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Abstract. Weakly-supervised object localization only depends on image-
level labels to obtain object locations and attracts more attention recent-
ly. Taking inspiration from the human visual mechanism that human
searches and localizes the region of interest by shrinking the view from a
wide range and ignoring the unrelated background gradually, we propose
a novel weakly-supervised localization method of cutting background of
an object iteratively to achieve object localization with deep reinforce-
ment learning. This approach can train an agent as a detector, which
searches through the image and tries to cut off all regions unrelated to
classification performance. An effective refinement approach is also pro-
posed, which generates a heat-map by sum-pooling all feature maps to
refine the location cropped by the agent. As a result, by combining the
top-down cutting process and the bottom-up evidence for refinement,
we can achieve a good performance on object localization in only several
steps. To the best of our knowledge, this may be the first attempt to ap-
ply deep reinforcement learning to weakly-supervised object localization.
We perform our experiments on PASCAL VOC dataset and the results
show our method is effective.

Keywords: Weakly-Supervised Object Localization · Deep Reinforce-
ment Learning · Convolutional Neural Network.

1 Introduction

The current state-of-art localization results come from approaches of fully su-
pervision, such as [1–5]. Fully supervision means providing both bounding boxes
and labels of objects in the image during training. However, labelling the samples
is time-consuming and expensive, which limits the usability of localization task
significantly. In contrast, weakly-supervised object localization [7–10,12,21] does
not require annotated bounding boxes but only the image-level labels. Though
such methods are usually less accurate than fully-supervised methods, it is of-
ten considered as an acceptable sacrifice to reduce dependency for annotated
datasets.
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Fig. 1. An simplified demonstration of our localization process.

Exciting recent weakly-supervised object localization methods [6,13–15] has
shown that the discriminative object part can be localized using class activa-
tion map (CAM) [6], which is a kind of heat-map generated by grouping class-
specific convolutional feature maps. However, these methods usually generate
large amounts of candidate proposals based on CAM and select the candidate
with highest confidence as target location, which is time-consuming and incon-
sistent with human visual mechanism.

By contrast, our proposed method tries to seek a different approach to achieve
weakly-supervised object localization. Taking inspiration from the human visual
mechanism that human searches and localizes the region of interest by shrinking
the view from a wide range and ignoring unrelated background gradually, we
propose a novel weakly-supervised localization method of cutting background of
an object iteratively to obtain object locations with deep reinforcement learn-
ing. We train an agent as a detector, which searches through the image and
tries to cut off all regions unrelated to classification performance, as depicted in
Figure 1. To achieve better localization performances, we propose a bottom-up
approach that sum-pooling all feature maps to generate a heat-map for refining
the cropped result. Compared with previous CAM-based methods, our approach
conforms more to the human visual mechanism and can localize the object in-
telligently. To the best of our knowledge, this may be the first attempt to apply
deep reinforcement learning to weakly-supervised object localization. We believe
that it may provide a brand new perspective to address this problem. Overall,
our contributions can be summarized as follows:

– We propose a novel deep reinforcement learning approach to achieve weakly-
supervised object localization. Compared with previous methods, we can
crop the object location quickly in several steps without generating large
amount of region candidates and selecting the best one.

– We propose a new approach to refine the predictions of weakly-supervised
object localization and improve the localization performance.

2 Methodology

2.1 Overview

We aim to achieve weakly-supervised object localization by training an agent
with deep reinforcement learning for cutting background intelligently. Firstly,
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Fig. 2. Overview of the proposed weakly-supervised object localization framework.

we replace the last softmax layer of the vgg-16 pretrained on [20] with a sigmoid
layer and fine-tune it for performing multi-label classification. Secondly, we train
a deep Q-network (DQN) [16] for cutting unrelated background to achieve object
localization. Finally, the location cropped by the agent will be refined by the
heat-map generated by sum-pooling the feature maps.

2.2 Deep Reinforcement Learning for Localization

The proposed framework is depicted in Figure 2. We perform the cutting actions
on the mid-level feature maps due to a trade-off between the speed and fineness
of cutting. In the training process, there are two streams in our framework,
the upper stream is the modified vgg-16 for multi-label classification and the
lower stream is a DQN for localization, which takes advantage of the last two
group convolutional layers of vgg-16 for extracting senior features. To adapt
to the task of DQN, we add two convolutional adaptation layers following the
final convolutional layers of vgg-16. In the testing process, we just use the lower
stream to achieve weakly-supervised object localization. Next we will detail on
the reinforcement learning settings.

State The state representation consists of two elements. One is a vector of
senior feature information extracted from the cropped mid-level feature maps,
we pad the cut-off region of mid-level feature maps with zeros to keep the aspect
ratio unchanged and so avoid the dramatic decrease of classification performance.
We cut feature maps on the dimensions of width and height and apply the cutting
action to all channels. The other element is a vector of 4 past executed actions,
which are encoded as an one-hot vector.
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Fig. 3. Examples of object localized by the agent. The green, blue, and red lines show
the cutting process, final cropped results and ground truth bounding boxes separately.

Fig. 4. Examples of refinement with heat-maps. In each group pictures, the left-top
and left-bottom pictures show the original heat-map and the heat-map with the drawn
maximal region. In the right picture, the smallest green rectangle and the blue rectangle
represent the prediction of agent and final result refined by the heat-map, respectively.

Action There are two types of actions: cutting actions for cutting feature
maps and terminal action for terminating the cutting process. The cutting
actions involve different directions and scales, which means we can crop the
square feature map from the four sides {up, down, left, right} in three scales{

1
28 ,

2
28 ,

3
28

}
. Combining multiple scales of actions helps us balance the speed

and accuracy of cutting. There are two cases of terminating the cutting pro-
cess, one is that the terminal action is selected by the agent, the other is that
the classification score of the cropped feature maps is less than the pre-defined
threshold. Thus we have totally 13 actions for agent to select. Figure 3 gives
some examples of object localization process based on the action space.

Reward In weakly-supervised setting, we can roughly judge whether the ob-
ject is retained or cut off only from the classification score. However, sometimes
cutting off the specific background will result in a significant decrease of classi-
fication score, while cutting off parts of an object will have no effect. Therefore,
we define a descent threshold of classification score to balance when to cut or
stop. And we set different scales of rewards corresponding to different scales of
actions, e.g. rewards=1, 2, 3 for actions=1, 2, 3, which aims to encourage large
scales of cutting actions in the early stage to finish the cutting process as soon as
possible, and encourage small scales of actions in the late stage to get a accurate
result. Let denote the classification score of the original and the cropped feature
maps as p̄(c|x ) and p̂(c|x ), respectively. Denote the threshold as δ. Then the
reward function for non-termination case is

R(s, s′) =

{
+scale, p̄− p̂ ≤ δ,
−scale, otherwise.

(1)
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For termination case, the reward function is

R(s) =

{
+η, p̄− p̂ ≤ δ,
−η, otherwise.

(2)

The scalar η represents the absolute value size of reward for termination action,
it is a hyperparameter.

Q-learning Q-learning is a reinforcement learning algorithm, which can train
the agent to select the optimal action according to a specific state. We build a
DQN to estimate the action-state value function Q(s, a), which is an approxi-
mation of the expected rewards after executing the action a on current state s.
The agent will choose the action corresponding to the maximal Q value. γ is a
discount factor, then the Q(s, a) and its update rule are denoted as

Q(s, a) = r + γmaxa′ Q(s′, a′) (3)

Q(s, a) = Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)] (4)

2.3 Refinement

Motivated by [17], we think that the heat-map generated by sum-pooling all
feature maps may provide extra information beyond classification score, which
can be used to refine the result cropped by the agent. As depicted in Figure
4, we find the maximal response region of heat-map can cover the object itself
very well in most cases. Thus, we firstly convert the heat-map to a binary image
according and draw a rectangle to surround the area of maximal response, the
thresholds used to generate binary image are evaluated on a small validation
subset. Then we take the intersection between the cropped location and the
rectangle of the maximal response region in heat-map as our final result.

3 Experiment

In our experiments, we firstly fine-tune the modified vgg-16 for multi-label clas-
sification on the VOC2007 trainval and VOC2012 training set, and test it on the
VOC2007 [18] test set and VOC2012 [19] validation set, with results summarized
in Table 1. Secondly, we train the DQN based on the trained vgg-16 and test it
for localization on VOC2007 test set and VOC2012 validation set, with results
summarized in Table 2 and 3. Finally, we explore the effects of our proposed
refinement method, and the results are summarized in Table 4.

3.1 Network Training

We replace the last softmax layer of pre-trained vgg-16 with sigmoid layer and
fine-tune it on VOC2007 trainval set+VOC2012 training set for multi-label clas-
sification. We train each agent for 50 epoches. In the training process, we use
RMSProp optimizer with a decaying learning rate ranging from 1e-5 to 1e-6 in
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the early 10 epoches. We use the ε-greedy policy to explore more state-action
pairs and the ε is decayed in steps of 0.1 from 1 to 0.1 over the first 10 epoches.
Discount factor γ is set to 0.95. The descent threshold δ of classification score
for each class is evaluated on a small validation set.

Table 1. Average precisions of multi-label classification tested on VOC2007 test set
and VOC2012 validation set.

Category plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP

Accuracy-voc07 98.7 85.6 94.3 89.7 66.3 89.4 83.7 96.4 73.7 84.4 79.3 95.1 94.3 92.6 95.9 58.7 87.5 69.8 95.7 82.3 85.7
Accuracy-voc12 98.6 85.5 94.4 89.6 66.4 89.5 83.5 96.3 73.6 84.2 79.4 94.9 94.5 92.5 95.8 58.5 87.3 70.0 95.5 82.2 85.6

Table 2. Horizontal comparison of av-
erage precisions for object localization
on VOC2007 test set.

Method mAP
Wang [10] 30.9
Bency [17] 25.7
Gudi [15] 30.2

Ours 30.5

Table 3. Horizontal comparison of av-
erage precisions for object localization
on VOC2012 validation set.

Method mAP
Qquab [13] 11.7
Bency [17] 26.5
Gudi [15] 25.4

Ours 28.8

3.2 Localization Prediction Metric

We use the standard object detection bounding box overlap metric Intersection-
Over-Union(IOU) to determine correctness of the predicted location. If the IOU
between the predicted location and the ground truth bounding box exceeds
0.5, the predicted location will be labeled as correct. Otherwise, we count the
prediction as a false positive and increment the false negative count. We define
the confidence of the predicted location as its classification score. The average
precision is calculated according to the standard algorithm.

3.3 Performance and Analysis

Classification performance Table 1 concludes the results of multi-label clas-
sification on VOC2007 test set and VOC2012 validation set. We can see that the
average precisions of most categories exceed 80%, which makes a good basis for
our localization experiment.

Localization performance Localization results are summarized in Table 2
and 3. The average precision of our method is computed by localizing one object
of same category per image while baselines are for multiple objects detection,
thus we make a horizonal comparison. We find the proposed approach achieves
a competitive results with baselines, which indicates the validity of our method.

Localization refinement We show the refinement results on VOC2007 test
set and VOC2012 validation set in Table 4. Our refinement method is based
on the location information in heat-map. We take the intersection between this
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Table 4. mAP of refinement on VOC2007 test set and VOC2012 validation set.

Dataset no refinement refinement

VOC2007 25.2 30.5
VOC2012 24.4 28.8

maximal region in heat-map and the location cropped by the agent as our final
result, which aims to remove some background outside the rectangle of maximal
response region. It bring a 4 ∼ 5% improvement to the performance of agent.

Table 5. Comparison of number of proposals.

Model Proposals

SS-Based 2000
Ours 9

Proposals analysis Many recent methods are based on CAM, like [15],
and use the unsupervised method like Selective Search [11] to generate large
amount of candidate proposals, with each proposal to be classified separately to
determine as the positive or negative sample. As shown in Table 5, compared to
the methods that generate about 2000 proposals for each image, our proposed
method generate average 9 proposals and do 9 times classification per image.
Therefore, our approach are much faster than those based on the unsupervised
method, which can save large amount of time in detection process. Besides, our
search process guided by reinforcement learning is more human-like than the
unsupervised exhaustive search methods.

4 Conclusion

This paper presents a deep reinforcement learning solution to weakly-supervised
object localization by cutting background iteratively, which is more human-like
and consistent with human visual mechanism compared with those methods
depending on unsupervised region proposals. Also, by combining the top-down
cutting process and bottom-up refinement, we can cut object background out
intelligently only in several steps and achieve a good localization performance,
which is much faster than those methods based on unsupervised generation of
proposals. We believe it may provide a brand new perspective to address weakly-
supervised object localization.
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