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ABSTRACT 
Collaborative filtering is widely used in recommender systems. When 
training data are extremely sparse, neighbor selection methods work 
ineffectively. To address this issue, this paper proposes a distributed 
representation model that represents users as low-dimensional vectors 
for neighbor selection by considering the chronological order of 
users’ ratings. Experiments show that the proposed method 
outperforms the state-of-the-art methods solving the sparsity problem 
with regard to precision and ranking quality.  
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1 INTRODUCTION 
In the last decade, Collaborative Filtering (CF) [1] is widely used in 
recommender systems (RS). The neighborhood-based CF is one of 
the famous CF methods. It predicts the items that users may like by 
analyzing the co-occurrence of users’ ratings. An open issue of CF is 
the sparsity problem. When the rating matrix is sparse, CF will have 
poor results. Researchers proposed solutions, for example, clustering-
based CF [2] and matrix factorization [3] [5] [4]. However, the rating 
matrix of a large RS or of a newly built RS for large-scale existing 
users is extremely sparse and high dimensional. In this case, the 
solutions suffer from the high-dimensional extremely sparse data [6]. 
The sparsity problem of CF is still critical when meeting the high-
dimensional extremely sparse data, for example, the density is below 
the range of . In this case, the effectiveness of the existing 

approaches will rapidly reduce. Therefore, they can hardly deal with 
the situation well. Our contribution in this paper is to propose a 
neighbor selection method for the user-based CF by considering the 
chronological order of the ratings in order to address the high-
dimensional sparse issue. Our method presents users with low-
dimensional vectors by applying the distributed representation. 
Experiments show that our method can provide better precision and 
ranking quality for the high-dimensional extremely sparse data.  

We organize the rest of the paper as follows. Section 2 presents the 
related work and background. Section 3 introduces our method and 
Section 4 shows experiments to evaluate our method. Finally, 
conclusion and future work are given in Section 5. 

2 BACKGROUND AND RELATED WORK 

2.1 Neighborhood-based Collaborative Filtering 
The neighborhood-based CF [7] includes user-based CF [8] and item-
based CF [9]. The user-based CF has the following main steps: 1) 
compute user similarity based on the rating matrix; 2) find K nearest 
neighbors; 3) predict ratings of the unrated items according to the 
neighbors’ ratings; 4) find the first N items for recommendation. The 
item-based CF is similar to the user-based CF while identifying item-
neighbors instead of user-neighbors.  

Neighbor selection has been studied in previous work. Verstrepen 
and Goethals [10] unified the neighbor selection algorithms for the 
user-based CF and the item-based CF. The study [11] proposed a 
probabilistic neighbor selection method by considering similarity 
levels and weighted sampling of neighbors. Bellogin and Parapar [12] 
introduced a normalized cut clustering-based neighbor selection 
method for the user-based CF. The user interests drift over time. 
Koren [13] discussed the modeling methods for the time-aware 
interests for CF. The study [14] proposed a probabilistic generative 
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model to represent the interest change. Koenigstein, Dror, and Koren 
[15] presented a music recommendation method with consideration 
of the different temporal dynamics of music ratings. The research 
[16] proposed an algorithm to compute the changing time weights of 
items. 

2.2 Distributed Representation 
Word embedding is a widely used distributed representation method 
[17] in NLP. It represents words with fixed-length low-dimensional 
vectors. Word2Vec [18][19] is a state-of-the-art word embedding 
technique that builds word vectors by evaluating language models. 
Word2Vec is a simplified deep learning method that has a neural 
network with three layers: input layer, projection layer, and output 
layer. Word2Vec can be implemented by the language model CBOW 
(Continuous Bag-of-Words) that describes a prediction process of a 
word according to the contexts of the word. For a corpus  consisting 
of a sequence of words , the cost function is defined as 

 

 
(1) 

where  and  is 
the size of sliding window. The objective of the model is to maximize 
Equation (1). For a given word , the input of the model is 

. Each  is randomly initialized with 
a unique fixed-length vector . The projection layer builds a vector 

 that sums the contextual vectors. The output layer 
works on predicting  that is encoded with Huffman code. The 
model applies the Softmax function for the prediction (see Equation 
(1)), where  is the size of the vocabulary of corpus , and  is the 
weight parameters. By using stochastic gradient descent (SGD), the 
contextual word vectors and the parameters  can be updated. After 
rounds of iterations, the word vectors can be obtained. 

Paragraph Vector (also called Doc2Vec) [20] extends Word2Vec for 
learning paragraph vectors that are used to compute paragraph 
similarity. Doc2Vec provides PV-DM (Distributed Memory Model of 
Paragraph Vector). The most important difference to CBOW is that in 
each round of iteration, Doc2Vec samples training words from a 
paragraph and treats the paragraph id as an additional training word. 
The paragraph vector has the same dimension size as the word 
vectors. Afterwards, the input vectors are averaged in the projection 
layer. Finally, the word vectors can be computed using SGD in the 
output layer.  

3 Distributed Representation for Neighbor 
Selection 

In this paper, we propose a distributed representation model called 
Rating2Vec for neighbor selection of the user-based CF. As shown in 
Figure 1, the learning framework of Rating2Vec is similar to that of 
Doc2Vec. We build Rating2Vec considering user interests that are 
represented by ratings in the rating matrix. The rating score means 
how much a user likes an item. The higher the score is, the stronger 
the user interests are. In Rating2Vec, we treat the rating score as the 
weight of item vector. For computing the model, we use Hierarchical 

Softmax based on the Huffman Tree that structures items and users 
according to their frequency. For items, we treat the rating scores of 
an item as its frequency. We consider the chronological order of the 
ratings in our model because user interests change over time. We 
select training data using a sliding windows like in Word2Vec. The 
order of ratings in a relative short time interval usually can hardly 
represent interest drift. The inner order may introduce over-fitting of 
the training. Therefore, we do not consider the inner order of ratings.  

Formally, we define a rating matrix  where user 
 and item . A user is represented as a continuous 

sequence of ratings with the chronological order: . The 
user vectors can be obtained by maximizing Equation (2) for each 
round of iteration. 

Comparing with Doc2Vec, we add a weighting layer between the 
input layer and the projection layer. In this layer, the vector  of 
item  is weighted by multiplying  and rating 
score . The weight of a user vector is always 1. The projection 
layer sums the vectors: . The output layer 
trains the prediction model by updating vectors and parameters. 
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Figure 1: Learning Process of Rating Vector in Rating2Vec. 

ALGORITHM 1 shows the algorithm of Rating2Vec. At first, for a 
given dimension , it initializes the parameter set , users and items 
of the given rating matrix with random d-dimensional vectors (line 
1). Then, it uses SGD to train the vectors. At the beginning, a user  
is randomly selected from the user set  and an item  that is 
rated by  is randomly selected from the item set .  is the index of 
the item in the sequence in chronological order of the rated items of  
(lines 4-5). The context of  are sampled with the windows size 
2  (line 6). The contextual item vectors are weighted by the 
corresponding rating scores. The user vector and the weighted 
contextual item vectors are added up (lines 7-11). Afterwards, the 
gradients of  and , and the accumulative error  are computed. 
The parameter set  is updated with the learning rate  and the 
gradient  (lines 12-16). The user vector and the contextual 
item vectors are updated with the accumulative error  (lines 17-20). 
After rounds of iterations, the results are obtained including the 
parameter set , the contextual item vectors, and the user vectors 
(line 23). 
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ALGORITHM 1: Rating2Vec Algorithm 
Input: rating matrix  having a user set U, and an item set I; vector 
dimension ; radius ; total number of iterations  
and ; learning rate of stochastic gradient descent . 
Output: vector set v, parameter set . 
1    
2    
3   while  do 
4        
5        
6        
7        
8       for  do 
9                     /*  */ 
10          
11     end 
12      
13     for  do         /* l: length of the Huffman code of  */ 

14          

15          

16     end 
17     for  do 
18          
19     end 
20      
21      
22 end 
23 return  

 
The training complexity of each round of iteration in Rating2Vec 
combines the complexities of the weighting layer, the projection 
layer, and the output layer: , where  
denotes size of the vocabulary and  denotes dimension size of 
vector. Rating2Vec builds feature vectors of users and items. After 
that, the user-based CF computes user similarity according to the user 
vectors using Pearson correlation coefficient. 

4 EXPERIMENTS 

4.1 Dataset 
We used Netflix Prize dataset [21] for the experiments. The dataset 
contains 17,770 movies, over 480,000 users, and c.a. 1 billion ratings. 
As shown in Table 1, we sampled five high-dimensional sparse sub-

datasets from the Netflix dataset. The densities are in the range from 
 to . In each sub-dataset, we sampled 80% data 

for training and 20% data for test. 

Table 1: Experimental Datasets 

Dataset User Item Density 
1 22573 16294 0.0017 
2 3596 8647 0.0035 
3 22342 17381 0.0064 
4 1024 9247 0.011 
5 166 8132 0.062 

4.2 Metrics 
The experiments contain the tasks regarding top-N recommendations 
(N=5, 10, 20). We evaluated the algorithms for precision and nDCG 
(Normalized Discounted Cumulative Gain) [22]. The precision 
measures the correctness of recommendations and the nDCG 
indicates the ranking quality of recommendations.  

4.3 Baselines 
We selected baseline methods from classic CF, clustering-based CF, 
and matrix factorization methods. We applied the traditional CF 
(PureCF), the K-means-based CF (KMCF) [2], the clustering-based 
SVD++ (CB-SVD++) [23], and the probabilistic matrix factorization 
(PMF) [5] as the baseline methods. PureCF directly uses the original 
ratings as the features of users and items. Rating2Vec-based CF 
(Rating2Vec) improves the PureCF with distributed user vectors for 
neighbor selection. KMCF uses the k-means clustering for users, and 
then selects neighbors from related clusters. For Rating2Vec, PureCF, 
and KMCF, after identifying user vectors, these methods can predict 
users’ ratings based on neighbors’ ratings. In different ways, CB-
SVD++ and PMF predict users’ ratings basically by factorizing the 
rating matrix instead of analyzing neighbors’ ratings. All the baseline 
methods have the same rest steps for obtaining the recommended 
items after the rating prediction. 

4.4 Settings 
For the experiments, we set the neighbor size: n=50; the dimension 
size for Rating2Vec: d=100. The computer server has four Intel Xeon 
8-core CPUs and 128 GB total memory.  

4.5 Results 
Figure 2 illustrates the diagrams of the experimental results for 
precision and ranking quality. 

 

   
(a) Precision: P@5, P@10, and P@20 
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(b) nDCG: nDCG@5, nDCG@10, nDCG@20 

Figure 2: Experiments for precision and nDCG. 

Figure 2 (a) compares the methods regarding precision. For the 
datasets with densities of 0.062 and 0.011, CB-SVD++ and PMF 
have higher precision than that of other experimental methods. 
KMCF is better than Rating2Vec in this case. PureCF has the 
worst results among the CF methods in the experiments. When the 
dataset becomes more sparse (density=0.0064), the precision of 
CB-SVD++ and PMF reduce to the similar level of Rating2Vec. 
In this case, Rating2Vec outperforms KMCF. PureCF still has the 
worst result. When the density drops to 0.0035, precision of CB-
SVD++ and PMF reduce below that of Rating2Vec, particularly 
for P@5. PureCF and KMCF are overtaken by Rating2Vec in this 
case. When using the extremely sparse dataset (density=0.0017), 
Rating2Vec outperforms the baseline methods. The precision 
experiments show that our method definitely has better precision 
than that of the commonly used solutions of sparsity problem 
when data are extremely sparse.  

Figure 2 (b) presents the experimental results regarding nDCG. 
Similar to the precision experiments, for the not extremely sparse 
datasets (density>0.011), CB-SVD++, PMF, and KMCF are able 
to outperform Rating2Vec. When the density reduces to 0.0064, 
Rating2Vec becomes better than KMCF, but dose not as good as 
the matrix factorization-based baseline methods. When the dataset 
is very sparse (density<0.0035), the advantage of Rating2Vec 
becomes obvious.  

In sum, the experiments show that our method can provide better 
precision and ranking quality of recommendations for the high-
dimensional sparse datasets. The benefits become stronger when 
the density is below the range of . Therefore, we conclude 
that the Rating2Vec-based CF outperforms the state-of-the-art CF 
methods for the extremely sparse datasets. 

We also performed experiments for the variable settings of 
Rating2Vec. Figure 3 (a) presents the experimental results for 
neighbor size. The results show that the precision reduces rapidly 
when Rating2Vec has more than 50 neighbors. Figure 3 (b) 
presents the experimental results for dimension size of vectors. 
We evaluated the dimension size between 10 and 300. The results 
show that the large dimension size gives better precision. 
However, because the large dimension size will increase the 
complexity, usually we need a trade-off size. The trends of the 
precision show that the growth of precision becomes slow when 

the dimension size is over 100. Therefore, we conclude that the 
dimension size of 100 is suitable for the extremely sparse datasets. 

 
 

  
(a) Neighbor size                         (b) Dimension size 

Figure 3: Experiments for Variables of Rating2Vec. 

Moreover, the variable experiments also show that P@20 is 
higher than P@5 and P@10. That means, the larger the number of 
recommendation items is, the better the precision is. Because we 
only used the number between 5 and 20 in our study, it still needs 
more experiments to validate the conclusion. 

5 CONCLUSIONS  
The neighbor selection method strongly influences collaborative 
filtering. The state-of-the-art neighbor selection methods do not 
work well for the high-dimensional sparse datasets. In this paper, 
we propose a feature modeling method Rating2Vec for neighbor 
selection by considering the time factor of ratings. We use the 
distributed representation in our method to represent users with 
the fixed-length low-dimensional vectors. The experiments show 
that the Rating2Vec-based CF method can provide better top-N 
recommendations for the extremely sparse data than those of the 
commonly used CF methods with regard to precision and ranking 
quality. In the future, we will extend our method to item-based 
CF. Furthermore, we will focus on different distributed 
representation models, e.g., GloVe, for collaborative filtering. 
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