not cope well with different label distributions
within two domains. Besides, deep domain adaptation
methods not only rely on the high-capability computers,
but also enjoy a relatively long training time as well as
a challenging parameter-tuning process. To this end, we
propose a novel domain discrepancy objective to consider
the clustering structure in target domain for domain-
invariant projection inference, and introduce an ensemble
framework to increase its classifier’s discriminative ability
and reduce the complexity simultaneously, making it even
flexible for large-scale high-dimensional datasets.
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3 NOTATIONS AND PRELIMINARIES

Let Ds = {(xis, yis)}
ns
i=1 denote ns data points and their

associated labels of the source domain. Likewise, we denote
Dt = {(xjt , y

j
t )}

nt
j=1 nt data points of the target domain. For

unsupervised domain adaptation, samples like xis and xjt
share the same feature dimensionality d, yjt ∈ {0, 1}

C is
not known in the training phrase, and C is the number
of classes. For simplicity, Xs ∈ Rd×ns and Xt ∈ Rd×nt

indicate all the source and target data respectively, and
each column of Xs/t represents a data point in Ds/t.
Besides, Ys ∈ {0, 1}ns×C and Yt ∈ {0, 1}nt×C denote the
one-hot encodings with the semantic information, while
yis(a) = 1 means that i-th source data is associated with
the a-th class. The domain-invariant projection function
is defined as simple linear function f(x) = ATx, and
the projection parameter A ∈ Rd×m, where m is the
subspace dimensionality. ‖A‖F :=

√
tr(AAT ) represents

the Frobenius norm of A, where tr(·) denotes the trace of
a square matrix, and ‖a‖2 =

√
aTa denotes the l2 norm of

one column vector a. I denotes the identity matrix, and 1 is
the vector of all ones with appropriate dimensionality, and
H is the Reproducing Kernel Hilbert Spaces (RKHS).

As stated above, one intuitive and effective solution
for domain adaptation is to seek one projection function,
namely domain-invariant projection (DIP), via which
different domains nearly share the same distribution.
Among these DIP methods, JDA [9] is a classical one
that tries to discover a projection function that adapts
joint distributions including both marginal and conditional
distributions between domains without any labeled target
data. The mathematical formulation for the joint distribution
difference, which can be further decomposed into two
different distribution differences, is shown below:

min
T

∥∥EP (xs,ys) [T (xs) , ys]− EP (xt,yt) [T (xt) , yt]
∥∥2︸ ︷︷ ︸

joint distribution difference

≈
∥∥EPs(xs) [T (xs)]− EPt(xt) [T (xt)]

∥∥2︸ ︷︷ ︸
marginal distribution difference

+
∥∥EQs(ys|xs) [ys|T (xs)]− EQt(yt|xt) [yt|T (xt)]

∥∥2︸ ︷︷ ︸
conditional distribution difference

(1)

, where T (·) is the optimal projection function to be sought,
and Ep(f(x)) is the expectation of f(x) under p.

For such distribution differences involved in domain
adaptation, Maximum Mean Discrepancy (MMD) [14] has
been a widely used measure tool. MMD is primarily
proposed to tackle the two-sample problem (samples come
from two probability distribution p and q) via a statistical
test of the hypothesis that these two distributions are
different. The main idea of MMD is to find a smooth
function via which the difference between the mean function
values (namely, mean discrepancy) on p and q is largest. Let
F be a class of functions f : X → R, then the expressions of
MMD and its biased empirical estimate are defined as

MMD[F , p, q] := sup
f∈F

(Ex∼p[f(x)]− Ey∼q[f(y)]) ,

MMDb[F , X, Y ] := sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(yi)

)
.

(2)

Here X = {xi}mi=1 and Y = {yi}ni=1 denote m and n data
points i.i.d. sampled from p and q, respectively. From the
definition above, we can see that MMD = 0 if and only if
p is indistinguishable from q (namely, p = q). Next, when F
becomes a kernel function set k : X ×X → R in a universal
RKHS, then the witness function and its biased empirical
estimate can be referred in [52].

4 THE PROPOSED FRAMEWORK

4.1 Domain-invariant Projection via Domain-irrelevant
Class Clustering

Even most efforts have been devoted to minimizing the
distribution difference between the source and target
domain, how to leverage the semantic information in the
labeled source domain is also critical for unsupervised
DA methods. While some approaches [26], [27] totally
split projection learning and classifier learning, they merely
exploit the semantic labels to the final classifier training
phrase after alignment or projection, thereby obtaining
inferior performance. As shown in [10], [15], a class-
clustering promoting term is utilized to increase the
compactness of each class and preserve the discrimination of
the projected source domain. Generally, the overall objective
function of DIP that includes the class clustering promoting
term is formulated as below:

A∗ = arg min
A∈S

Φ(ATXs, A
TXt)+λ

C∑
c=1

nc
s∑

i=1

‖AT (xis−µs,c)‖22. (3)

Here function Φ(·, ·) tries to align the source and target

domain, and µs,c =

∑
yi
s(c)=1 x

i
s∑

i y
i
s(c)

is the c-th class center
in the source domain, and S is a possible constraint on
the projection function A, e.g., orthogonality constraint
S = {A|ATA = I} in [15].

Besides, inspired by recent works [9], [14], we can
simply use the empirical MMD in Eq. (2) as the distribution
difference measure to compare different distributions, i.e.,
the distance between the sample means of source and target
data. Hence in this manner, Eq. (1) can be simplified as,

min
A

Γ(A) = ‖AT (µs − µt)‖22 +

C∑
c=1

‖AT (µs,c − µt,c)‖22, (4)

where the first term is the marginal distribution difference
measured via MMD and the second term represents the
conditional distribution difference likewise. Besides, µs =∑

i x
i
s

ns
and µt =

∑
i x

i
t

nt
are the global centers of source and

target data, respectively. Likewise, µt,c =

∑
ŷi
t(c)=1

xi
s∑

i ŷ
i
t(c)

is the

c-th class cluster in the target domain, ŷt ∈ {0, 1}C is the
pseudo label vector estimated from the previous iteration.

Although these DIP approaches achieve substantial
gains over previous state-of-the-art methods, they do not
even consider the same class-clustering encouraging loss
on the target domain. On the contrary, JDA involves the
pseudo labels on target domain into seeking an optimal
projection, and experimentally proves the effectiveness of
them for unsupervised DA. Besides, [53] investigates the
discriminative clustering for target data, which effectively
improves the adaption performance. Hence, we believe
that encouraging class clustering regardless of the source
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or target domain jointly with minimizing the distribution
differences across domains can further boost the adaptation
performance. Then in this paper, we propose a novel
objective function that connects two domains together in
terms of the projection A,

min
A

Ω(A) =

C∑
c=1

∑
x∈Dc

‖AT (x− µc)‖22, (5)

where Dc = {xis|yis(c) = 1} ∪ {xjt |ŷ
j
t (c) = 1} consists

of all data points that are associated with one identical
class c from both source and target domains, and µc =∑

yi
s(c)=1 x

i
s+

∑
ŷi
t(c)=1

xi
t∑

i y
i
s(c)+

∑
i ŷ

i
t(c)

is the domain-irrelevant class center.
Obviously, once the pseudo target labels are obtained, this
term above will bring all data with the same class label
together. That is to say, all data from the same class are
close to each other, hence, both the intra-domain variance
and the inter-domain differences are minimized at the same
time. As shown in Fig. 1, it indeed increases the compactness
of each class in both domains, and it seems that this
domain-irrelevant clustering term can also pull closer the
heterogeneous centers from same class in different domains.

To investigate the relation with conditional distribution
difference in Eq. (4), denoting by Ds

c = {xis|yis(c) = 1} and
Dt
c = {xjt |ŷ

j
t (c) = 1} samples from the c-th class in the

source and target domain respectively, we further rewrite
the objective function in Eq. (5) as follows. [x← ATx]∑

x∈Dc

‖x− µc‖22 =
∑
x∈Ds

c

‖x− µc‖22 +
∑
x∈Dt

c

‖x− µc‖22

=
∑
Ds

c

‖x− µs,c + µs,c − µc‖22 +
∑
Dt

c

‖x− µt,c + µt,c − µc‖22

=
∑
x∈Ds

c

‖x− µs,c‖22 +
∑
x∈Dt

c

‖x− µt,c‖22

+ nc
s · ‖µs,c − µc‖22 + nc

t · ‖µt,c − µc‖22

=
∑
x∈Ds

c

‖x− µs,c‖22 + nc
s‖µs,c −

nc
sµs,c + nc

tµt,c

nc
s + nc

t

‖22

+
∑
x∈Dt

c

‖x− µt,c‖22 + nc
t‖µt,c −

nc
sµs,c + nc

tµt,c

nc
s + nc

t

‖22

=
∑
x∈Ds

c

‖x− µs,c‖22 +
∑
x∈Dt

c

‖x− µt,c‖22 + β‖µs,c − µt,c‖22. (6)

Here the entire center of the c-th class over both domains
is denoted by µc, and ncs =

∑
i y
i
s(c) and nct =

∑
j ŷ

j
t (c)

denote the size of the c-th source and target class. To help
understand the deduction, the middle terms

∑
yis(c)=1(x −

µs,c) = 0 and
∑
yjt (c)=1(x− µt,c) = 0 are further discarded.

Besides, the trade-off parameter β = (
nc
sn

c
t

nc
s+n

c
t
) is a constant.

Furthermore, the data point x and its related center µ can
be easily replaced with their projected expressions. That
is to say, the domain-irrelevant class-clustering promoting
term can be decomposed into three terms, i.e., conditional
distribution difference in Eq. (4), source class-clustering
promoting term in Eq. (3), and that of target domain. As
far as we know, it is the first attempt to discover the
effectiveness of variance minimization on target domain and
analyze the relationship between the intra-domain variance
minimization and the cross-domain empirical distribution
difference minimization.

However, Eq. (5) favors larger-size categories with larger
β. To allow for more flexibility and alleviate the bias
toward the majority class, we introduce a unified balancing
parameter λ instead of the size-dependent constant 1/β
before the class-clustering encouraging terms, henceforth,
the final objective function including the empirical margin
distribution difference minimization is rewritten as

min
A
L(A) = ‖AT (µs − µt)‖22 +

C∑
c=1

‖AT (µs,c − µt,c)‖22

+ λ

C∑
c=1

 nc
s∑

i=1

‖AT (xis − µs,c)‖22 +

nc
t∑

i=1

‖AT (xit − µt,c)‖22

 . (7)

Interestingly, JDA is a special case of our proposed model
when λ = 0, and DIP-CC [15] can be considered as a special
case where only the first and third terms are considered.
4.2 Target Label Estimation via Projection Ensemble
As mentioned above, in this paper we propose a novel
unsupervised DA method which alternately learns the
domain-invariant projection and infers the pseudo target
labels. We have clarified how to calculate the projection via
the pseudo target labels ŷt in Section 4.1, hence, we will
explain how the pseudo labels are obtained after projection.

Once the source domain and the target domain are
aligned via DIP, we can expect the commonly used
classification models trained on the source domain, e.g.,
Support Vector Machine (SVM) and K-Nearest Neighbor
classifier (KNN) to achieve considerable classification
performance in the target domain. However, it is well
known these classifiers are prone to be over-fitting when
directly applied for the homogeneous testing dataset due
to the covariate shift, let alone the heterogeneous projected
testing dataset. Inspired by the idea of ensemble methods
such as bagging and random forest [18], we randomly
sample couple subsets of both domains even features, and
form some sub-Source-Target domain pairs (see Fig. 2).
Apart from the over-fitting effect, the pseudo target label
is involved into the training procedure, hence making it
critical to obtain better initialization. Learning with multiple
random sub-Source-Target domain pairs can yet generate
various domain-invariant projections, the fusion of these
‘local’ projections rather than the ‘global’ sought projection
is expected to enhance the DA performance. Note that the
training process of each subset of coupled domains is independent,
namely, we seek each optimal domain-invariant projection for
each coupled subset in parallel. However, this manner is
quite different from multi-source domain generalization [54]
where classifiers from different source are fused. In the
following we will provide several fusion strategies to infer
unlabeled target data.

Denote by {X̂(i)
s }Ki=1 and {X̂(i)

t }Ki=1 the K sampled
coupled source-target domain pairs respectively, and Â(i) ∈
Rd×m is the optimal projection learned on the i-th
source sub-domain X̂

(i)
s and target sub-domain X̂

(i)
t . For

simplicity, we further denote Z(i)
s and Z(i)

t as the embedded
features of complete source and target domains via the i-
th embedding projection Â(i) below (i ∈ [1,K]): Z(i)

s =

Â(i)TXs, Z
(i)
t = Â(i)TXt.

Majority Voting (MV) Benefiting from the random
sampling strategy and following voting rules, the bagging
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algorithm can achieve promising performance with lower
variance. Here we can follow the idea of bagging methods,
namely, after we have obtained K predictors/classifiers
trained on each low-dimensional source data Z

(i)
s , the

most prevalent fusion rule, i.e., majority voting, is directly
exploited to decide the final class of each target data.
Concretely, each classifier fri : Rm → R calculates the
probability scores of the r-th class for the i-th projected
Source-Target pair. Then the votes casted by all K classifiers
are then counted and the candidate class which achieves the
maximum number of votes is considered as the final class ȳ
of one target domain data point x ∈ Rd,

ȳ = arg max
e

∑K

i=1
σe(si), (8)

where si = arg max
r
fri (z

(i)
t ), σe(si) =

{
1, si = e,
0, otherwise.

Weighted Majority Voting (WMV) Each classifier in
MV only votes for one class, namely the votes for other
classes equal zero, which may drop some information.
WMV considers the classification scores as the continuous
weighted votes f ti (x) instead of the discrete {0,1} votes,
hence the rule of WMV is defined as

ȳi = arg max
e

∑K

i=1
fei (x). (9)

As such, classifiers that can output probability scores should
be chosen. Else wise, a classifier like 1-NN can only generate
discrete scores, making that WMV equals to MV in Eq. (8).

Feature-level Fusion (FF) By contrast, FF combines
different projections Â(i) instead of classifiers together,
which resembles the feature concatenation methods. That
is to say, we can concatenate all learned domain-invariant
projections to obtain Acon = [Â(1), · · · , Â(K)] ∈ Rd×Kc.
Then we can train a classifier on the source domain ATconXs,
and directly predict on the target domain ATconXt.

While we adopt the Euclidean distance based NN
classifier for example, the feature concatenation projection
Acon can be understood from a different perspective,

‖ATcon(x1 − x2)‖22 =
∑K

i=1
‖Â(i)T (x1 − x2)‖22, (10)

for every two samples x1, x2 ∈ Rd. Namely, the distances
from each projection are cast up to form the total distance
for any paired data points. Likewise, once the features are
normalized to unit length, the cosine distance based NN
classifier owns the same property.

4.3 Reformulation & Optimization
The proposed objective function L(A) in Eq. (7) is not
intuitive to solve, hence we introduce several variables
Q0 ∈ R(ns+nt)×(ns+nt) and Qc, c ∈ [1, C] to simplify the
optimization problem, each element is defined as

Q0
ij =


1

nsns
, xi, xj ∈ Ds

1

ntnt
, xi, xj ∈ Dt

−1

nsnt
, otherwise.

, Qc
ij =



1

nc
snc

s

, xi, xj ∈ Dc
s

1

nc
tn

c
t

, xi, xj ∈ Dc
t

−1

nc
sn

c
t

, xi ∈ Dc
s, xj ∈ Dc

t

−1

nc
sn

c
t

, xj ∈ Dc
s, xi ∈ Dc

t

0, otherwise.
(11)

Here xi and xj are the i-th and j-th columns of X =
[Xs, Xt] ∈ Rd×(ns+nt), respectively. In this manner, the first
and second terms of Eq. (7) can be rewritten as∥∥∥∥∥∥AT

 1

ns

ns∑
i=1

xi −
1

nt

ns+nt∑
j=ns+1

xj

∥∥∥∥∥∥
2

2

= tr
(
ATXQ0XTA

)
, (12)

where Q0 is also referred as the MMD matrix. Then the
second term in Eq. (7) can be rewritten as∥∥∥∥∥AT

(
ns∑
i=1

xiyi(c)/n
c
s −

ns+nt∑
j=ns+1

xjyj(c)/n
c
t

)∥∥∥∥∥
2

2

= tr
(
ATXQcXTA

)
,

where Y = [Ys; Ŷt] ∈ {0, 1}(ns+nt)×C is the whole one-hot
encoding of semantic labels.

Inspired by Linear Discriminant Analysis (LDA), we
further transform the last two class-clustering promoting
terms that can be considered as within-class variance in Eq.
(7) into similar expressions as Eq. (12).

C∑
c=1

nc
s∑

i=1

‖AT (xis − µs,c)‖22 = ‖AT (Xs −XsYs(Y T
s Ys)−1Y T

s )‖2F

= tr(ATXs(I − Ys(Y T
s Ys)−1Y T

s )XT
s A),

C∑
c=1

nc
t∑

i=1

‖AT (xit − µt,c)‖22 = tr(ATXt(I − Ŷt(Ŷ
T
t Ŷt)

−1Ŷ T
t )XT

t A).

Then we can naturally combine these two terms above
together into a new variable Qcc ∈ R(ns+nt)×(ns+nt) as

Qcc=

[
I − Ys(Y T

s Ys)−1Ys 0
0 I − Ŷt(Ŷ

T
t Ŷt)

−1Ŷt

]
. (13)

To this end, we have provided the reformulations
of each term in Eq. (7), thus it is obvious to obtain
the following equivalent objective function Ψ(A) =
tr(ATXQallXTA),where Qall =

∑C
c=0Q

c + λQcc, with
both terms being normalized to unit F-norm. To avoid
a non-trivial solution, we further consider to maximize
the variances for both domains, namely tr(ATXHXTA),
where H = I − 1

ns+nt
1 is the centering matrix. Therefore,

the overall optimization problem w.r.t. A reduces to the
following formulation

min
A

tr(ATXQallXTA) + γ‖A‖2F ,

s.t. ATXHXTA = I,
(14)

where γ is a hyper-parameter to avoid numerical instability
issue. Interestingly, the optimal solution of A ∈ Rd×m
that satisfies the above objective function is given by the
generalized eigenvalue problem:

(XQallXT + γI)a = ηXHXT a, (15)

where η is the i-th minimum eigenvalues and a ∈ Rd is the
associated i-th column in A, i ∈ [1,m].

Kernel extension Note that we only utilize a linear
projection ATX for domain adaptation, since some studies
show the superiority of non-linear functions, we further
consider the non-linear kernel-mapping ψ : x → ψ(x) to
enhance the adaptation ability. Then for the kernel matrix
K = ψ(X)Tψ(X) ∈ R(ns+nt)×(ns+nt), we exploit the
Representer theorem [55] and obtain the following problem,

min
Ak

tr(AT
kKQallKTAk) + γ‖Ak‖2F ,

s.t. AT
kKHKTAk = I,

(16)
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where ATkKe ← (ψ(X)A)Tψ(X). The solutions to both Eq.
(14) and Eq. (16) are quite easy to implement.

Label Propagation extension Taking into consideration
the global structure in the pseudo label inference step, we
further leverage a desirable closed-form label propagation
(LP) method [20], [56] after the 1-NN classifier. Please refer
to the supplementary materials for more details.

Apart from these extensions, we also propose a bagging-
like unsupervised DA algorithm in this paper, Xs and Xt

should be replaced by their respective subsets X(i)
s and X(i)

t

to seek the optimal projection A(i) via Eq. (15). Once we
obtain allK domain-invariant projections based on different
subsets, we resort to these fusion strategies (i.e., MV, WMV
and FF) in section 4.2 to build a more robust and accurate
predictor for target data. The pseudo code for our proposed
method is summarized in Algorithm 2.

Algorithm 1 Basic domain-invariant projection method

Input: Source data {Xs, Ys} and target data Xt; subspace
dimensionality m, trade-off parameters λ, γ.

Output: Domain-invariant projection A.
1: X ← [Xs, Xt]
2: Construct the MMD matrix Q0 in Eq. (11);
3: Initiate Qall = Q0 due to the lack in Ŷt;
4: repeat
5: Obtain optimal A via solving the generalized eigenvalue

decomposition problem in Eq. (14);
6: Train a standard classifier f on {ATXs, Ys} and update the

pseudo labels Ŷt for target data ATXt;
7: Build the class-wise MMD matrices {Qc}Cc=1 and the class-

clustering matrix Qcc in Eq. (11) and Eq. (13), then normalize them;
8: Qall ←

∑C
c=0Q

c + λQcc;
9: until Convergence or maximum iteration achieved

10: Train a classifier f on {ATXs, Ys}.

Algorithm 2 Domain-invariant projection ensemble method

Input: Source data {Xs, Ys} and target data Xt; # sub-domain-pairs K,
subspace dimensionality m, parameter λ; sampling density δs,t,f .

Output: Projection matrices {Â(i)}Ki=1, final classifier f .
1: for i = 1 : K do
2: Uniformly sampling X(i)

s , Y
(i)
s from Xs at density δs;

3: Uniformly sampling X(i)
t from Xt at density δt;

4: Uniformly sampling feature subsets f from [1 : d] at density δf ;
5: Xs = Xs(f, :), Xt = Xt(f, :)
6: Obtain projection Â(i) via Algorithm 1;
7: end for
8: Retrain each classifier fi on {A(i)TXs, Ys}, i ∈ [1,K];
9: switch fusion method do

10: case (MV) Obtain the prediction probability scores and estimate
the target label via Eq. (8);

11: case (WMV) Obtain the prediction probability scores and
estimate the target label via Eq. (9);

12: case (FF/Con-) Concatenate these projections via Eq. (10), and
train a new classifier on {AT

conXs, Ys}.

4.4 Complexity Analysis
We analyze the proposed basic domain-invariant projection
in Algorithm 1 and its projection ensemble method in
Algorithm 2. Regarding the basic one, it consists of two
main parts, projection inference and the nearest neighbor
classification, within T iterations. Concretely, the projection
inference step occupies O(md2), and the classification
step occupies O(mnsnt), and building the MMD matrices
Qc(0 ≤ c ≤ C) occupies O((ns + nt)

2), and the remaining
steps like matrix multiplication occupy O(md(ns + nt)).
Thus, the overall time complexity of Algorithm 1 is
O(Tmd2 + Tmnsnt + T (ns + nt)

2 + Tmd(ns + nt)).

Denote by δf , δs, δt the sampling densities for the
feature, source and target instances, respectively. Obviously,
the time complexity of basic method decreases to
O(Tmδ2fd

2+Tmδsδtnsnt+T (δsns+δtnt)
2+Tmδfd(δsns+

δtnt)). After obtaining K projections, taking the MV
strategy for instance, the final classification step occupies
O(Kmnsnt). Assume ň = δsns + δtnt, then the overall
computation complexity of Algorithm 2 is O(KTmδ2fd

2 +
KTmň2 +KTň2 +Kmδfdň).

4.5 Hyper-Parameter Settings

Before reporting the detailed evaluation results, it is vital to
explain how DICE hyper-parameters are tuned. Empirically,
λ is fixed at 1 for balancing the inter-domain and intra-
domain objectives, thus, only two hyper-parameters γ,m
remain tunable. Since no target labels are available for
unsupervised DA, it is impossible to conduct a standard
cross-validation. Hence we perform k-fold cross-validation
on the labeled source domain, namely, calculating the
averaged accuracy on each one source fold while exploiting
the other k−1 source folds and the whole target domain for
training. In this manner, we obtain the optimal parameters
γ ∈ [0.001, 0.005, 0.01, 0.05, 0.1, 1, 5], m around the integral
multiplies of C (# classes) via which the averaged source
accuracy is the highest. Generally, this strategy is always
sufficient to produce good DICE models for unsupervised
DA. Similarly, we adopt the same strategy for finding the
optimal parameters for ensemble methods.

5 EXPERIMENTS

In this section, we comprehensively compare our methods
with state-of-the-art unsupervised domain adaptation
approaches on six visual benchmark datasets including
object, face, and digit images. Details about parameter
sensitivity are also discussed in the later part of this section.

5.1 Databases

� Office31 [57] includes images of 31 objects taken from 3
domains, i.e., Amazon (images downloaded from the online
web merchants), DSLR (high-resolution images captured by
a digital SLR camera) and Webcam (low-resolution images
recorded by a web camera). Following [27], we exploit the
AlexNet-FC7 feature fine-tuned on the source domain.
� Office-Caltech contains images from 10 overlapping
object classes between the Office31 and Caltech256 [58]
datasets. Previously, the SURF features 1 are adopted and
encoded with 800-dimension BoW features. Besides, we also
exploit DeCAF6 features [10] and VGG-FC6,7 features [11].
� Office-Home [59] is a new benchmark dataset that
contains 4 domains, with each domain containing 65
kinds of everyday objects, i.e., Art (artistic depictions of
objects), Clipart (clipart images), Product (object without a
background) and Real-World (object captured with a regular
camera). We exploit the ResNet [32] to extract the features.
� PIE [60] includes facial images of 68 people with various
pose, illumination, and expression changes. Following [9],
we mainly focus on 5 out of 13 poses, i.e., C05 (left), C07
(upward), C09 (downward), C27 (frontal) and C29 (right).
These facial images are then cropped to the size 32 × 32.

1. Available at https://cs.stanford.edu/∼jhoffman/domainadapt/
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� MNIST-USPS consists of two classical handwritten digit
image datasets, USPS [61] and MNIST [62]. To speed up
the experimental comparisons, we follow [9] to randomly
choose 1,800 and 2,000 digit images from USPS and MNIST,
respectively. Besides, the images from MNIST are uniformly
resized to 16 × 16 to be consistent with USPS.
� COIL20 [63] is another object dataset that contains
1,440 samples over 20 classes with the image size 32
× 32. We split the dataset into two subsets COIL1 and
COIL2 according to the capture directions [9]. Specifically,
COIL1 contains all the images captured in the directions
of [0◦, 85◦] ∪ [180◦, 265◦] while COIL2 contains remaining
directions. Detailed information including all the dataset
size and feature length is summarized in Table 1.

TABLE 1
Statistics of the six benchmark domain-adaptation datasets.
Dataset Subsets Abbr. # Images Feature (size) # Classes

Office31
Amazon A 2,817

AlexNet-FC7(4,096) 31DSLR D 498
Webcam W 795

Office-Caltech

Amazon A 958 SURF (800)

10Caltech C 1,123 DeCAF6(4,096)
DSLR D 157 VGG-FC6(4,096)

Webcam W 295 VGG-FC7(4,096)

Office-Home

Art Ar 2,421

65Clipart Cl 4,379 ResNet50-P5(2,048)
Product Pr 4,428 ResNet152-P5(2,048)

Real-World Rw 4,357

PIE

C05 (←) P1 3,332

Pixel (1,024) 68
C07 (↑) P2 1,629
C09 (↓) P3 1,632

C27 (
⊙

) P4 3,329
C29 (→) P5 1,632

MNIST-USPS MNIST M 2,000 Pixel (256) 10USPS U 1,800

COIL20 COIL1 C1 720 Pixel (1,024) 20COIL2 C2 720

5.2 Baseline Methods & Experimental Setting
We compare our methods 2 with massive unsupervised
domain adaptation methods [9], [10], [11], [12], [15], [16],
[20], [24], [26], [27], [33], [34], [36], [37], [39], [42], [64], [65],
[66], which can be summarized into three categories below:
1-NN based shallow methods: 1-NN, GFK and GFK-pls
[24] (here we only report the better model), SA [26], JDA
[9], DIP-CC [15], CDDA [16], ILS [11], JGSA [10], OTGL
[64], JDOT [65] and ATI [66]; Non-1-NN based shallow
methods: SVM 3, SA∗ [26], CORAL [27] and DGA-DA [20];
Deep methods: DDC [33], DAN [34], DANN [42], DRCN
[37], RTN [12], kNN-Ad [39], JAN [36], ADDA [43], and
AutoDIAL [13]. Specifically, we re-run the public codes of
GFK, SA, JDA, DIP-CC, ILS, JGSA and CORAL, and we
implement CDDA and DGA-DA by ourselves. For the rest
methods, the originally reported results are collected from
their corresponding papers if available. Besides, we run SA∗

and CORAL with the provided source codes via LIBSVM 4.
Regarding the basic DICE, we adopt the 1-NN classifier

during the training procedure due to its simplicity and
parameter-free property. Apart from the primal DICE, we
follow [9], [10] to develop two typical kernelized versions
DICElin, DICErbf and compare them with the kernelized
variants of JGSA. To compare with non-1-NN based shallow
methods, we also introduce DICEsvm that differs from DICE
in the last step where an overall SVM classifier instead of

2. The code is available online at https://tinyurl.com/y7gu2wg8.
3. https://www.csie.ntu.edu.tw/∼cjlin/liblinear/
4. https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/

1-NN classifier is utilized to predict the final target labels.
Additionally, we enhance DICE with label propagation in
the pseudo label inference step, i.e., DICElp, and compare
it with DGA-DA. Note that all these methods are based on
Algorithm 1 without the ‘sampling-and-fusion’ strategy.

Training Protocol For all the datasets in Table 1 except
Office-Caltech, unless specified otherwise, we exploit all the
source instances for training like [8], [9], [17]. Regarding
the Office-Caltech dataset, an additional ‘splitting’ protocol
is also adopted, which picks few source instances for each
class for training that is adopted in previous works [2], [24],
[26], [57], etc. Actually, we adopt the public 20 training splits
in [67], [68], where 20 instances per class are selected for A
and 8 for other domains. l2 normalization is exploited on
all features including pixel and deep features, moreover, we
attempt z-score standardization for PIE in Table 5.

Parameter Setting In this paper, we always set λ to 1
and the maximum number of iterations to 10, while two
parameters γ,m are selected through 5-fold cross-validation
in Section 4.5. We also provide the optimal parameters here
for different datasets, Office31 (γ = 0.05, m = 30), Office-
Caltech (γ = 0.1, m = 10 for SURF & VGG-FC6,7, m = 15
for DeCAF6 & SURF with the ‘splitting’ protocol), Office-
Home (γ = 0.05, m = 100), PIE (γ = 0.01, m = 100),
MNIST-USPS (γ = 0.1, m = 10, 30) and COIL20 (γ = 0.1,
m = 10). We include an experiment to show our solution’s
robustness to λ in Section 5.3.1.

TABLE 2
Recognition accuracies (%) on the Office31 dataset.

type method A→D A→W D→A D→W W→A W→D Avg. Gain

1-
N

N

1-NN 55.2 50.6 41.2 94.8 40.8 98.6 63.5 –
GFK-pls 58.2 59.4 45.9 95.6 43.8 98.6 66.9 5.4%
SA 61.0 59.5 46.9 95.1 46.6 98.2 67.9 6.9%
JDA 66.5 68.8 56.3 97.7 53.5 99.6 73.7 16.1%
DIP-CC 56.0 51.9 44.0 95.3 42.3 98.8 64.7 1.9%
CDDA 64.1 65.2 55.0 97.2 53.8 99.8 72.5 14.2%
ILS 62.9 63.9 50.0 97.2 48.8 99.4 70.4 10.9%
JGSA 67.5 62.3 55.6 98.1 52.0 99.8 72.5 14.2%
DICE 67.5 71.9 57.8 97.2 60.0 100.0 75.7 19.2%

LP

DGA-DA 64.5 65.0 55.0 97.2 53.8 99.8 72.5 14.2%
DICElp 67.7 70.7 56.5 97.2 57.7 100.0 75.0 18.1%

N
on

-1
-N

N SVM 57.8 56.9 47.2 95.8 45.5 98.6 67.0 –
SA∗ 59.4 57.7 47.2 95.1 46.5 99.0 67.5 0.7%
CORAL 60.4 57.0 47.6 96.2 46.3 99.0 67.8 1.2%
ATI [66] 70.3 68.7 55.3 95.0 56.9 98.7 74.2 10.7%
DICEsvm 68.5 72.5 58.1 97.2 60.3 100.0 76.1 13.6%

En
d-

to
-e

nd
‡

DDC [33] 64.4 61.8 52.1 95.0 52.2 98.5 70.6 0.7%
DAN [34] 67.0 68.5 54.0 96.0 53.1 99.0 72.9 4.0%
DANN [42] 72.3 73.0 53.4 96.4 51.2 99.2 74.3 † 4.1%
DRCN [37] 66.8 68.7 56.0 96.4 54.9 99.0 73.6 5.0%
RTN [12] 71.0 73.3 50.5 96.8 51.0 99.6 73.7 † 7.1%
kNN-Ad [39] 84.1 81.1 58.3 96.4 63.8 99.2 80.5 † 15.6%
WDAN [69] 64.5 66.8 53.8 95.9 52.7 98.7 72.1 8.1%
JAN [36] 71.8 74.9 58.3 96.6 55.0 99.5 76.0 8.4%
ADDA [43] - 75.1 - 97.0 - 99.6 - -
AutoDIAL [13] 73.6 75.5 58.1 96.6 59.4 99.5 77.1 † 10.0%

†We calculate the gain over baseline network from the origin papers. ‡ Some
results are cited from [36] where the baseline AlexNet scores a 70.1% Avg. acc.

5.3 Results of Basic Domain-invariant Projection
In this section, we compare DICE and its extensions with
corresponding peer methods for unsupervised adaptation.

Results on the Office31 Dataset Table 2 summarizes
the comparison results of Office31. We compare DICE with
several shallow methods including JGSA and ILS, DICElp
with DGA-DA that also utilizes LP, and DICEsvm with
several non-1-NN counterparts including CORAL and ATI.
Moreover, we show ten state-of-the-art (SOTA) end-to-end
AlexNet based DA methods for comparison. Apparently,
DICE, DICElp and DICEsvm outperform their peer methods
in terms of Avg., among which ATI is the SOTA shallow
method. Compared with deep DA methods w.r.t. the
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TABLE 3
Recognition accuracies (%) on the Office-Caltech dataset using the protocol [9], [10]. The best value is highlighted in bold and red.

data 1-NN GFK-pls SA JDA DIP-CC OTGL CDDA ILS JGSA DICE JGSAlin JGSArbf DICElin DICErbf SVM SA∗ CORAL DICEsvm DGA-DA DICElp
A→C 26.0 43.6 39.8 39.4 40.0 34.6 39.6 40.0 41.5 42.7 38.1 41.5 43.8 44.1 35.6 44.3 45.1 44.3 38.0 44.1
A→D 25.5 44.6 36.9 39.5 36.9 38.9 38.2 40.1 47.1 49.7 45.9 45.2 48.4 43.3 36.3 36.3 39.5 52.2 42.0 49.0
A→W 29.8 45.1 37.6 38.0 35.9 37.0 46.1 39.0 45.8 52.2 49.5 45.1 46.1 52.9 31.9 38.3 44.4 53.2 52.2 52.9
C→A 23.7 51.6 42.1 44.8 40.8 44.2 49.4 48.5 51.5 50.2 52.3 53.1 56.7 52.1 42.9 54.8 54.3 53.8 50.3 53.7
C→D 25.5 43.3 45.9 45.2 45.2 44.5 49.7 45.9 45.9 51.0 48.4 48.4 44.6 47.1 33.8 45.2 36.3 51.6 52.9 51.6
C→W 25.8 44.1 32.2 41.7 37.3 38.9 38.6 41.4 45.4 48.1 45.8 48.5 51.9 45.1 34.6 44.4 38.6 54.9 45.8 53.9
D→A 28.5 39.1 34.2 33.1 31.5 37.2 32.8 41.2 38.0 41.1 36.0 38.7 47.7 35.3 34.3 39.4 37.7 42.6 37.1 41.2
D→C 26.3 31.7 32.5 31.5 30.6 32.4 33.7 34.6 29.9 33.7 30.2 30.3 37.7 33.5 32.1 34.3 33.8 34.2 33.5 34.5
D→W 63.4 85.4 88.5 89.5 83.7 81.1 89.8 85.8 91.9 84.1 91.9 93.2 84.7 88.5 78.0 85.1 84.7 84.1 91.2 84.1
W→A 23.0 31.8 34.3 32.8 27.6 39.4 36.7 37.6 39.9 37.5 41.0 40.8 38.6 37.8 37.5 36.3 35.9 39.5 32.4 33.1
W→C 19.9 34.3 28.8 31.2 28.8 36.0 32.0 31.2 33.2 37.8 32.7 33.6 34.7 35.8 33.9 33.2 33.7 38.6 31.2 37.8
W→D 59.2 87.9 88.5 89.2 91.7 84.0 91.1 86.0 90.5 87.3 90.5 88.5 86.0 94.3 80.9 83.4 86.6 87.3 91.7 87.3
Avg. 31.4 48.5 45.1 46.3 44.2 45.7 48.1 47.6 50.0 51.3 50.2 50.6 51.7 50.8 42.6 47.9 47.6 53.0 49.8 51.9

SURF ⇑ and DeCAF6 ⇓ features. (Two state-of-the-art (SOTA) shallow methods JDOT [65], ATI [66] and two SOTA end-to-end method RTN [12], AutoDIAL [13] are also compared.)
data 1-NN GFK-pls SA JDA DIP-CC OTGL CDDA ILS JGSA DICE JGSAlin DICElin DGA-DA DICElp SVM SA∗ CORAL DICEsvm JDOT ATI RTN AutoDIAL

A→C 83.7 82.1 80.8 85.0 78.9 85.5 85.8 77.9 84.9 85.9 85.0 85.8 86.7 86.9 85.0 85.0 83.6 87.6 85.2 86.5 87.8 87.4
A→D 80.3 82.2 86.0 86.6 80.9 85.0 86.6 79.0 88.5 89.8 85.4 90.5 89.2 89.8 87.9 87.3 84.7 91.1 87.9 92.8 92.9 -
A→W 74.6 73.2 76.3 83.1 69.8 83.1 81.4 82.0 81.0 86.4 84.8 79.7 86.4 88.8 79.0 76.6 74.2 88.1 84.8 88.7 93.8 -
C→A 90.0 92.1 89.4 91.0 89.8 92.2 91.6 87.4 91.4 92.3 91.8 91.3 92.3 92.9 91.4 92.2 91.2 93.4 91.5 93.8 93.2 94.3
C→D 86.6 92.4 90.4 87.9 84.7 87.3 91.7 91.1 93.6 93.6 92.4 92.4 92.4 91.1 89.8 88.5 87.9 95.5 89.8 89.6 93.9 90.1
C→W 78.6 84.4 80.0 82.4 72.2 84.2 88.8 77.6 86.8 93.6 85.1 84.1 89.8 93.2 80.0 82.0 80.7 95.3 88.8 93.6 96.6 96.3
D→A 85.7 88.4 87.1 91.0 85.3 92.3 92.1 88.7 92.0 92.5 92.3 92.6 92.4 92.7 87.1 85.6 83.8 92.5 88.1 93.4 93.6 -
D→C 79.2 80.3 81.4 85.1 75.5 84.1 86.3 79.5 86.2 87.4 85.8 87.1 86.5 87.6 78.8 76.9 71.6 88.5 84.3 85.9 83.4 86.9
D→W 99.7 99.0 98.3 99.7 98.6 96.3 99.0 98.6 99.7 99.0 98.6 99.0 99.0 99.0 98.6 96.9 97.6 99.0 96.6 98.9 98.6 -
W→A 77.1 84.3 83.7 91.1 72.4 90.6 90.4 86.4 90.7 90.7 91.4 93.1 90.7 90.9 75.7 83.6 72.1 91.1 90.7 93.6 92.7 -
W→C 74.8 76.5 79.3 85.3 70.3 81.5 85.5 79.1 85.0 85.3 84.7 82.9 85.6 86.0 72.0 74.3 67.4 88.0 82.6 86.3 84.8 86.8
W→D 100 100 98.7 100 99.4 96.3 100 99.4 100 100 100 100 100 100 99.4 99.4 100 100 98.1 100 100 -
Avg. 84.2 86.2 85.9 89.1 81.5 88.2 89.9 85.6 90.0 91.4 89.8 89.9 90.9 91.6 85.4 85.7 82.9 92.5 89.0 91.9 92.6 -
† CDDA and its variant DGA-DA [16] are carefully implemented by ourselves, the original averaged accuracies of them with SURF features are 48.2% and 49.0%, and

89.1% and 90.8% for DeCAF6 features, respectively. Unless specified otherwise, all the results of CDDA and DGA-DA are reproduced by ourselves.

TABLE 4
Averaged recognition accuracies (%) on the Office-Caltech dataset with various features under the ‘splitting’ protocol [67], [68].

feature SURF (800) [67], [68] VGG-FC6 (4,096) [11] VGG-FC7 (4,096) [11]
data 1-NN GFK-pls SA JDA DIP-CC CDDA ILS JGSA DICE SVM SA∗ CORAL DICEsvm DGA-DA DICElp 1-NN JDA CDDA ILS JGSA DICE 1-NN JDA CDDA ILS JGSA DICE

A→C 22.8 39.7 34.5 34.0 34.9 38.0 38.0 34.1 38.8 35.6 39.8 40.4 40.1 39.1 39.6 78.9 80.9 82.1 79.1 76.4 83.6 77.5 78.0 80.7 78.5 80.4 84.3
A→D 22.0 38.2 32.3 38.8 32.5 36.2 37.5 36.6 39.4 34.2 36.2 37.3 39.6 37.3 39.7 61.1 70.6 68.2 71.9 69.7 66.0 57.6 67.6 63.2 70.8 70.0 65.3
A→W 25.1 40.5 32.1 39.9 34.5 39.1 38.6 37.6 41.2 32.3 37.8 38.8 41.8 40.8 42.9 70.1 81.0 78.1 81.9 75.0 76.6 70.6 76.8 77.1 80.0 80.1 77.7
C→A 19.2 36.4 31.9 37.2 32.6 40.3 41.0 31.3 43.8 34.9 39.7 39.6 45.5 41.2 44.8 80.6 87.3 86.5 86.1 89.4 89.5 80.7 87.1 85.9 86.8 87.3 89.4
C→D 19.5 37.8 32.7 36.4 33.9 37.6 40.9 34.1 40.0 33.8 37.0 38.9 40.1 38.8 39.6 59.3 69.9 66.1 70.3 72.0 69.9 56.6 66.0 63.8 66.9 69.0 67.0
C→W 17.1 32.6 27.1 32.4 29.4 33.6 35.6 36.0 39.2 30.0 32.7 33.3 39.6 35.5 40.5 66.8 80.4 77.1 80.6 78.8 79.8 64.4 77.5 75.3 81.3 81.4 80.4
D→A 26.9 37.8 32.2 34.7 34.1 37.6 39.6 40.8 40.8 34.3 36.8 37.3 42.2 38.7 40.9 64.0 77.9 82.6 79.0 81.8 83.2 61.2 71.6 76.9 76.9 76.1 78.9
D→C 24.6 32.6 30.7 29.4 31.8 32.8 34.4 26.8 33.3 31.3 33.3 33.7 33.3 33.4 33.8 61.2 73.8 76.1 67.6 73.2 78.7 59.3 65.3 71.3 67.9 71.0 76.5
D→W 52.8 80.1 79.9 84.2 78.2 83.7 79.4 75.0 81.3 74.3 79.0 80.8 81.4 84.4 81.7 93.9 94.4 93.7 93.6 92.4 95.8 91.3 90.2 92.1 90.9 93.9 94.9
W→A 20.7 36.7 31.9 35.8 32.6 36.8 37.1 32.5 38.4 35.5 35.8 37.0 38.9 37.8 38.7 71.2 87.8 86.5 85.8 89.1 88.8 71.2 89.4 83.8 85.0 88.2 89.2
W→C 17.1 30.3 26.5 28.7 28.2 32.0 31.5 24.5 33.7 31.0 31.1 31.6 34.2 32.5 34.5 67.3 80.1 80.1 76.8 76.3 82.0 66.8 76.9 79.2 75.0 79.6 82.9
W→D 42.0 70.5 71.8 75.7 72.3 77.0 69.4 64.4 75.7 68.2 70.8 72.3 75.7 77.6 76.1 91.3 93.9 92.8 87.5 89.8 88.1 88.6 89.1 90.4 84.9 92.3 87.5
Avg. 25.8 42.8 38.6 42.2 39.6 43.7 43.6 39.5 45.5 39.6 42.5 43.4 46.0 44.8 46.1 72.2 81.5 80.8 80.0 80.3 81.8 70.5 77.9 78.3 78.7 80.8 81.2
† The results of ILS differ those reported in [11] since 8 instead of 20 samples per class is utilized here for source domain C for fair comparisons.

averaged accuracy, DICEsvm is only inferior to AutoDIAL
and kNN-Ad, yet, it beats all of them but kNN-Ad in terms
of the accuracy gain over baseline net. DICEsvm also obtains
the highest accuracies on two small-scale tasks D�W and
acceptable performance for relatively large source A.

Results on the Office-Caltech Dataset As stated before,
we carry out various experiments for comparisons on
this classic dataset. First, we study the case: SURF and
DeCAF6 features under the ‘full training’ protocol in Table
3. Compared with 1-NN based methods, DICE obtains the
best average accuracy while wining 5 out of 12 cross-domain
pairs, and the second-best method JGSA merely wins on
D→W and W→A. Generally, DICE achieves the 2nd or 3rd
highest results on other 5 tasks except for W�D. Regarding
the average accuracy, DICE also has a large advantage
which improves 2.6% over JGSA. Additionally, we compare
the kernelized extensions of DICE and JGSA with linear
and RBF kernels, it is obvious to find that DICElin and
DICErbf achieve the best accuracies in the majority of tasks,
respectively. Carefully looking the average accuracy, DICE
is always superior to JGSA for both kernels. On one hand,
exploiting the SVM classifier, DICEsvm outperforms SA∗ and
CORAL with a much larger improvement. On the other
hand, leveraging the label propitiation technique, DICElp
also beats CDDA’s variant DGA-DA. Note that all these

extensions achieve better performance than DICE.

Following [10], we also perform the comparison
experiment with high-dimensional DeCAF6 features, via
which all the methods obtain higher results. Concerning the
average accuracy, DICE easily defeats the remaining shallow
methods including OTGL and CDDA and wins 9 out of
12 tasks, and JGSA is the second-best method. Besides,
DICElin, DICElp and DICEsvm consistently outperforms their
peer methods, including JGSAlin, DGA-DA and SA∗. Even
compared with SOTA shallow approaches, JDOT and ATI,
DICEsvm still win 8 out of 12 tasks and improves the average
accuracy by 3.8% and 0.5% respectively. RTN [12] and
AutoDIAL [13] are two SOTA deep DA methods based on
AlexNet, whereas, DICEsvm still obtains competitive results
with them. Particularly, DICEsvm outperforms RTN in 6 out
of 12 tasks and AutoDIAL in 4 out of 6 tasks.

Second, we also compare our methods with SOTA
approaches (e.g., CORAL [27] and ILS [11]) under the
‘splitting’ protocol in Table 4. DICE is the best performing
method in 7 out 12 tasks and outperforms other 1-NN
based shallow methods in terms of the average accuracy.
ILS and CDDA are second-best performing methods that
are only inferior to DICE. However, the average accuracy
of JGSA is 39.5%, which is much worse in this protocol.
Besides, DICElp also easily beats DGA-DA in 10 out of
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TABLE 5
Recognition accuracies (%) on the PIE dataset with two preprocessing tools, l2-normalization and z-score standardization († last 6 columns).

data 1-NN GFK-pls SA JDA DIP-CC OTGL CDDA ILS JGSA DICE SVM SA∗ CORAL DICEsvm DGA-DA DICElp 1-NN† GFK-pls† JDA† CDDA† JGSA† DICE†

P1→P2 26.1 29.4 26.8 73.1 29.9 59.4 76.3 37.8 62.2 84.1 30.9 32.8 31.8 84.2 76.4 83.9 37.8 42.2 76.1 77.5 46.8 85.1
P1→P3 26.6 28.3 28.2 69.3 32.8 58.7 72.3 35.2 60.0 77.9 33.9 34.5 31.9 77.5 72.5 77.5 46.4 53.7 74.1 77.0 48.3 86.9
P1→P4 30.7 34.6 30.9 90.1 36.7 - 92.1 36.6 80.6 95.9 41.4 43.5 41.8 95.8 92.1 95.9 62.5 69.8 92.8 90.3 81.0 96.2
P1→P5 16.7 21.8 19.6 55.1 12.7 48.4 60.7 21.8 45.1 66.5 23.8 22.5 19.9 66.9 60.8 66.0 36.3 43.9 70.8 67.8 44.1 71.8
P2→P1 24.5 30.0 26.4 73.8 25.8 61.9 77.0 40.4 68.2 81.3 31.8 27.7 26.6 82.4 77.0 81.4 42.1 43.2 79.8 77.3 65.1 76.8
P2→P3 46.6 45.5 48.0 74.9 53.4 64.4 77.5 31.8 64.9 74.0 41.0 37.3 35.0 74.0 77.5 74.1 55.2 54.0 80.2 81.1 54.0 79.1
P2→P4 54.1 57.1 54.3 83.8 50.1 - 87.1 45.9 77.6 88.6 62.2 58.5 59.7 89.5 87.1 88.4 66.3 69.1 90.4 88.5 82.8 93.5
P2→P5 26.5 27.7 28.2 61.5 29.5 52.7 64.3 25.5 52.3 68.8 28.8 27.1 25.9 70.8 63.6 68.0 41.1 42.6 68.3 70.4 44.8 72.3
P3→P1 21.4 26.9 23.2 69.0 22.7 57.9 80.8 29.1 62.9 78.8 32.3 29.1 25.1 81.1 80.8 78.0 41.4 51.6 78.3 81.2 61.9 80.1
P3→P2 41.0 41.4 44.3 74.5 36.3 64.7 72.2 31.9 60.3 76.7 39.7 37.0 36.5 78.1 72.2 75.9 54.0 52.0 81.2 82.0 55.9 77.7
P3→P4 46.5 51.3 46.2 82.1 45.8 - 84.7 44.3 71.0 85.2 61.9 54.8 54.0 86.8 84.7 85.2 66.0 72.1 92.3 91.7 84.5 95.1
P3→P5 26.2 31.7 28.9 60.4 20.2 52.8 64.3 18.0 51.2 70.8 37.7 30.5 26.0 71.4 64.5 71.3 45.8 50.9 70.5 79.9 53.6 78.1
P4→P1 33.0 42.8 36.3 90.2 31.4 - 93.6 48.1 84.4 93.3 57.7 52.4 48.3 94.1 93.4 93.3 64.5 72.6 95.1 89.7 83.6 96.8
P4→P2 62.7 64.5 63.8 91.9 67.5 - 93.2 50.1 83.5 95.0 69.2 70.0 69.7 95.9 93.2 95.0 72.8 75.8 94.7 94.8 78.0 96.6
P4→P3 73.2 73.3 73.2 90.1 76.8 - 92.2 63.2 80.8 92.3 69.7 72.7 72.7 92.5 92.2 92.3 78.2 80.9 92.4 92.1 76.2 94.5
P4→P5 37.2 44.7 38.1 69.4 36.5 - 74.0 40.6 65.9 81.1 48.7 48.6 48.5 81.9 74.0 80.5 52.9 61.1 80.8 85.1 61.4 90.4
P5→P1 18.5 31.4 23.4 59.6 14.2 45.7 68.1 25.7 53.5 73.8 29.4 34.5 32.0 75.7 67.7 74.2 30.4 45.3 64.1 67.3 50.0 79.4
P5→P2 24.2 28.2 25.5 67.5 29.3 51.3 65.1 21.4 57.5 71.2 33.1 30.9 30.4 72.4 65.4 69.2 34.0 38.9 74.2 74.5 52.7 71.4
P5→P3 28.3 34.4 28.6 69.5 31.7 52.6 70.5 31.7 54.3 74.1 40.6 31.9 32.6 75.8 71.6 74.6 41.1 47.7 75.3 79.3 58.7 82.7
P5→P4 31.2 40.0 31.2 74.3 26.3 - 79.7 36.0 62.3 81.8 51.5 45.1 44.5 83.7 79.7 83.5 46.6 59.3 81.7 80.3 78.4 89.5

Avg. 34.8 39.2 36.3 74.0 35.5 77.3 35.8 64.9 80.6 43.3 41.1 39.6 81.5 77.3 80.4 50.8 56.3 80.7 81.4 63.1 84.7

TABLE 6
Recognition accuracies (%) on the Office-Home dataset with ResNet50-P5 features. (†ResNet152-P5 features, ‡Results [59] based on a VGG-F network.)

data 1-NN GFK-pls SA JDA DIP-CC CDDA ILS JGSA DICE DGA-DA DICElp CNN SVM SA∗ CORAL DICEsvm 1-NN† JDA† CDDA† JGSA† DICE† DAN‡ DANN‡ DAH-e‡ DAH‡

Ar→Cl 35.9 35.8 36.1 40.5 35.5 40.8 37.4 40.8 41.8 40.8 41.8 36.0 36.5 36.7 36.3 42.6 39.4 42.8 42.6 41.9 43.5 30.7 33.3 29.2 31.6
Ar→Pr 54.4 54.4 54.6 58.9 54.3 57.7 55.6 58.2 59.7 57.7 60.0 53.7 54.7 54.7 54.1 61.1 58.4 62.9 62.3 63.1 64.2 42.2 43.0 35.7 40.8

Ar→Rw 64.9 65.0 65.0 67.5 64.9 66.3 65.3 67.5 67.7 66.3 67.7 64.6 64.9 65.3 65.3 68.3 68.2 70.0 69.2 70.1 70.5 54.1 54.4 48.3 51.7
Cl→Ar 39.5 39.2 39.4 40.8 39.5 41.3 39.9 40.8 41.8 41.3 41.9 39.2 40.6 39.9 39.2 43.3 45.1 45.7 46.3 46.5 46.7 32.8 32.3 33.8 34.7
Cl→Pr 48.4 48.4 47.9 51.9 48.0 51.7 47.6 52.0 52.6 51.7 52.5 48.9 48.1 48.3 47.9 54.3 49.1 54.5 52.9 54.1 54.6 47.6 49.1 48.2 51.9

Cl→Rw 51.4 51.8 51.9 55.2 51.9 53.9 52.2 54.6 55.9 53.9 56.0 51.7 52.5 51.4 51.5 57.1 56.1 59.0 57.8 59.0 59.4 49.8 49.8 47.5 52.8
Pr→Ar 41.8 42.3 42.2 45.1 41.9 46.1 42.6 45.3 47.0 46.1 47.0 41.2 42.0 41.4 41.5 48.3 47.4 49.7 50.5 50.4 51.8 29.1 30.5 29.9 29.9
Pr→Cl 32.4 32.5 32.3 33.3 32.1 35.4 32.9 33.5 34.4 35.4 34.3 32.9 32.6 33.0 32.7 35.9 39.9 41.6 43.0 42.0 43.9 34.1 38.1 38.8 39.6

Pr→Rw 64.1 64.1 63.8 67.2 63.7 66.0 64.0 66.4 68.0 66.0 68.0 63.2 64.4 64.4 64.1 69.2 67.7 70.8 69.6 70.5 71.8 56.7 56.8 55.6 60.7
Rw→Ar 58.1 58.1 58.3 58.8 58.2 59.1 57.5 58.5 59.6 59.1 59.6 57.9 57.7 57.8 57.7 60.2 62.4 63.4 63.1 62.3 64.1 43.6 44.7 41.2 45.0
Rw→Cl 39.5 39.5 40.0 44.2 39.2 45.3 42.2 43.8 45.7 45.3 45.8 39.5 40.1 40.0 39.5 46.2 43.4 47.0 47.9 46.2 48.0 38.3 42.7 45.0 45.1
Rw→Pr 69.6 69.6 69.6 72.4 69.6 71.6 70.6 72.4 73.2 71.6 73.2 68.9 69.8 69.5 69.3 73.5 71.3 73.5 73.8 73.1 74.3 62.7 64.7 59.1 62.5

Avg. 50.0 50.1 50.1 53.0 49.9 52.9 50.6 52.8 54.0 52.9 54.0 49.8 50.3 50.2 49.9 55.0 54.0 56.7 56.6 56.6 57.7 43.5 44.9 42.7 45.5

12 tasks. Once replacing the SURF features with VGG-FC
features, the average accuracy of baseline 1-NN increases
rapidly from 25.8% to nearly 71%. DICE is always the
best performing method, while JDA and JGSA are merely
inferior to DICE for different features respectively. Besides,
the VGG-FC6 features are more favorable for unsupervised
domain adaptation methods.

Results on the PIE Dataset For the cross-domain
facial image recognition task, we extensively compare DICE
with several SOTA methods including OTGL [64], CDDA,
and JGSA, with two data preprocessing tools in Table
5. l2 normalization is a widely used tool especially for
facial images, but inspired by SURF features for Office-
Caltech, we also attempt to utilize z-score standardization
for raw pixel features. We can clearly find that z-score
standardization is much better than l2 normalization for
almost all methods. Regarding the basic baseline method
1-NN, the average accuracy increase from 34.8% to 50.8%.
Compared with shallow methods including OTGL, DICE
wins all 12 tasks with great scores, which leads the second-
best method CDDA by 19.8%. Similarly, DICEsvm and
DICElp also take significant advantages in comparison over
SVM and DGA-DA. Surprisingly, once replaced with the
z-score standardization, the improvement of JGSA is even
negative, while JDA owns the largest improvement. For
all cross-view face recognition tasks, DICE win 16 out
of 20 tasks, to the best of our knowledge, it is the best
performance on the PIE dataset.

Results on the Office-Home Dataset Office-Home
[59] is a recently proposed benchmark dataset for cross-
domain object recognition. Following [27], we fine-tune the
pre-trained ResNet50 and ResNet152 models [32] on the
ImageNet with the labeled source domain and extract the
5th pooling features for unsupervised domain adaptation.

TABLE 7
Recognition accuracies (%) on the MNIST - USPS and COIL20 datasets.

data 1-NN GFK SA JDA DIP-CC CDDA† ILS JGSA DICE DGA-DA† DICElp SVM SA∗ CORAL DICEsvm

M→U 65.9 68.6 67.8 70.6 67.1 76.2 71.2 80.4 76.9 82.3 78.3 48.8 45.3 35.8 79.7
U→M 44.7 50.1 48.8 60.0 46.3 62.1 54.9 68.2 64.8 70.8 65.2 27.8 29.5 36.4 59.8
Avg. 55.3 59.3 58.3 65.3 56.7 69.1 63.0 74.3 70.9 76.5 71.8 38.3 37.4 36.1 69.8

C1→C2 83.6 86.4 86.8 94.7 84.6 91.5 86.9 95.4 99.7 99.6 99.7 77.6 83.2 82.1 92.5
C2→C1 82.8 85.0 85.0 93.5 84.0 93.9 86.9 93.9 99.7 99.7 99.7 74.6 82.5 81.8 94.4
Avg. 83.2 85.7 85.9 94.1 84.3 92.7 86.9 94.7 99.7 99.7 99.7 76.1 82.8 81.9 93.5
† The reproduced results are much lower than those reported in [16], hence we report the original results here.

Similarly, DICElp and DICEsvm also take significant
advantages in comparison over DGA-DA and CORAL.
Concerning the ResNet50-P5 features, DICE achieves the
best performance except Pr→Cl where DICE is only inferior
to CDDA. While utilizing the ResNet152-P5 features for
several 1-NN methods, the results improve those with
ResNet50-P5 features by nearly 8%. Among them, DICE
still performs the best while JDA, CDDA and JGSA are
comparable to each other. The results indicate that our
method can achieve much better performance regardless of
the feature preprocessing. Besides, we also show the original
results in [59] via a VGG-F network, our results can easily
beat them in terms of the recognition accuracies.

Results on the MNIST-USPS & COIL20 Dataset To
study the cross-domain task on digit images, we further
carry out the experiments on the MNIST-USPS dataset [9]
for comparisons. As can be seen from Table 7, JGSA obtains
the best results among NN-based methods and DICE ranks
the 2nd for both M→U and U→M and the average accuracy.
DICElp enhances the recognition accuracies, it is still inferior
to DGA-DA, however, the reported results of CDDA and
DGA-DA are much higher than what we have reproduced.
These two domains may perform differently, JGSA utilizes
domain-specific projections which allows more flexibilities,
making it better than DICE. DICEsvm is the best SVM-
based method, which significantly outperforms the baseline
methods. We also display some recent results of OTGL [64]
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(U→M: 70.0, M→U: 57.9) and RTML [19] (U→M: 61.8),
whereas DICE still beats them. Besides, DICE performs
slightly better than deep WDAN [69] (U→M: 72.6, M→U:
65.4). Counter-intuitively, the 1-NN baseline method is even
better than SVM on this dataset, and this may explain why
DICEsvm is a bit lower than DICE.

The comparison results in Table 7 indicate that DICE
achieves the highest accuracies in all the tasks and settings.
Compared with RTML [19] (C1→C2: 91.2), DICE is still
the better approach. Closer inspection shows that the
performances are very close to 100% and SVM is again
inferior to 1-NN, explaining the performance degradation
after incorporating SVM to DICE.

5.3.1 Ablation Study & Parameter Analysis

Fig. 3. Ablation study of our algorithm (SC/TC: source/target class clustering).
[Office-Caltech: SURF & PIE: l2-normalization & Office-Home: ResNet50-P5]

To verify the effectiveness of the proposed algorithm,
we perform an ablation study with its results shown in
Fig. 3. It is important to clarify that TCA [29] is also a
special case of DICE where Qall = Q0 in Eq. (14), i.e.,
only the first term in Eq. (7) is considered. Afterwards,
we respectively incorporate source or target or both class
clustering promoting terms to TCA and JDA, and compare
them on six datasets. Regarding the former 4 datasets,
both SC and TC can always enhance the performance of
TCA and JDA, yet, they harm the performance for both
methods on MNIST-USPS and TCA on COIL20 due to
the possible accumulative errors in preliminary iterations.
Roughly speaking, JDA performs better than TCA and DICE
performs better than both, which indicates that all three
terms are essential in our method.

Fig. 4. Parameter study of our algorithm: averaged accuracy with parameter λ.
[Office-Caltech: SURF & PIE: l2-normalization & Office-Home: ResNet50-P5]

In addition, we conduct experiments to investigate the
sensitivity of our method to the weighting parameter λ.
Besides the range of [0, 0.5, · · · , 3], we develop an automatic
method dubbed ‘auto’, where λ is fixed to (ns + nt)/nsnt
without normalization in Step 7 of Algorithm 1. As can be
seen from Fig. 4, as λ grows larger, the average accuracy of
every dataset increases and then decreases gradually. As we
expected, the optimal results are always achieved when λ is
fixed to 1, even for Office-Caltech and PIE, ‘λ = 1’ obtains
competitive results with the highest accuracies (51.5% and

81.1%). Despite its inferiority to ‘λ = 1’, the ‘auto’ method
is still acceptable that is much higher than JDA (λ = 0).
Generally, the class weighting term is quite effective and
‘λ = 1’ is the optimal tradeoff where the inter-domain and
intra-domain objectives are balanced. Besides, we discuss
the convergence of our method (target accuracies and t-SNE
visualizations) in Algorithm 1 in the Supplemental Material.

5.4 Results of Random Ensemble Methods
As stated in Section 4.2 and Algorithm 2, we develop several
fusion methods below to investigate the effectiveness
of the proposed ‘sampling-and-fusion’ strategy. Con-1-
NN and Con-SVM are two typical FF methods which
concatenate all projected features learned on different sub-
domain pairs and trains an overall 1-NN or linear SVM
classifiers respectively; MV-1-NN and MV-SVM are two
representative MV methods which count the votes from
each 1-NN or SVM classifier built on different sub-domain
pairs and decide the most favorable candidate category;
WMV-1-NN is one typical example of WMV methods
which considers the continuous votes instead of discrete
votes. We adopt the same one-hot encoding as MV, that
only one candidate class owns non-zero score, but the
score is calculated as the ratio

∑τ
i=1 δy1(yi)/τ , where the

neighborhood size τ is fixed at 10, and yi is the label of
the i-th nearest neighbor. To exclude undesired randomness
caused by sampling, we run each method 10 times and
report the average and standard deviation for each method.

Clearly, this proposed fusion strategy is quite favorable
for distributed system which can alleviate the computation
burden from large-scale and high-dimensional datasets. Yet,
we are more interested in whether such strategy improves
the cross-domain recognition accuracy. To investigate the
effectiveness and sensitivity, in Fig. 5 we plot the averaged
recognition accuracies for an object dataset Office-Caltech
and a digit dataset MNIST-USPS while the sampling
densities δs, δt, δf vary in the range of [0.1, 0.2, · · · , 0.9]
respectively. Then we carry out this ensemble methods with
merely feature sampling on several high-dimensional (i.e.,
d > 1,000) datasets with results shown in Table 8.

As can be seen in Table 8, almost all random ensemble
methods consistently outperform DICE and DICEsvm in
terms of the averaged recognition accuracies. Each class
distributes uniformly on the COIL20 dataset and the
recognition accuracy of the basic method DICE is rather
high, which may explain why the sampling strategy does
not work well. However, these relatively lower accuracies
are still much higher than that of the second-best method
JGSA (94.7%) in Table 7. Once observing the differences
between these ensemble methods, we find that WMV-1-
NN wins MV-1-NN and Conv-1-NN and MV-SVM beats
Conv-SVM in a majority of cases. This observation indicates
that majority voting is a better choice than concatenating
features for feature sampling. Looking carefully at averaged
accuracies for each task on the PIE dataset, the ensemble
methods based on both NN and SVM perform better
than their baseline models even though the dimensionality
is relatively smaller than general deep representations.
Moreover, compared with the averages, the deviations are
somewhat small, which indicate the results obtained from
random ensemble methods are accurate and stable.
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Besides the feature sampling, we also study the
instance sampling on the source and target domains
for two benchmark datasets shown in Figs. 5(a)(b)(d)(e),
respectively. Roughly looking these figures, WMV-1-NN
always achieves the best performance for different sampling
choices, which also outperforms MV-SVM and Conv-SVM
in a majority of sampling densities. Additionally, MV-1-
NN and MV-SVM consistently outperforms Conv-1-NN and
Conv-SVM respectively, which again validate that majority
voting is a better choice than concatenating features for
fusing different projections. When δs ≥ 0.3 or δt ≥ 0.4
or δf ≥ 0.5, all the ensemble methods based on NN
are superior to DICE on the Office-Caltech dataset. That
maybe because 10 object classes on the Office-Caltech are
imbalanced and the label distributions of source and target
are also significantly different. While for the digit dataset,
only for large sampling densities like 0.7, 0.8, the fusion
methods are better than DICE. As we expected, δf is the
most active sampling density since the original feature
dimensionalities (800, 256) here are rather low.

TABLE 8
Averaged recognition accuracy ± standard deviation (%) on five

‘high-dimensional’ (d > 1,000) datasets (δf = 0.5,K = 10).
dataset DICE Conv-1-NN MV-1-NN WMV-1-NN DICEsvm Conv-SVM MV-SVM
Office31 75.7 75.4±0.2 75.0±0.2 75.2±0.2 76.1 75.5±0.2 75.3±0.3

Office-Caltech 91.4 91.4±0.1 91.8±0.1 92.2±0.2 92.4 92.3±0.3 92.4±0.2
PIE (l2-norm.) 80.6 81.6±0.2 81.6±0.2 82.0±0.2 81.5 82.5±0.2 82.8±0.3
Office-Home 54.0 54.1±0.1 54.1±0.0 54.4±0.0 55.0 54.5±0.0 55.1±0.0

COIL20 99.7 99.2±0.2 99.3±0.1 99.3±0.1 93.5 95.7±0.4 93.6±0.2

P1→P2 84.1 84.0±1.0 83.5±1.5 83.5±1.1 84.2 83.0±1.1 83.6±1.3
P1→P3 77.9 79.4±1.8 79.2±1.7 79.3±1.8 77.5 79.0±1.7 80.0±2.0
P1→P4 95.9 96.2±0.2 96.6±0.3 96.5±0.3 95.8 97.0±0.1 96.6±0.3
P1→P5 66.5 68.8±0.9 69.6±0.7 69.2±0.6 66.9 68.0±1.1 69.5±0.7
P2→P1 81.3 82.2±0.7 81.8±0.7 82.5±0.6 82.4 83.7±0.5 83.6±0.7
P2→P3 74.0 76.6±0.4 76.2±0.4 76.9±0.5 74.0 74.1±0.5 76.2±0.5
P2→P4 88.6 89.1±0.6 89.4±0.5 89.8±0.5 89.5 90.5±0.6 90.6±0.4
P2→P5 68.8 68.9±1.0 69.5±1.5 70.3±1.3 70.8 68.5±1.3 71.1±1.2
P3→P1 78.8 78.7±0.7 78.7±0.9 79.4±1.0 81.1 79.3±0.8 80.6±0.9
P3→P2 76.7 77.8±0.7 77.3±1.0 77.9±1.1 78.1 78.6±0.9 78.6±1.1
P3→P4 85.2 87.3±0.6 87.4±0.7 88.1±0.6 86.8 89.4±0.7 89.4±0.6
P3→P5 70.8 70.9±0.8 71.5±0.6 71.8±0.6 71.4 71.7±0.9 73.0±0.8
P4→P1 93.3 94.5±0.3 94.2±0.5 93.9±0.5 94.1 96.2±0.4 95.0±0.5
P4→P2 95.0 94.7±0.4 95.0±0.2 95.2±0.2 95.9 96.3±0.2 96.1±0.2
P4→P3 92.3 92.0±0.2 91.9±0.5 92.0±0.5 92.5 92.3±0.3 92.0±0.3
P4→P5 81.1 81.4±0.4 81.3±0.5 81.8±0.4 81.9 82.9±0.4 82.6±0.6
P5→P1 73.8 75.6±1.1 76.2±1.2 76.3±1.2 75.7 78.6±0.7 78.1±1.1
P5→P2 71.2 73.7±1.4 72.8±1.5 73.6±1.3 72.4 75.8±1.0 75.3±1.4
P5→P3 74.1 76.5±0.4 76.6±0.8 77.6±0.6 75.8 77.3±0.8 78.8±0.7
P5→P4 81.8 83.4±0.8 83.1±0.7 83.7±0.7 83.7 88.0±0.7 85.6±0.8

5.4.1 Discussion of Hybrid Sampling
Both Fig. 5 and Table 8 describe the results of ensemble
methods with single kind of sampling, that is to say, only
one of sampling densities [δs, δt, δf ] is less than 1.0. In this
section, we are also interested in whether fusion with hybrid
sampling works better than fusion with single sampling. For
simplicity, we exploit the Office-Caltech dataset with SURF
features and determine several relative large values for the
sampling densities with fixed K 10, the comparison results
of WMV-1-NN for each setting are shown in Table 9.

There exist two hybrid sampling settings, (i.e., DICEst
and DICEstf) and three single sampling settings (i.e., DICEs,
DICEt and DICEf). First, we underline the results which are
higher than its counterpart method DICE without sampling.
Generally, methods with single sampling (δs, δt, δf ) win
DICE in 6, 9, and 11 out of 12 tasks in terms of the averaged
accuracy, meanwhile, methods with hybrid sampling DICEst
and DICEstf beat DICE in 9 and 10 sub-tasks, respectively.
Among these fusion methods, DICEstf is superior to both
DICEst and DICEf, while DICEst outperforms DICEt but

slightly inferior to DICEs. It indicates that hybrid sampling
show great potential to enhance the adaptation performance
at a lower computation cost.

Re-checking the results, we find that DICEs often
performs the best among the former 6 tasks where source
domains A, C are relatively large. Likewise, DICEt achieves
promising results for small-scale source domains D and
W. Combining both source and target instance sampling
together, DICEst not only advances the averaged accuracy
of DICEt but also obtains a lower deviation value 0.20
for the overall dataset. This finding also works well on
two medium-sized sub-tasks A�C. In addition to instance
sampling, DICEstf further incorporates the feature sampling
and achieves the best performance except A→W, C→D.
For such cases, source domain is much larger than target
domain, sampling on the target instances severely destroy
the distribution, making the learned projection sub-optimal.

TABLE 9
Averaged recognition accuracy ± standard deviation (%) on the

Office-Caltech dataset with SURF features under the ‘full-training’
protocol for WMV-1-NN w.r.t. different sampling densities [δs, δt, δf ].

data DICE DICEs DICEt DICEst DICEf DICEstf
[δs, δt, δf ] – [0.8, 1.0, 1.0] [1.0, 0.6, 1.0] [0.8, 0.6, 1.0] [1.0, 1.0, 0.9] [0.8, 0.6, 0.9]

A→C 42.65 45.00±0.63 46.23±0.19 46.43±0.53 45.02±0.47 46.16±0.50
A→D 49.68 51.97±1.99 50.19±1.52 50.06±1.72 49.68±1.91 51.97±1.07
A→W 52.20 52.00±1.28 49.49±1.83 49.90±1.18 52.41±0.88 49.08±1.25
C→A 50.21 55.59±0.85 53.55±0.80 54.55±0.65 54.66±0.72 54.82±0.55
C→D 50.96 55.29±2.36 53.25±0.97 54.01±2.68 54.27±1.05 53.50±2.85
C→W 48.14 56.27±0.90 51.73±0.57 54.24±0.79 54.17±0.73 54.24±0.83
D→A 41.13 43.55±0.50 43.32±0.22 43.70±1.54 43.63±1.43 42.73±0.73
D→C 33.66 35.32±0.59 35.64±0.80 35.87±0.32 35.98±0.34 36.06±0.52
D→W 84.07 82.51±1.28 86.24±0.78 85.15±0.88 84.20±0.78 85.63±1.26
W→A 37.47 35.89±0.95 40.56±0.72 41.32±0.29 37.49±1.08 41.50±1.18
W→C 37.85 37.47±1.59 36.54±1.20 35.55±0.71 37.95±0.96 35.90±0.76
W→D 87.26 86.62±0.78 87.01±0.35 86.11±1.23 87.52±0.73 87.52±0.57
Avg. 51.27 53.12±0.44 52.81±0.08 53.07±0.20 53.08±0.33 53.26±0.32

5.4.2 Robustness, Generalization and Large-scale Case
Additionally, we study several important issues including
robustness to source label distribution, generalization ability
of the learned projections and performance on a large-
scale digit dataset SVHN→MNIST [39], [43]. Specifically, we
measure the robustness under uniform/non-uniform source
label distributions, while generalization ability represents
the adaptation performance via learning projections for
classes ‘A,B’, and predicting cross-domain classes ‘C,D’.
More details can be found in the Supplementary Material.

6 CONCLUSION

In this work, we have analyzed the domain-irrelevant class-
clustering objective, and derived a novel objective function
to learn domain-invariant projection for unsupervised
domain adaptation. The optimal projection and pseudo
target labels are alternately optimized, and in each iteration
the projection is computed in closed-form via solving a
generalized eigenvalue problem, while the pseudo labels are
estimated via discriminative classifier trained on projected
source domain. To increase the discriminative ability
of final classifier, we first introduce the ‘sampling-and-
fusion’ strategy into the domain adaptation task, where
multiple independent projections are optimized on coupled
domain subsets. Actually, this ensemble method can be
naturally parallelized and be flexible for large-scale and
high-dimensional datasets. Extensive experimental results
demonstrate that our methods converge fast in terms of
recognition accuracy and achieve performances superior or
comparable to state-of-the-art approaches.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

(a) sampling density δs on Office-Caltech (b) sampling density δt on Office-Caltech (c) sampling density δf on Office-Caltech

(d) sampling density δs on MNIST-USPS (e) sampling density δt on MNIST-USPS (f) sampling density δf on MNIST-USPS
Fig. 5. Averaged recognition accuracy (%) on the Office-Caltech dataset with SURF features using the ‘full training’ protocol (a-c) and MNIST-USPS
dataset (d-f) w.r.t. each sampling density δs, δt and δf while the other two densities are kept fixed at 1.

We believe that our methods are readily extended to
semi-supervised and multi-source unsupervised domain
adaptation tasks. This would be useful for some scenarios
where partial target data are labeled or multiple labeled
source domains exist. In this sense, label propagation can
be introduced to handle labeled target data, and multi-
kernel learning can be easily leveraged in multi-source
fusion. Besides, multiple domain-invariant projections are
learned independently, which does not consider the explicit
correlations between each projection. One interesting
direction is to collaboratively learn multiple projections,
which is expected to achieve more promising results. We
intend to investigate these problems in future work.
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