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Although the convolutional neural network (CNN) has exhibited outstanding perfor-
mance in various applications, the deployment of CNN on embedded and mobile devices
is limited by the massive computations and memory footprint. To address these chal-
lenges, Courbariaux and Bengio put forward binarized neural network (BNN) which

quantizes the weights and activators to ±1. From the perspective of hardware, BNN can
greatly simplify the computation and reduce the storage. In this work, we first present the

algorithm optimizations to further binarize the first layer and the padding bits of BNN;
then we propose a fully binarized CNN accelerator. With the Shuffle-Compute structure

and the memory-aware computation schedule scheme, the proposed design can boost
the performance for feature maps of different sizes and make full use of the memory
bandwidth. To evaluate our design, we implement the accelerator on the Zynq ZC702

board, and the experiments on the SVHN and Cifar10 datasets show state-of-the-art

performance-efficiency and resource-efficiency.
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1. Introduction

In recent years, convolutional neural networks (CNNs) have shown outstanding

performance in many fields such as computer vision, speech recognition, and natural

language processing [1–3]. However, the huge computation complexity, memory

footprint and power consumption of CNNs also bring a tough challenge to the

resource-limited embedded platforms. To facilitate the deployment of CNNs, many

algorithm-based and hardware-based methods have been proposed.

Considering the noticeable redundancy of CNN models during inference, quan-

tization is taken as a promising approach to compress the CNN models [4–6]. Many

works show that low-precision CNNs can achieve comparable accuracy while sig-

nificantly reduce the memory requirement. In 2016, Courbariaux and Bengio [7]

propose one extreme quantization scheme called binarized neural network (BNN)

which quantize both the weights and activators to ±1. Compared to CNN, BNN

can not only compress the parameter size by 32x but also convert the fixed-point

multiplication operation into a 1-bit XNOR operation. In fact, by representing +1

with a set bit and −1 with an unset bit, the multiplication can be performed with

an XNOR gate.

With these advantages, the previous work further presents several dedicated

BNN accelerators and the results show high performance and power efficiency

[8–11]. However, the benefits of BNN have not been fully exploited in their work.

Firstly, as the input feature maps (ifmaps) of BNN’s first layer commonly are float

number, the previous work introduces specific hardware to handle the computation

of the first layer, which brings unnecessary loss of throughput and resource effi-

ciency. Secondly, to maintain the accuracy, they need 2-bits padding scheme which

also requires more resource overhead. Last but not least, the previous work typically

employs different units for the convolutional (Conv) layers and the fully connected

(FC) layers.

To address the problems above-mentioned, our worka combines the algorithm

optimization with the dedicated hardware design. We first present algorithm opti-

mizations to further binarize the convolutional operations across all layers. Then

we propose our unified BNN accelerator. We implement it on FPGA and the ex-

periment result shows that it outperforms the state-of-the-art BNN accelerator in

power-efficiency and resource-efficiency. The main contributions of our work can be

summarized as follows:

• Fully-binary accelerator architecture: In this work, we present a scheme to

binarize the input of the first layer. Moreover, with negligible accuracy loss, we

propose an odd-even padding scheme to represent the padding bits with +1 and

−1. These optimizations enable our accelerator a fully binary design.

• Unified computing structure: By decomposing both the convolution and

aThis is an extended and revised version of our short paper presented at the 28th International
Conference on Field-Programmable Logic and Applications (FPL2018) [12].
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dot-product into multiplication and accumulation, we propose a unified Shuffle-

Compute structure to support all layers of BNN. Compared with CNN, the bi-

nary operation of BNN is much more simplified, which brings the possibility to

a higher degree of parallelism. The Shuffle-Compute structure fully exploits this

and exhibits sustained high throughput.

• A memory-aware computation schedule scheme: Although the memory

footprint of BNN has been drastically decreased, some models still cannot be

completely loaded into the chip. In order to maximize the performance, we ana-

lyze the time budget for the computational and memory operations and introduce

a memory-aware computation schedule scheme to parallelize the computation and

data loading better.

The rest of the paper is organized as follows. The related work is described

in Section 2 and the preliminary is in Section 3. Section 4 details the algorithm

optimizations proposed in this paper. Section 5 presents the hardware accelerator.

We report our experimental result in Section 6. Finally, the conclusion is presented

in Section 7.

2. Related Work

Progress in BNN algorithm Recently, many researchers have demonstrated

that the high precision data type is unnecessary for the inference phase, so various

quantization strategies are proposed to compress the network. Qiu et al. [13] uses

16-bit data to represent the weight parameters. Gupta et al. [14] presents an 8-

bit scheme. Moreover, the extreme low-bit quantization schemes are also proposed.

[15] takes advantage of weight sharing to store only a 4-bit index for each weight.

Ternary neural networks constrain weight values to 0, +1, or -1 [16], while [17]

quantizes the weights to +1 and -1. However, these schemes still keep the native

precision of activations and there are also several works seeking to quantize both

the weight and activations. For example, [18] represent both weight and activations

using 8 bits with negligible accuracy loss. The DoReFa-Net [19] is trained to have

1-bit weights and 2-bit activations. In 2016, Courbariaux and Bengio [7]put forward

BNN, which is the most extreme quantization scheme and represents all parameters

with one bit. Their training method enables BNN comparable accuracy for the

datasets like CIFAR-10 and SVHN. In 2017, [20] optimize the training procedure

and significantly improve the accuracy of BNN on ImageNet. Besides, [21] proposes

a high-order binarization scheme which achieves more accurate approximation while

still preserving the advantage of the binary operation. These advancements further

enable BNN a promising approach for the deployment of CNN.

Progress in BNN hardware Meanwhile, there have been many studies on

the design of specific BNN hardware. [10] proposes and implements a BNN accel-

erator on Aria 10 FPGA as well as 14-nm ASIC. Their experiments demonstrate

that the dedicated BNN hardware provides superior efficiency over CPU and GPU.

But the evaluation of their work only considers the FC layers of BNN, and the size
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of test models is less than local memory. [9] develops a BNN framework named

FINN, which employs the high-level synthesis to build a hardware module library.

According to the specific requirement of performance and power, it can be flexibly

configured and compiled into hardware. However, the evaluations are also based on

the small models which can be loaded into the local memory and have significant ac-

curacy loss. [8] implements a BNN hardware design on FPGA to accelerate VGG9,

which is a classic BNN model for CIFAR-10. It employs independent modules for the

first convolutional (Conv) layer, other Conv layers, and FC layers, respectively. [11]

proposes a heterogeneous implementation of BNNs on Xeon+FPGA. [22] imple-

ments a lightweight YOLOv2 which consists of the BNN and SVR on FPGA for

both classification and localization. However, all these works need to tackle with

the non-binary input of the first layer, which is against a fully binary accelerator.

Also, they do not have an in-depth analysis of the parallel execution of the compu-

tation and memory operations for BNN. In this work, with algorithm and hardware

optimizations, we fully exploit the advantage of BNN and propose a fully binarized

accelerator.

3. Preliminary

3.1. Basic of BNN

As we stated before, BNN is an extreme quantization version of CNN. It has a

similar topology to CNN which is a kind of directed acyclic graph constructed by

stacking multiple Conv layers, Pooling layers, and FC layers. Each layer takes in

input feature maps (ifmaps) and weights, performs the corresponding computations

and then forwards the output feature maps (ofmaps) to the next layer. By comput-

ing layer by layer, BNN can extract the feature information of BNN’s input data.

A simple BNN model is illustrated in Figure 1.

Output
Probability

Fig. 1. A simple BNN model. It has two Conv layers, two Pooling layers and two FC layers.

For the Conv layer, suppose the ifmap matrix A is a 3D matrix, then the

calculation can be formulated as:

O(z, x, y) = sign(batchnorm(A(k, x, y)⊗W (z, k, x, y)) (1)
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O andW represent the matrice of ofmaps and weights; ⊗ represents the convolution

operation while sign and batchnorm are two functions formulated as:

batchnorm(x) =
x− µ√
α2 + ε

γ + β,

sign(x) =

{
+1 x ≥ 0

−1 x < 0
.

(2)

The batchnorm function is introduced in [23] while µ, α, ε, γ, and β are all

constant numbers decided by the training phase. Compared with the Conv layers

of CNN, the main difference of BNN is that the weight matrix W and the ofmaps

O can only take the value of +1 or −1.

The FC layer is also called dense layer, the ifmaps are treated as a 1-D vector

and multiplied by the weight matrix, then the intermediate results are normalized

with the batchnorm function and binarized with the sign function. Similar to

the Conv layers, the weight and ofmaps of the FC layers are also binary matrixes.

Compared with CNN, three advantages are introduced by BNN. Firstly, with a

set bit representing +1 and an unset bit representing −1, one weight parameter can

be represented with one bit. Compared with the full precision network, this method

can reduce the memory footprint by 32 folds. Secondly, for the ofmaps of each layer

are transformed to a binary matrix with the sign function, the intermediate results

also occupy much smaller memory capacity than the normal precise network. Last

but not least, from the second layer, the ifmaps of one layer are the ofmaps of the

previous layer. So both ifmaps and weights are binary data. As shown in Figure 2,

by representing +1 with 1, −1 with 0, the multiplications can be transformed into

XNOR operations.

⇒

Fig. 2. The multiplication of binary data is transformed into Xnor operation.

3.2. Trained BNN models

The key challenge for BNN is how to train the parameters. The traditional CNN

models typically take the Back-Propagation (BP) method which updates the pa-
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rameters based on the derivative relative to the loss. However, for BNN models, the

weights take the discrete value (+1 or −1) and the derived function of the sign is

0 almost everywhere, so the BP method cannot be applied to BNN directly. In [7],

Courbariaux et al. put forward two methods to tackle these problems. Firstly, the

weight parameters are taken as binary data during the forward phase while float

number during the backward phase, so they can be changed little by little. Secondly,

they propose a straight-through estimator to calculate the derivative of the sign

function. In details, suppose the sign function is q = Sign(r) and the derivative
∂C
∂q is gq, then the derivative of C to r is estimated with:

∂C

∂r
=

{
gq |r| ≤ 1

0 |r| > 0
. (3)

With these workarounds, BNN can be trained in a similar way like CNN. In

Table 1 we show four typical BNN models: BNN-MNIST, BNN-Cifar10, BNN-

SVHN and BNN-SVHN-S, and they will be used in subsequent experiments.b

BNN-MNIST is a multilayer perceptron which has three hidden layers of 4096

binary units. MNIST is an image classification dataset which consists of 70K 28x28

gray-scale image representing digits ranging from 0 to 9. The BNN-MNIST model

achieves 99.1% accuracy on this benchmark.

BNN-Cifar10 consists of six Conv layers followed by three FC layers. All Conv

layers use 3x3 kernels. There is a 2x2 max Pooling layer after the 2nd, 4th, and 6th

Conv layers. The BNN-Cifar10 is applied to the Cifar10 dataset which contains 60K

32x32 color images in 10 different classes like airplanes, cars, cats, etc. BNN-Cifar10

achieves 88.5% accuracy for the classification task on this dataset.

The BNN-SVHN has the same topology as BNN-Cifar10, but the number of the

units in the Conv layers is halved. The SVHN is also a classification benchmark.

It consists of a training set of 604K examples and a test set of 26K 32x32 color

images representing digits ranging from 0 to 9. The BNN-SVHN model achieves 97%

accuracy. We further halve the number of neurons in the first and second FC layers

and retrain it. The simplified model is called BNN-SVHN-S and it significantly

reduces the model size with negligible accuracy loss.

4. Hardware-Oriented Algorithm Optimization of BNN

4.1. Binarize the first layer

As stated in Section 3.1, one prominent advantage of BNN is that by representing

+1 with a set bit and −1 with an unset bit, the multiplication of weights and ifmaps

can be executed with XNOR gates. However, one exception is the first layer whose

ifmaps are normally fixed-point image data. Most previous work adopts exclusive

hardware design to tackle this layer. For example, both [8] and [22] employ an

bThe first two models are public at https://github.com/MatthieuCourbariaux/BinaryNet.The last
two models are trained with the open source method.
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Table 1. BNN models for image classification

Model BNN-MNIST BNN-CIFAR10 BNN-SVHN BNN-SVHN-S

Input data 28x28 32x32x3 32x32x3 32x32x3

Weight param. 35.1M 13.4M 6.1M 3.4M

Data Set MNIST CIFAR10 SVHN SVHN

Accuracy 99.1% 88.6% 97.2% 97.0%

independent fixed-point module for the first layer. [10] designs a shareable structure

which can be reused as 32 1-bit multipliers or one full-precision multiplier. However,

the extra hardware will introduce higher design complexity and power consumption.

Moreover, the whole performance is impaired by the first layer’s calculations from

two aspects. First, fixed-point multiplier consumes much more energy and resources

than the XNOR gate. So the number of the fixed-point multipliers is limited in

most BNN hardware design. Thus, the performance of the first layer cannot be

very high. Second, the input layer normally has three channels, which is often one

order of magnitude less than other Conv layers. For the accelerators which map the

convolution of multiple input channels to multiple convolvers, the performance of

the first layer is limited. For example, the PE in [13] is designed with 64 convolvers

and each convolver take charge of one input channel. Thus the utilization for the

first layer is only 3/64.

For example, Zhao et al. [8] design a BNN hardware and evaluates it on the

BNN-Cifar10 model. For this model, the MAC operations of the first layer account

for about 5% of all Conv layers. However, as shown in Table 1 c, the computation

time of the first layer takes about 30% of the total convolution time and the fix-point

conv units design also brings about 26% extra area cost.

Table 2. The results of different optimization schemes on [8]

Optimization
Time of

Conv1 (ms)

Time of all

Conv layers (ms)

Total area

(LUT)

Zhao et al. [8] 1.13 3.81 12,456

binarize 4.02 6.70 9,216

binarize + prune 0.5 3.18 9,216

binarize + prune + scale 0.37 2.36 12,456

To address this problem, we propose a two-step optimization scheme that con-

cThe time data is from [8] and the area data is estimated by synthesizing the fix-point and XNOR
computing units with Vivado.
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sists of binarization and pruning.

Binarization For most BNN network in the computation vision field, the fixed-

point input data of most networks is normalized RGB value, which can be scaled

into an integer value between −128 and 128. Given an integer a in such interval, it

can be essentially represented with the sum of 256 ±1 as

a =

a+128︷ ︸︸ ︷
(1 + · · ·+ 1) +

128−a︷ ︸︸ ︷
(−1) + · · ·+ (−1)

2
. (4)

Let A be the ifmaps of the first layer, W be the weight matrix. Inspired by the

above equation, the convolution of the first layer can be binarized as

A⊗W = α ∗
∑
i

Bi⊗W , (5)

where Bi is a binarized matrix and α is a constant. A simplified example is

illustrated in Figure 3.
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Fig. 3. The original convolution is on 2-bit 3x3 image, then it’s expanded into four binary convo-
lutions.

With this binarization scheme, we can employ uniform hardware to process all

Conv layers. However, the channel number and XNOR operations of the first layer

increase exponentially. As shown in Table 2, we estimate this schemes on [8]. The

only binarization optimization option will reduce the area by 26% while increasing

the computation time by 75%.

Pruning To resolve the problem of increased calculations, we propose to prune

away the low-bits before binarization. If the low N bits of the input fixed-point

data are pruned away, the number of the expanded binarized channels will drop

by 2N times. The rationality of the pruning method is as follows: first, the feature

information of the input data depends largely on the high-bits of the fixed-point

data, and this is why most neural networks are robust to data noise. Second, with

binarization on the outputs of each BNN layer, subtle changes of the input data

will have little effect on the final accuracy.
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We evaluate our method on BNN-Cifar10 and BNN-SVHN-S. As shown in Fig-

ure 4, the error rate of BNN-SVHN-S increases from 2.97% to 3.14% when the low

4 bits are pruned away. It is interesting that the error rate of BNN-Cifar10 even

decreases from 11.42% to 11.39% when we prune away the low 3 bits. As shown

in Table 2, the pruning method can reduce the computation time of the first layer

by eight times. Compared with the original scheme, the binarization and pruning

scheme reduce the total computation time by 17% with negligible accuracy loss

and eliminate the expensive hardware for fixed-point convolutions. Furthermore,

by replacing the saved integer computation units with binary computation units,

the total time of Conv layers is reduced to 2.36 ms, which is 62% of the original

time. A whole two-step optimization scheme of BNN-Cifar10 is illustrated in Figure

5.

BNN-Cifar10 BNN-SVHN-S

Number of pruned bits

Fig. 4. The accuracy of BNN-Cifar10 and BNN-SVHN when we prune away the low bits.

Fig. 5. Apply the pruning and binarization optimizations to the first layer of BNN-Cifar10.
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4.2. Odd-Even Padding

In traditional CNN, we usually need to pad the ifmaps with 0 in the Conv layers

and this is not a big deal. But for BNN, we will need at least two bits to represent

+1, −1 and 0 concurrently, which is against our goal to design binary hardware.

Previous work [8, 9] pad the ifmaps directly with all +1, however, as shown in

Table 3d, this scheme will increase the error rate significantly.

To neutralize the errors introduced by padding +1, one straightforward scheme

is to pad the ifmaps with interleaved (+1,−1), we call this the Odd-Padding. Even

though the accuracy is improved through this scheme, it’s still worse than the 0-

padding. So we take a further step to propose the Even-Padding which pads the

ifmaps with interleaved (−1,+1). As shown in Figure 6, we apply the Odd-Padding

to the odd channels and Even-Padding to the even channels. Intuitively, this Odd-

Even padding can better neutralize the error. In particular, because the RGB input

channels share the same weight matrix, this scheme can get the same results as 0

padding on the binarized first layer. As shown in Table 3, The Odd-Even padding

has almost the same accuracy as 0-padding.

Table 3. Error rate of different padding methods

BNN Model 0-padding All +1 Odd-padding Odd-Even

BNN-SVHN-S 3.14% 3.36% 3.28% 3.15%

BNN-Cifar10 11.39% 13.23% 12.42% 11.25%

Fig. 6. Even padding and Odd padding are interleaved to replace the zero padding.

dThe first layer of these models has been binarized with the optimization method introduced in
Section 4.1.
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5. Accelerator Architecture

5.1. Design consideration

With the algorithm optimizations proposed in the previous section, a BNN model

is transformed into a fully-binary network. Thus, the memory footprint is greatly

reduced and the computations can be performed with bit-wise logical gates. How-

ever, an efficient BNN accelerator is far beyond a simplified CNN accelerator with

less memory and bitwise computation units. The primary considerations we have

while designing the accelerator are listed below.

High-performance and scalable computing system: On the one hand,

the computation unit, bandwidth requirement and memory requirement of binary

data are much less than that of the full precision data. Under the same resource

constraints, we are allowed to provide a higher degree of parallelism. On the other

hand, different models are equipped with a different number of layers and channels.

The size of the feature maps is also dependent on the dataset and network structure.

Moreover, in the practical applications, the hardware resources should be scaled

to meet a given classification performance requirement and power requirement.

Therefore, the architecture is expected to be scalable and configurable.

Maximizing data reuse: For the computation of BNN, there are three kinds

of data reuse. First, all ifmap channels are involved in the computation of one ofmap

channel and they are reused for different ofmaps channels. Second, the weight matrix

is reused for the convolution on one ifmap channel. Third, the adjacent convolution

blocks on one ifmap channel reuse partial ifmap data. On the other hand, the

previous work [15] points that the total energy is dominated by the required memory

access if there is no data reuse. Therefore, our accelerator should carefully exploit

the compute pattern of BNN to maximize the data reuse.

Efficient memory system: Limited to the local memory, most CNN accelera-

tors need to write the intermediate result of each layer to off-chip and load it again

later, bringing a lot of energy consumption and performance loss. In contrast, BNN

accelerators can keep the intermediate in the local memory. Besides, for the Conv

layers, the external bandwidth is normally not fully utilized, making it possible to

hide the memory operation. Moreover, we can borrow the bandwidth to prefetch

the parameters of FC layers and further improve the whole performance.

5.2. Overview

Figure 7 shows the block diagram of the proposed accelerator, which is composed

of the processing elements (PEs), the controller and the local memory. With the

scheduling of the controller, the DMA loads the input data and weight parameters

from DRAM to the local memory, then do the calculations in the PEs. There are

Tm PEs and they share the ifmaps data during the computation. For the Conv

layers, these PEs take in the same ifmaps channels, perform the computation and

generate different channels of ofmaps. For the FC layers, the ofmaps are essentially
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1-D vectors and each PE is responsible for one part of the output vector. Except for

the last layer, the ofmaps are binary data and stored in the local memory. Besides,

the loading of weight parameters is parallelized with the computation. The memory

system is detailed in Section 5.5

Fig. 7. Architectural block diagram of our BNN accelerator.

The main difference of the Conv layers and FC layers is that the major operation

of the former is convolution while that of the latter is vector-matrix multiplication.

However, both the operations can be decomposed into multiplication and addition.

Besides, the multiplication can be replaced with XNOR operations and the results

are still binary data, so the subsequent addition can be performed by counting the

number of value +1. Based on this, we propose a uniform structure to support both

the Conv layers and the FC layers. As shown in Figure 7, each PE consists of Tn

Shuffle-Compute (SC) units, Popcount unit, Adder Buffer, and BBP unit. During

the computation, Tn SC units perform the multiplication operations of Tn channels

(segments) at one time. The products corresponding to the same position of ofmaps

is then summed by the Popcount unit. The partial sum is further accumulated in

the Adder Buffer. At last, based on the control signal, the batch norm, binarization

and pooling operations are selectively performed in the BBP unit. It is worth noting

that the output of the last layer is not binarized. Two techniques introduced in [9]

are adopted to optimize the BBP. The first one combines the batch norm and

binarizes operation into a direct comparison. The second one swaps the pooling

operation and the direct comparison, which will transform the integer comparison

into a boolean OR operation.
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5.3. Shuffle-Compute Unit

The SC unit is responsible for two types of operations: the multiplication in the

convolution of the Conv layers and the multiplication in the vector-matrix multi-

plication of the FC layers. The Conv layers are more complex and computation-

intensive, so we first focus on the computation of them. There are two challenges

in designing an efficient structure to handle the multiplication of convolution. The

first one is the data reuse in one ifmap channel. Supposing the kernel of the convolu-

tion is 3x3 and the stride is 1, every two horizontal or vertical adjacent convolution

blocks share 6 pixels of the input data. The second one is about the data prefetch-

ing. Since the input data and the output data are of the same size when the stride

and padding size are 1 (the pooling is performed later), an ideal situation is that

the SC unit can load Ni data and output Ni data simultaneously. However, taking

a 3x3 convolution as an example, the first two lines of the image and the padding

line are needed to calculate the first line of the output image. But a strict prefetch

method will introduce the pipeline stall and lower the performance.

In this work, we address the aforementioned problem with the SC structure. As

shown in Figure 8 (a), the SC unit consists of the shuffle unit, the ifmaps buffer,

the weight buffer and the parallel binary convolver (PBC). Both the ifmaps buffer

and the weight buffer are connected to the local memory with a Ni-bit bus. The

PBC module takes a 3xNi structure and each position of the array is essentially

an XNOR gate. During the computation, ifmaps buffer takes Ni pixels from the

local memory while the shuffle unit transfers 3xNi data into PBC in each cycle. As

Figure 8 (b) shows, the data is arranged that each 3x3 block corresponds to one

convolution block and the adjacent blocks share 6 ifmaps pixels. The weight buffer

loads weight data and broadcasts a 3x3 weight matrix to the Ni convolutional block

in PBC. With the XNOR gates in the PBC, the multiplication of Ni convolutions

is performed per cycle. Considering that the typical BNN networks only use the

3x3 convolution window size, the SC unit in this work takes a three-line structure.

The structure can also be easily extended to support other convolution windows

like 5x5 by changing the row number of PBC.

In Figure 9, we further illustrate the calculation flow of the SC unit for the Conv

layer. In this example, the ifmaps are 16x16 while the Ni is 64. Each Arabic numeral

represents one line. The figure shows three successive cycles. The red frame in the

left part indicates the data that is currently read from the input feature map. The

red frame in the right part corresponds to the position of the output feature map

that is computed in the Shuffle-Compute unit. At each beat, the Shuffle-Compute

unit reads 4 rows of input feature map data to the ifmaps buffer. Concurrently the

control logic selects appropriate data to the PBC module and then perform the

convolution of 64 3x3 blocks. At the first cycle, the ifmaps buffer reads the first

four lines of ifmaps’ second channel and the computation in PBC is responsible

for the last four lines of the ofmaps’ first channel. At the second cycle, the ifmaps

buffer reads 5-8 lines of ifmaps’ second channel while the computation is generating
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Fig. 8. Block diagram of Shuffle-Compute Unit - (a) overall architecture of SCs; (b) block diagram
of PBC with 3 rows and Ni columns.

the first four lines of ofmaps’ second channel. At the third cycle, the ifmaps buffer

reads the 9-12 lines of the ifmaps while the computation is generating the 5-8 lines

of the ofmaps. By pipelining the computation across channels, we succeed to hide

the prefetching latency. Besides, when the ifmaps are 32x32, 64x64 or even 128x128,

the SC unit can work similarly and still provide sustained peak performance.

For the computation of the FC layers, both the ifmap buffer and the weight

buffer take Ni pixels from the local memory and transfer them to the computation

line of the PBC directly. Then the dot product of Ni data can be calculated per

cycle.

5.4. Popcount and Adder Buffer

The Popcount unit is used to count the number of +1 in the XNOR results of Tn

SC units. Considering the total number of +1 and −1 is fixed, we can easily trans-

form this number into to the sum of the multiplication. For FPGA, the Popcount

module can be explicitly constructed with LUTs to reduce the resource cost. For an

accumulator of 36 bits, our experiment with Xilinx vivado shows that a LUT-based

Popcount module needs 32 LUTs while an adder tree needs 42 LUTs, which means

24% resource saving. As we mentioned before, one ofmap channel needs the con-

volution on all ifmap channels. The partial sum of the convolution or dot product

operations are further accumulated in the adder buffer.

5.5. Memory System

The parameter size of BNN has been drastically reduced, only 1/32 of the full preci-

sion CNN. Even some large ifmaps, like 64x64x256, can be kept in most embedded

devices easily. By using the ping-pong structure with two memory banks, we can

keep the ifmaps/ofmaps always on the chip, which greatly minimizes the off-chip

memory access.
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Fig. 9. The data flow of the Shuffle-Compute unit during successive three cycles. Both ifmap and

ofmap are 16x16 and the Ni is 64. Each number represents one line of the feature maps and 0

represents the padding line. The left part represents the input feature map while the right part
represents the output feature map. The middle represents the Shuffle-Compute unit.

However, the weight size may still exceed the capacity of some typical FPGA

devices, like Xilinx ZC702, which has a maximum of 0.5 MB on-chip memory,

while the weight parameters of binarized AlexNet and VGG16 are 7.6 MB and 17

MB, respectively. The design in [8] serially executes the computation and memory

operations. It first loads the weight from off-chip and then does the computation.

The Conv layer is computation bounded and the memory access time can be hidden

theoretically. A straightforward optimization is to embed two weight banks and

parallel the computations of layer M and the memory operations of layer M + 1.

However, the parallelism on the granularity of each layer cannot be effective for

various BNN networks. For example, some layer’s weights may exceed the capacity

of the weight banks. Besides, the computation amounts vary across different layers,

which brings low efficiency with the coarse parallelization scheme.
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As shown in Figure 10, we divide the Conv operations of each layer into several

phases. The rules of partition strategy is as follows: (1) Each phase belongs to one

Conv layer or one FC layer; (2) The weights of every phase need to be less than the

capacity of the memory bank; (3) For phase N and phase N + 1, the computation

time of phase N must be longer than the DRAM time of phase N + 1. With such a

scheduling scheme, the DRAM time for the Conv layers is completely hidden and

we can also parallel the computation and memory operations for the FC layers,

leading to better bandwidth and performance efficiency.

Computation

Memory

…

phase N phase N+1 phase N+2

…

phase N+1 phase N+2 phase N+3

Conv M Conv M+1

computation time memory load memory idle

Fig. 10. The Conv layers are divided into phases and we parallel the computations of phase N

and the DRAM operations of phase N + 1.

6. Experiment

6.1. Experimental Setup

To evaluate our design, we implement our design on Xilinx Zynq ZC702 evaluation

board. The chip on this board integrates a Xilinx Artix-7 FPGA and a dual-core

ARM Cortex-A9 MPCore. The accelerator is mapped to the FPGA and connected

with DRAM through a 64-bit AXI4 HP port. All synthesis results are obtained

from Xilinx Vivado 2016.4. In our experiments, the accelerator core is implemented

at 143 MHz while the HP port is at 250 MHz.

We fully binarized the BNN-Cifar10 and BNN-SVHN-S as our experimental net-

works, consisting of 6 Conv layers and 3 FC layers. The binarized BNN-Cifar10 has

a total of 1386 Giga computation operations and 1.7 MB weights, which can achieve

88.6% accuracy on Cifar10. The binarized BNN-SVHN-S has only 346 Giga oper-

ations and 0.45 MB weights, achieving 96.9% accuracy on SVHN dataset.Besides,

the input images are binarized and pruned in the CPU part of the board.
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6.2. Configuration

Our design can be scaled with different configurations of Tm, Tn, and Ni. As 8x8 is

the minimum ifmap size of both the BNN-Cifar10 and BNN-SVHN-S, we use Ni =

64. The resource utilization and theoretical performance of our architecture under

different Tm and Tn are shown in Table 4. The peak performance is proportional

to Tm×Tn. As the SC units in same PE share the adder buffer and BBP module,

increasing Tn would be more resource efficient than increasing Tm. However, Tn is

bandwidth-constrained and also restricted by the computations of FC layers. First,

as different SC units take in different ifmap channels, increasing Tn brings growing

need of the local bandwidth. Second, both BNN-Cifar10 and BNN-SVHN-S have up

to 1024 neurons in the FC layers, so increasing Tn to larger than 1024/64 = 16 will

not improve the performance for the FC layers. Limited to the capacity of ZC702

in our experiment, we finally use Tm = 1, Tn = 16 in the following experiment.

Table 4. Resource utilization and theoretical peak performance under different configurations

Tm Tn LUT FF Block RAMs
Peak Performance

(GOPS)

1 2 13,273 17,531 103 331

1 4 16,139 21,131 103 663

1 8 19,929 23,876 103 1,327

2 4 27,305 29,143 103 1,327

1 16 29,629 31,763 103 2,654

2 8 34,866 36,915 103 2,654

Dev. 53,200 106,400 140 -

6.3. Comparison

As shown in Table 4, we first compare our design with other two general platforms:

the Intel 6700K CPU and the NVIDIA GTX1070 GPU. Then, we compare our

design with two FPGA-based BNN accelerators: FINN [9] and the accelerator pro-

posed by Zhao et al. [8]. We use GOPS per kLUT and GOPS per watt to represent

the resource efficiency and power efficiency. In Table 6, we compare our work with

several FPGA based CNN accelerators.

CPU/GPU Both CPU and GPU are evaluated with theano on PC. The power

of CPU is detected with the turbostat command while the power of GPU is reported

with the nvidia− smi command. Compared with CPU, our design achieves about

32x better performance and 559x higher power efficiency on SVHN. On Cifar10, we

achieve 5x better performance and 94x higher power efficiency. The large variance

between the two models is due to the capacity of on-chip memory, in which the
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Table 5. Comparison with other BNN platforms for SVHN and Cifar10

Platf. Dataset Accu. kLUTs GOPS
Power

(W)

GOPS/

kLUT

GOPS/

W

CPU SVHN 97.1% - 69 55.2 - 1.25

GPU SVHN 97.1% - 2708 133 - 9.25

FINN SVHN 94.9% 46.2 2465 3.6 53.3 684.7

Ours SVHN 96.9% 29.6 2236 3.2 75 699

CPU Cifar10 88.58% - 135 58.1 - 2.32

GPU Cifar10 88.58% - 3380 147 - 24.7

FINN Cifar10 80.0% 46.2 2465 3.6 53.3 684.7

Zhao Cifar10 88.54% 46.9 208 4.7 4.43 44.2

Ours Cifar10 88.61% 29.6 722 3.3 24 219

Cifar10 model exceeds the capacity and the performance is significantly limited by

the bandwidth. Even though the performance of GPU outperforms our design, we

achieve 75x and 8.9x power efficiency on SVHN and Cifar10, respectively.

FINN The results of FINN [9] are evaluated on a tiny BNN network. For SVHN,

FINN shows 10% better performance, but our design is 1.4x resource efficient.

For Cifar10, although their test model also employs six Conv layers and three FC

layers, the channel number of its Conv layers and neuron number of its FC layers

are reduced by half than BNN-Cifar10. Besides, it does not pad the ifmaps in the

Conv layers, so the ifmaps will get smaller even if there are no pooling operations.

With these modifications, the parameters of the network are only 0.19MB and the

operand can be represented with 1 bit, thus the model can be totally stored in

the on-chip memory and the hardware design can take a binary computation unit.

Overall, FINN presents better resource efficiency and power efficiency. However,

these modifications also bring significant accuracy loss for the Cifar10 dataset. As

shown in Table 5, it achieves 80.0% accuracy while our model achieves 88.6%. So

the comparison in performance is unfair to some extent.

Zhao et al. The design in [8] is implemented with the same FPGA platform

and the same BNN-Cifar10 model as our design. Both designs are implemented

under 143 MHz and show similar accuracy. So it is really suitable as the reference

design.

As shown in Table 5, [8] takes 5.94 ms while our work only needs 1.92 ms per

image, which is a 3.1x speedup. Besides, our work achieves 5.4x resource efficiency

and 4.9x power efficiency, respectively. We detail the comparison in Figure 11. For

the first layer, as described in Section 4.1, [8] takes a dedicated module for the

computation of the first Conv layer, and they can perform 3 3x3 convolutions per

cycle. In contrast, we expand the first layer from 3 RGB channels to 96 binary

channels and employ the uniform SC units to tackle with the computation. Under
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the selected configuration, our design can perform 16x64 3x3 convolutions per cycle,

thus can bring about 341x speedup for the first Conv layer theoretically. Eventually,

subject to data handling and other operations, our design takes 0.11ms to compute

the first layer while [8] takes 1.13ms. For the other Conv layers, our design takes

0.61ms while the reference design needs 2.68ms. On the one hand, the reference

design can perform 8x64 3x3 convolutions per cycle. Due to the unified binary

PE structure, our design is more resource efficient and can deliver twice the peak

performance. First, as indicated in Table 2, by removing the dedicated module for

the first layer, our design leaves more resources for the PE units. In addition, the

fully binary structure and reusing SC units for the FC layers also contribute to the

high resource efficiency. As shown in Table 6, we present a PE with 2-bit input

and a PE with separated FC computation unit to quantitively analyze the benefits.

We can find that the 2-bit version takes 1.8x more LUTs than our design while

the separated FC unit version takes 1.07x. On the other hand, the memory system

enables our design hiding the time for loading weights. For the FC layers, our design

takes 1.2ms while [8] takes 2.13ms. The computation of the FC layers is memory

bounded and we own the improvement to the memory system. Actually, our design

prefetches the partial weights during the computation of the Conv5 layer and we

also parallel the computational and the memory operations.

FPGA based CNN accelerators As a comprehensive evaluation, we compare

our BNN accelerator with other FPGA-based CNN accelerators in Table 6. Our

binarized accelerator achieves significant improvements in performance, resource

efficiency, and power efficiency, which fully demonstrates the advantage of the bi-

narized network. It may not be unfair to directly compare CNN accelerator and
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Table 6. The resource cost of different type of PE

Type of PE Uniform 1-bit 2-bit version 1-bit+separated FC

Resource (LUT) 24,139 43,896 25,717

BNN accelerator. However, it is currently the standard practice for hardware accel-

erator studies to compare the reduced and full-precision implementations. Besides,

BNN has exhibited comparable accuracy with CNN for middle-scale applications

and the accuracy is still improving [20,21].

Table 7. Comparison with FPGA based CNN accelerators

Design [24] [13] [25] Ours

Device
Virtex

VX485t

Zynq

XC7Z045

Virtex7

VX690T

Zynq

XC7Z020

Clock(MHz) 100 150 120 143

Data Precision 32-bit float 16-bit 8-16bit 1-bit

kLUT 186 182.6 115 34.9

DSP 2240 780 1436 0

Power(W) 18.6 9.63 24.8 3.3

GOPS 61.62 137.0 222.1 722

GOPS/kLUT 0.33 0.75 1.93 24

GOPS/Watt 3.31 14.3 8.96 219

7. Conclusion

In this paper, we propose a fully binarized neural network accelerator. With the

hardware-oriented algorithm optimizations, we binarize the convolution across all

the layers and construct a unified hardware design for BNNs. The SC units are

proposed to provide sustained peak performance for the convolutions. And the

memory system further improves the efficiency and performance of our design. We

implement our design with Xilinx ZC702 and fully evaluate its performance on

Cifar10 and SVHN. On Cifar10, it achieves 722 GOPS overall performance, 24

GPOS/KLUT resource efficiency, and 118 GOPS/watt power efficiency, which has

3.1x, 5.4x, and 4.9x improvements of the state-of-art works.
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