
Distributed Representation for Neighborhood-based Collaborative
Filtering

Yi Yang

Institute of Automation
Chinese Academy of Sciences

Beijing, China
yangyi@ia.ac.cn

Guigang Zhang
Institute of Automation

Chinese Academy of Sciences
Beijing, China

guigang.zhang@ia.ac.cn

Jian Wang*
Institute of Automation

Chinese Academy of Sciences
Beijing, China

jian.wang@ia.ac.cn

Weixing Huang
Institute of Automation

Chinese Academy of Sciences
Beijing, China

hwx0904@vip.sina.com

*Corresponding author: Jian Wang

ABSTRACT
Collaborative filtering is widely used in recommender systems. When
training data are extremely sparse, neighbor selection methods work
ineffectively. To address this issue, this paper proposes a distributed
representation model that represents users as low-dimensional vectors
for neighbor selection by considering the chronological order of
users’ ratings. Experiments show that the proposed method
outperforms the state-of-the-art methods solving the sparsity problem
with regard to precision and ranking quality.

CCS CONCEPTS
• Information systems Recommender systems

KEYWORDS
Recommender system, collaborative filtering, neighbor selection,
word embedding, word2vec, NLP, deep learning

1 INTRODUCTION
In the last decade, Collaborative Filtering (CF) [1] is widely used in
recommender systems (RS). The neighborhood-based CF is one of
the famous CF methods. It predicts the items that users may like by
analyzing the co-occurrence of users’ ratings. An open issue of CF is
the sparsity problem. When the rating matrix is sparse, CF will have
poor results. Researchers proposed solutions, for example, clustering-
based CF [2] and matrix factorization [3] [5] [4]. However, the rating
matrix of a large RS or of a newly built RS for large-scale existing
users is extremely sparse and high dimensional. In this case, the
solutions suffer from the high-dimensional extremely sparse data [6].
The sparsity problem of CF is still critical when meeting the high-
dimensional extremely sparse data, for example, the density is below
the range of . In this case, the effectiveness of the existing

approaches will rapidly reduce. Therefore, they can hardly deal with
the situation well. Our contribution in this paper is to propose a
neighbor selection method for the user-based CF by considering the
chronological order of the ratings in order to address the high-
dimensional sparse issue. Our method presents users with low-
dimensional vectors by applying the distributed representation.
Experiments show that our method can provide better precision and
ranking quality for the high-dimensional extremely sparse data.

We organize the rest of the paper as follows. Section 2 presents the
related work and background. Section 3 introduces our method and
Section 4 shows experiments to evaluate our method. Finally,
conclusion and future work are given in Section 5.

2 BACKGROUND AND RELATED WORK

2.1 Neighborhood-based Collaborative Filtering
The neighborhood-based CF [7] includes user-based CF [8] and item-
based CF [9]. The user-based CF has the following main steps: 1)
compute user similarity based on the rating matrix; 2) find K nearest
neighbors; 3) predict ratings of the unrated items according to the
neighbors’ ratings; 4) find the first N items for recommendation. The
item-based CF is similar to the user-based CF while identifying item-
neighbors instead of user-neighbors.

Neighbor selection has been studied in previous work. Verstrepen
and Goethals [10] unified the neighbor selection algorithms for the
user-based CF and the item-based CF. The study [11] proposed a
probabilistic neighbor selection method by considering similarity
levels and weighted sampling of neighbors. Bellogin and Parapar [12]
introduced a normalized cut clustering-based neighbor selection
method for the user-based CF. The user interests drift over time.
Koren [13] discussed the modeling methods for the time-aware
interests for CF. The study [14] proposed a probabilistic generative

2017 IEEE International Symposium on Multimedia

978-1-5386-2937-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ISM.2017.104

531

model to represent the interest change. Koenigstein, Dror, and Koren
[15] presented a music recommendation method with consideration
of the different temporal dynamics of music ratings. The research
[16] proposed an algorithm to compute the changing time weights of
items.

2.2 Distributed Representation
Word embedding is a widely used distributed representation method
[17] in NLP. It represents words with fixed-length low-dimensional
vectors. Word2Vec [18][19] is a state-of-the-art word embedding
technique that builds word vectors by evaluating language models.
Word2Vec is a simplified deep learning method that has a neural
network with three layers: input layer, projection layer, and output
layer. Word2Vec can be implemented by the language model CBOW
(Continuous Bag-of-Words) that describes a prediction process of a
word according to the contexts of the word. For a corpus consisting
of a sequence of words , the cost function is defined as

(1)

where and is
the size of sliding window. The objective of the model is to maximize
Equation (1). For a given word , the input of the model is

. Each is randomly initialized with
a unique fixed-length vector . The projection layer builds a vector

 that sums the contextual vectors. The output layer
works on predicting that is encoded with Huffman code. The
model applies the Softmax function for the prediction (see Equation
(1)), where is the size of the vocabulary of corpus , and is the
weight parameters. By using stochastic gradient descent (SGD), the
contextual word vectors and the parameters can be updated. After
rounds of iterations, the word vectors can be obtained.

Paragraph Vector (also called Doc2Vec) [20] extends Word2Vec for
learning paragraph vectors that are used to compute paragraph
similarity. Doc2Vec provides PV-DM (Distributed Memory Model of
Paragraph Vector). The most important difference to CBOW is that in
each round of iteration, Doc2Vec samples training words from a
paragraph and treats the paragraph id as an additional training word.
The paragraph vector has the same dimension size as the word
vectors. Afterwards, the input vectors are averaged in the projection
layer. Finally, the word vectors can be computed using SGD in the
output layer.

3 Distributed Representation for Neighbor
Selection

In this paper, we propose a distributed representation model called
Rating2Vec for neighbor selection of the user-based CF. As shown in
Figure 1, the learning framework of Rating2Vec is similar to that of
Doc2Vec. We build Rating2Vec considering user interests that are
represented by ratings in the rating matrix. The rating score means
how much a user likes an item. The higher the score is, the stronger
the user interests are. In Rating2Vec, we treat the rating score as the
weight of item vector. For computing the model, we use Hierarchical

Softmax based on the Huffman Tree that structures items and users
according to their frequency. For items, we treat the rating scores of
an item as its frequency. We consider the chronological order of the
ratings in our model because user interests change over time. We
select training data using a sliding windows like in Word2Vec. The
order of ratings in a relative short time interval usually can hardly
represent interest drift. The inner order may introduce over-fitting of
the training. Therefore, we do not consider the inner order of ratings.

Formally, we define a rating matrix where user
 and item . A user is represented as a continuous

sequence of ratings with the chronological order: . The
user vectors can be obtained by maximizing Equation (2) for each
round of iteration.

Comparing with Doc2Vec, we add a weighting layer between the
input layer and the projection layer. In this layer, the vector of
item is weighted by multiplying and rating
score . The weight of a user vector is always 1. The projection
layer sums the vectors: . The output layer
trains the prediction model by updating vectors and parameters.

PROJECTION

INPUT

OUTPUT

 SUM:

WEIGHTING

... ...UserID: Item: Item: Item: Item:u

ti

sumv

uv t kv − 1tv − 1tv + t kv +

t ki − 1ti − 1ti + t ki +

t k t kr v− − 1 1t tr v− − 1 1t tr v+ + t k t kr v+ +uv

...

...

...

...

Figure 1: Learning Process of Rating Vector in Rating2Vec.

ALGORITHM 1 shows the algorithm of Rating2Vec. At first, for a
given dimension , it initializes the parameter set , users and items
of the given rating matrix with random d-dimensional vectors (line
1). Then, it uses SGD to train the vectors. At the beginning, a user
is randomly selected from the user set and an item that is
rated by is randomly selected from the item set . is the index of
the item in the sequence in chronological order of the rated items of
(lines 4-5). The context of are sampled with the windows size
2 (line 6). The contextual item vectors are weighted by the
corresponding rating scores. The user vector and the weighted
contextual item vectors are added up (lines 7-11). Afterwards, the
gradients of and , and the accumulative error are computed.
The parameter set is updated with the learning rate and the
gradient (lines 12-16). The user vector and the contextual
item vectors are updated with the accumulative error (lines 17-20).
After rounds of iterations, the results are obtained including the
parameter set , the contextual item vectors, and the user vectors
(line 23).

532

ALGORITHM 1: Rating2Vec Algorithm
Input: rating matrix having a user set U, and an item set I; vector
dimension ; radius ; total number of iterations
and ; learning rate of stochastic gradient descent .
Output: vector set v, parameter set .
1
2
3 while do
4
5
6
7
8 for do
9 /* */
10
11 end
12
13 for do /* l: length of the Huffman code of */

14

15

16 end
17 for do
18
19 end
20
21
22 end
23 return

The training complexity of each round of iteration in Rating2Vec
combines the complexities of the weighting layer, the projection
layer, and the output layer: , where
denotes size of the vocabulary and denotes dimension size of
vector. Rating2Vec builds feature vectors of users and items. After
that, the user-based CF computes user similarity according to the user
vectors using Pearson correlation coefficient.

4 EXPERIMENTS

4.1 Dataset
We used Netflix Prize dataset [21] for the experiments. The dataset
contains 17,770 movies, over 480,000 users, and c.a. 1 billion ratings.
As shown in Table 1, we sampled five high-dimensional sparse sub-

datasets from the Netflix dataset. The densities are in the range from
 to . In each sub-dataset, we sampled 80% data

for training and 20% data for test.

Table 1: Experimental Datasets

Dataset User Item Density
1 22573 16294 0.0017
2 3596 8647 0.0035
3 22342 17381 0.0064
4 1024 9247 0.011
5 166 8132 0.062

4.2 Metrics
The experiments contain the tasks regarding top-N recommendations
(N=5, 10, 20). We evaluated the algorithms for precision and nDCG
(Normalized Discounted Cumulative Gain) [22]. The precision
measures the correctness of recommendations and the nDCG
indicates the ranking quality of recommendations.

4.3 Baselines
We selected baseline methods from classic CF, clustering-based CF,
and matrix factorization methods. We applied the traditional CF
(PureCF), the K-means-based CF (KMCF) [2], the clustering-based
SVD++ (CB-SVD++) [23], and the probabilistic matrix factorization
(PMF) [5] as the baseline methods. PureCF directly uses the original
ratings as the features of users and items. Rating2Vec-based CF
(Rating2Vec) improves the PureCF with distributed user vectors for
neighbor selection. KMCF uses the k-means clustering for users, and
then selects neighbors from related clusters. For Rating2Vec, PureCF,
and KMCF, after identifying user vectors, these methods can predict
users’ ratings based on neighbors’ ratings. In different ways, CB-
SVD++ and PMF predict users’ ratings basically by factorizing the
rating matrix instead of analyzing neighbors’ ratings. All the baseline
methods have the same rest steps for obtaining the recommended
items after the rating prediction.

4.4 Settings
For the experiments, we set the neighbor size: n=50; the dimension
size for Rating2Vec: d=100. The computer server has four Intel Xeon
8-core CPUs and 128 GB total memory.

4.5 Results
Figure 2 illustrates the diagrams of the experimental results for
precision and ranking quality.

(a) Precision: P@5, P@10, and P@20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.062 0.011 0.0064 0.0035 0.0017

Pr
ec

is
io

n

Density

P@5
Rating2Vec PureCF KMCF
CB-SVD++ PMF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.062 0.011 0.0064 0.0035 0.0017

Pr
ec

is
io

n

Density

P@10
Rating2Vec PureCF KMCF
CB-SVD++ PMF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.062 0.011 0.0064 0.0035 0.0017

Pr
ec

is
io

n

Density

P@20
Rating2Vec PureCF KMCF
CB-SVD++ PMF

533

(b) nDCG: nDCG@5, nDCG@10, nDCG@20

Figure 2: Experiments for precision and nDCG.

Figure 2 (a) compares the methods regarding precision. For the
datasets with densities of 0.062 and 0.011, CB-SVD++ and PMF
have higher precision than that of other experimental methods.
KMCF is better than Rating2Vec in this case. PureCF has the
worst results among the CF methods in the experiments. When the
dataset becomes more sparse (density=0.0064), the precision of
CB-SVD++ and PMF reduce to the similar level of Rating2Vec.
In this case, Rating2Vec outperforms KMCF. PureCF still has the
worst result. When the density drops to 0.0035, precision of CB-
SVD++ and PMF reduce below that of Rating2Vec, particularly
for P@5. PureCF and KMCF are overtaken by Rating2Vec in this
case. When using the extremely sparse dataset (density=0.0017),
Rating2Vec outperforms the baseline methods. The precision
experiments show that our method definitely has better precision
than that of the commonly used solutions of sparsity problem
when data are extremely sparse.

Figure 2 (b) presents the experimental results regarding nDCG.
Similar to the precision experiments, for the not extremely sparse
datasets (density>0.011), CB-SVD++, PMF, and KMCF are able
to outperform Rating2Vec. When the density reduces to 0.0064,
Rating2Vec becomes better than KMCF, but dose not as good as
the matrix factorization-based baseline methods. When the dataset
is very sparse (density<0.0035), the advantage of Rating2Vec
becomes obvious.

In sum, the experiments show that our method can provide better
precision and ranking quality of recommendations for the high-
dimensional sparse datasets. The benefits become stronger when
the density is below the range of . Therefore, we conclude
that the Rating2Vec-based CF outperforms the state-of-the-art CF
methods for the extremely sparse datasets.

We also performed experiments for the variable settings of
Rating2Vec. Figure 3 (a) presents the experimental results for
neighbor size. The results show that the precision reduces rapidly
when Rating2Vec has more than 50 neighbors. Figure 3 (b)
presents the experimental results for dimension size of vectors.
We evaluated the dimension size between 10 and 300. The results
show that the large dimension size gives better precision.
However, because the large dimension size will increase the
complexity, usually we need a trade-off size. The trends of the
precision show that the growth of precision becomes slow when

the dimension size is over 100. Therefore, we conclude that the
dimension size of 100 is suitable for the extremely sparse datasets.

(a) Neighbor size (b) Dimension size

Figure 3: Experiments for Variables of Rating2Vec.

Moreover, the variable experiments also show that P@20 is
higher than P@5 and P@10. That means, the larger the number of
recommendation items is, the better the precision is. Because we
only used the number between 5 and 20 in our study, it still needs
more experiments to validate the conclusion.

5 CONCLUSIONS
The neighbor selection method strongly influences collaborative
filtering. The state-of-the-art neighbor selection methods do not
work well for the high-dimensional sparse datasets. In this paper,
we propose a feature modeling method Rating2Vec for neighbor
selection by considering the time factor of ratings. We use the
distributed representation in our method to represent users with
the fixed-length low-dimensional vectors. The experiments show
that the Rating2Vec-based CF method can provide better top-N
recommendations for the extremely sparse data than those of the
commonly used CF methods with regard to precision and ranking
quality. In the future, we will extend our method to item-based
CF. Furthermore, we will focus on different distributed
representation models, e.g., GloVe, for collaborative filtering.

ACKNOWLEDGMENTS
We thank the National Key Technology Support Program of the
National ‘12th Five-Year-Plan of China’ under Grant No.
2015BAK25B04 for partially supporting our work. We also thank

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.062 0.011 0.0064 0.0035 0.0017

nD
CG

Density

nDCG@5
Rating2Vec PureCF KMCF
CB-SVD++ PMF

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.062 0.011 0.0064 0.0035 0.0017

nD
CG

Density

nDCG@10
Rating2Vec PureCF KMCF
CB-SVD++ PMF

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.062 0.011 0.0064 0.0035 0.0017

nD
CG

Density

nDCG@20
Rating2Vec PureCF KMCF
CB-SVD++ PMF

0.1

0.15

0.2

0.25

0.3

0.35

10 20 50 100 200 300 500

Pr
ec

is
io

n

Neighborhood Size

Neighbor-Precision
(density=0.0017)

P@5

0.1

0.15

0.2

0.25

0.3

0.35

10 50 100 200 300

Pr
ec

is
io

n

Dimension Size

Dimension-Precision
(density=0.0017)

P@5

534

all colleagues and graduate students who helped us for our
visualization system and experiments.

REFERENCES
[1] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. 1992. Using

collaborative filtering to weave an information tapestry. Commun. ACM 35, 12
(December 1992), 61-70.

[2] Gui-Rong Xue, Chenxi Lin, Qiang Yang, WenSi Xi, Hua-Jun Zeng, Yong Yu,
and Zheng Chen. 2005. Scalable collaborative filtering using cluster-based
smoothing. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval (SIGIR '05).
ACM, New York, NY, USA, 114-121.

[3] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD '08).
ACM, New York, NY, USA, 426-434.

[4] Yehuda Koren. 2010. Factor in the neighbors: Scalable and accurate
collaborative filtering. ACM Trans. Knowl. Discov. Data 4, 1, Article 1
(January 2010), 24 pages.

[5] Salakhutdinov and A. Mnih. Probabilistic matrix factorization. Advances in
neural information processing systems, pages 1257–1264, 2008.

[6] Miha Gr ar, Blaž Fortuna, Dunja Mladeni , & Marko Grobelnik. 2006. Knn
versus svm in the collaborative filtering framework. Workshop on Knowledge
Discovery on the Web, 251-260.

[7] X. Ning, C. Desrosiers, and G. Karypis. 2015. A Comprehensive Survey of
Neighborhood-Based Recommendation Methods. Recommender Systems
Handbook. Springer US, (2015), 107-144.

[8] Jon Herlocker, Joseph A. Konstan, and John Riedl. 2002. An Empirical
Analysis of Design Choices in Neighborhood-Based Collaborative Filtering
Algorithms. Inf. Retr. 5, 4 (October 2002), 287-310.

[9] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-
based collaborative filtering recommendation algorithms. In Proceedings of the
10th international conference on World Wide Web (WWW '01). ACM, New
York, NY, USA, 285-295.

[10] Koen Verstrepen and Bart Goethals. 2014. Unifying nearest neighbors
collaborative filtering. In Proceedings of the 8th ACM Conference on
Recommender systems (RecSys '14). ACM, New York, NY, USA, 177-184.

[11] Panagiotis Adamopoulos and Alexander Tuzhilin. 2014. On over-specialization
and concentration bias of recommendations: probabilistic neighborhood
selection in collaborative filtering systems. In Proceedings of the 8th ACM
Conference on Recommender systems (RecSys '14). ACM, New York, NY,
USA, 153-160.

[12] A. Bellogin and J. Parapar. 2012. Using graph partitioning techniques for
neighbour selection in user-based collaborative filtering. In Proceedings of the
sixth ACM conference on Recommender systems (RecSys '12). ACM, New
York, NY, USA, 213-216.

[13] Y. Koren. 2010. Collaborative filtering with temporal dynamics. Commun.
ACM 53, 4 (April 2010), 89-97.

[14] Wei Chen, Wynne Hsu, and Mong Li Lee. 2013. Modeling user's receptiveness
over time for recommendation. In Proceedings of the 36th international ACM
SIGIR conference on Research and development in information retrieval
(SIGIR '13). ACM, New York, NY, USA, 373-382.

[15] Noam Koenigstein, Gideon Dror, and Yehuda Koren. 2011. Yahoo! music
recommendations: modeling music ratings with temporal dynamics and item
taxonomy. In Proceedings of the fifth ACM conference on Recommender
systems (RecSys '11). ACM, New York, NY, USA, 165-172.

[16] Yi Ding and Xue Li. 2005. Time weight collaborative filtering. In Proceedings
of the 14th ACM international conference on Information and knowledge
management (CIKM '05). ACM, New York, NY, USA, 485-492.

[17] G. E. Hinton.1986. Learning Distributed Representations of Concepts.
Proceedings of the Eighth Annual Conference of the Cognitive Science Society.
Hillsdale, NJ: Erlbaum. (1986), 1-12.

[18] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Distributed
representations of words and phrases and their compositionality. Advances in
Neural Information Processing Systems, 26(2013), 3111-3119.

[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of
word representations in vector space. Computer Science (2013).

[20] Quoc V. Le and T. Mikolov. 2014. Distributed Representations of Sentences
and Documents. Computer Science 4(2014): 1188-1196.

[21] James Bennett, Charles Elkan, Bing Liu, Padhraic Smyth, and Domonkos Tikk.
2007. KDD Cup and workshop 2007. SIGKDD Explor. Newsl. 9, 2 (December
2007), 51-52.

[22] Kalervo Järvelin and Jaana Kekäläinen. 2000. IR evaluation methods for
retrieving highly relevant documents. In Proceedings of the 23rd annual
international ACM SIGIR conference on Research and development in
information retrieval (SIGIR '00). ACM, New York, NY, USA, 41-48.

[23] Nima Mirbakhsh and Charles X. Ling. 2013. Clustering-based factorized
collaborative filtering. In Proceedings of the 7th ACM conference on
Recommender systems (RecSys '13). ACM, New York, NY, USA, 315-318.

535

