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Abstract. The plasticity in our brain gives us promising ability to learn
and know the world. Although great successes have been achieved in
many fields, few bio-inspired methods have mimiced this ability. They
are infeasible when the data is time-varying and the scale is large because
they need all training data loaded into memory. Furthermore, even the
popular deep convolutional neural network (CNN) models have rela-
tively fixed structures. Through incremental PCANet, this paper aims at
exploring a lifelong learning framework to achieve the plasticity of both
feature and classifier constructions. The proposed model mainly com-
prises of three parts: Gabor filters followed by maxpooling layer offering
shift and scale tolerance to input samples, cascade incremental PCA
to achieve the plasticity of feature extraction and incremental SVM to
pursue plasticity of classifier construction. Different from CNN, the plas-
ticity in our model has no back propogation (BP) process and don’t need
huge parameters. Experiments have been done and their results validate
the plasticity of our models in both feature and classifier constructions
and further verify the hypothesis of physiology that the plasticity of high
layer is better than the low layer.

Keywords: Plasticity · Lifelong learning · Incremental PCANet · Incre-
mental SVM

1 Introduction

Recently, bio-inspired visual processing methods have drawn much more atten-
tion as they are favorable in guiding people to design effective models in surveil-
lance, automotive safety and robotics application fields. However, few of them
have investigated the plasticity like in primates’ visual cortex.

HMAX [1], a popular bio-inspired shallow model, has two S layers, two C
layers and a view-tuned units layer. Via convoluting with filters, the S layers can
extract more and more abstract features. Through max pooling, the C layers
can guarantee the scale and position invariant of the images. VisNet [2] has a
similar architecture with HMAX. It comprises of Differential of Gaussian (DoG)
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filters layer and 4 hierarchical layers that correspond to V2, V4, PIT and AIT
respectively. Although they are capable of generating some physiological results,
they need all data loaded into memory, which makes them insufficient when
dealing with the large scale or flow data. Furthermore, they are lack of plasticity.

Drawn inspiration from the hierarchical structures of the visual cortex [6],
combining the deep learning [7] and convolutional neural networks [8], the deep
models [3–5] emerged. They generally consist of some continuous convolutional
layers, pooling layers and full connection layers. From low to high, convolution
layers tend to extract more and more complex and abstract features. Recently,
deep convolutional neural networks (DCNNs) have been able to achieve impres-
sive performances on very large and difficult object databases such as ImageNet
[9]. Inspite the BP process of DCNNs can finetune the deep networks, their
training are very expensive and need a lot of parameters.

Refering to convolution neural network, a simple unsupervised deep learning
baseline, PCANet, is first proposed by Chan et al. [10]. It consists of cascade PCA
and the binarization hashing followed by block-wise histograms. Despite simple
architecture, PCANet obtains very well performance in many image classification
tasks. Nevertheless, its training process also need all data available and it has
no plasticity.

Above all, no matter shallow and deep bio-inspired models, they are not
investigate the plasticity or have expensive finetuning cost. In this paper, we
first propose the incremental PCANet, a lifelong learning framework to explore
the plasticity of both feature and classifier constructions. Our model basically
consists of three parts, Gabor convolutional filters with different scales and ori-
entations followed by maxpooling layer, incremental PCANet and incremental
SVM. In the view of machine learning, our model has well self-adaption and
robustness which should be attributed to its lifelong learning framework. From
the respect of brain-inspired fields, our model explores the plasticity of visual
pathway from low to high levels.

The contributions of this paper are listed as follows: (1) Since PCANet suf-
fers a performance degeneration when the input images exhibit diverse in scales
or poses, the Gabor filters with several scales and orientations followed by max
pooling layer are utilized to process the images. (2) The incremental PCANet is
first proposed to investigate the plasticity of feature extraction like in the visual
cortex. (3) To explore the plasticity of classifier construction, offline linear clas-
sifier utilized in the traditional PCANet is alternated with incremental SVM.
(4) We first combine the plasticity of both feature extraction and classifier con-
struction together, thus leading to an end to end lifelong learning framework. (5)
Through our model, we do some experiments to validate the plasticity of which
layer is crucial.

The remainder of this paper is organized as follows. Related works are
described in Sect. 2, our method is shown in Sect. 3, experiments are listed in
Sect. 4 and we conclude this paper in Sect. 5.
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2 Related Works

Inspired by the hierarchical structure of visual cortex, hierarchical neural net-
works for object categorization have achieved a widespread success in a variety
of domains. Neocognitron, one of the earliest hierarchical neural networks was
proposed by Fukushima [11]. Other impressive hierarchical neural networks for
object recognition contain LeNet [12] and HMAX [1].

In recent years, the deep hierarchical convolutional neural networks showed
us a gradual deeper model. Starting from AlexNet [3], VGG [4], Inception [5]
to Residual [13] networks. Furthermore, the performance become much better
in many image recognition tasks. AlexNet [3], comprises of five convolutional
and three fully connected layers, which wins the ILSVRC2012 competition. To
investigate the function of the number of internal layers of DCNNs, Simonyan
and Zisserman [4] develop deep convolutional networks with 11, 13, 16, and 19
layers. Their results have shown that the more the layer number is, the better
the results will be. GoogLeNet, consists of several inception modules, which
wins ILSVRC 2014 [5]. The latest residual networks (ResNet) [13] makes further
breakthrough in many tasks, it has won ImageNet and COCO 2015 competition.

On the basis of scattering theory, scattering convolution network (ScatNet)
[14] is proposed. Its filters are prefixed as they are derived from mathematical
functions. Benefit from these filters, ScatNet shows the state-of-the-art perfor-
mance in many fields, such as texture discrimination and handwritten recogni-
tion.

With the explosion of data, incremental techniques that don’t need all data
loaded into memory emerged to perform many tasks like principal component
analysis (PCA), support vector machine (SVM) and so on. The basic principle
of incremental PCA is to update the current PCA without recalculating it when
the new data arrive. Many techniques have been proposed to realize it, such as
perturbation techniques [15], incremental methods [16], and stochastic optimiza-
tion [17]. The key principle of incremental SVM is to make use of the current
SVM solution to simply figure out the quadratic program of the next search.
Specifically, when the new data arrive, they are integrated into the quadratic
program and the kernel and regularization parameters (C, σ) are then modified
correspondingly [18].

Lifelong learning, is very important to the flexible machines. Early studies on
lifelong learning was mainly about sharing distance metrics through transferring
invariances in neural networks [19] and task clustering [20]. It has also been
extended for learning by reading [21].

3 Methods

Among bio-inspired methods, few of them have mimiced the plasticity in pri-
mates’ visual cortex. To explore the plasticity of both feature extraction and clas-
sifier construction, a lifelong learning framework based on incremental PCANet
proposed here.
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3.1 MulOri PCANet

Although PCANet has promising performance in some face, hand-written digital,
texture and object recognition tasks, when the input data bear diverse scales or
poses, the performance of PCANet may decrease. Inspired by the phenomenon
that the primate vision cortex (V1) has some shift and scale invariance [1], its
similar realization in machine learning, the Gabor filters with several scales and
orientations followed by maxpooling layer are employed to process the images
before they are sent to PCANet. They can be described as:

G(X,Y ) = exp(−X2 + γ2Y 2

2σ2
) × cos(

2π

λ
X) (1)

Where X = x cos θ + y sin θ and Y = −x sin θ + y cos θ, θ denotes the orien-
tation, σ represents effective width and λ indicates the wavelength.

Assume N input images are {Ii}Ni=1. Each of them is first convoluted with
the above Gabor filters and several feature maps are obtained subsequently.
To mimic the shift and position invariances and orientation sensitivity of V1 in
visual cortex, these feature maps are first maxpooled among different scales, then
maxpooled in certain grid size Q but not pooled in orientations. As a result, the
samples flowed into the subsequent PCANet have multiple orientations, specifi-
cally, there are four orientations here. The PCANet with Gabor filters followed
maxpooling layer is dubbed as MulOri PCANet and illustrated in Fig. 1.

3.2 Incremental PCANet

Since the training process of traditional PCANet need all data, it’s inefficient
when dealing with the large scale or time-varying data. Furthermore, it has no

Fig. 1. Detailed structure of MulOri PCANet.
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plasticity. To this end, the incremental PCANet is introduced to explore the
plasticity of feature extraction. For simplify, the incremental PCANet is dubbed
as IncPCANet.

A. The first stage Incremental PCA: Assume the samples from the Gabor
filters flow into the network batch after batch. Let lth batch samples are
{Io,li }Nl

i=1{o = 1, 2, 3, 4} with size m × n, Nl is the number of input samples
of lth batch, o indicts the oth orientation. For each sample, around each pixel,
patches with size k1×k2 pixels are extracted, converted into column vectors and
concatenated together as yo,l

i,1, y
o,l
i,2, · · · , yo,l

i,m̃ñ ∈ R
k1k2 , each yo,l

i,j indicates the jth

patch in Io,li , here, m̃ = m − �k1/2� and ñ = n − �k1/2�. Then the mean of
patches are subtracted from themselves

Ȳ o,l
i = [ȳo,l

i,1, ȳ
o,l
i,2, · · · , ȳo,l

i,m̃ñ] (2)

where ȳo,l
i,j indicates a patch with its mean removed.

For each orientation samples, by applying the same operators for all input
samples and concatenating them together, we obtain

Y o,l = [Ȳ o,l
1 , Ȳ o,l

2 , · · · , Ȳ o,l
Nl

] ∈ R
k1k2×Nlm̃ñ (3)

Since the filter banks of PCANet in every layer are obtained via figuring out
several eigenvalues of the convariance matrix Σ correspond to the first largest
eigenvalues. Here, Σ is the convariance matrix of the mean-removed pathes of
all training samples. To realize the incremental PCANet, instead of storing the
mean-removed patches of all training samples of earlier batches, their convariance
matrices are just stored and added into that of the current batch. This can
significantly save the space and time.

Assume that the pth layer has Lp filters, the filters of the first stage incre-
mental PCA layer can be expressed as

W o,l,1
j = matk1k2(qp(

l∑

t=1

Y o,tY o,tT )) ∈ R
k1×k2 , j = 1, 2, · · · , L1 (4)

which means the jth filter bank of lth batch of oth orientation. The function
matk1k2 is to map the vector into a matrix with size k1 × k2 and qp(XXT )
denotes the pth principle eigenvector of XXT . This step is crucial for realiz-
ing the incremental PCANet, we just need to add the matrix Y o,tY o,tT of the
arriving batch to those of all earlier batches.

B. The second stage Incremental PCA: Repeating the same process of what
we do in first stage incremental PCA, assume the jth filter output of the oth
orientation of lth batch is

Io,l,ji = Io,li ∗ W o,l,1
j , i = 1, 2, · · · , Nl (5)

where * indicates 2D convolution. In order to keep the size of each output Io,l,ji

the same as Io,li , the boundary of Io,li is zero-padded before it convolves with
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W o,l,1
j . Like in the first stage, all of the overlapping patches of Io,l,ji are collected

and mean-removed to form

Z̄o,l,j
i = [z̄o,li,j,1, z̄

o,l
i,j,2, · · · , z̄o,li,j,m̃ñ] ∈ R

k1k2×m̃ñ (6)

z̄o,li,j,k means the kth mean-removed patch in Io,l,ji .
Furthermore, let

Zo,l,j = [Z̄o,l,j
1 , Z̄o,l,j

2 , · · · , Z̄o,l,j
Nl

] ∈ R
k1k2×Nlm̃ñ (7)

represents all mean-removed patches of the jth filter output of oth orientation
in lth batch.

Concatenate Zo,l,j for all of the filter outputs as

Zo,l = [Zo,l,1, Zo,l,2, · · · , Zo,l,L1 ] ∈ R
k1k2×L1Nlm̃ñ (8)

Further, gather Zo,l for all of the orientation outputs as

Zl = [Zl,1, Zl,2, · · · , Zl,4] ∈ R
k1k2×4L1Nlm̃ñ (9)

As in the first stage, the incremental PCA filters of lth batch for second stage
can be represented as

W l,2
j = matk1k2(ql(

l∑

t=1

ZtZtT )) ∈ R
k1×k2 , j = 1, 2, · · · , L2 (10)

For each input Io,l,ji of the second stage, we can get L2 output maps of size
m × n via convoluting with {W l,2

j }L2
j=1

Oo,l,j
i = {I l,ji × W l,2

j }L2
j=1 (11)

The number of output images at the second increment PCA stage is 4L1L2.
The subsequent binarization and histogram pooling can refer to the literature
[10], and we don’t describe it here.

3.3 Incremental PCANet with Incremental SVM

To analog the plasticity of classifier construction in primates’ brain, instead
of offline linear SVM classifier [22] used in PCANet [10], incremental SVM in
literature [18] is adopted into our model. Since the original incremental SVM
algorithm is utilized to deal with two classification problem, we extend it to
solve multi classification via one vs one technique here. The IncPCANet with
incremental SVM formed a lifelong learning framework that has the plasticity
of both feature and classifier constructions.

4 Experiments

To validate the effectiveness of our model, several experiments have been done.
They are detailedly depicted as follows.
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4.1 Mulori PCANet: Robust to Input Samples with Diverse Scales
or Shifts

For purpose of enforcing the scale and shift invariance of input images flowed
into PCANet, Gabor filters with 2 scales s = {3, 5} and four orientations
θ = {−45, 0, 45, 90} are utilized to convolute with them and their responses
are maxpooled among different scales and certain gride size Q = 4.

To varify the performance of MulOri PCANet, original PCANet [10], AlexNet
[3] and ScatNet [14] are utilized as comparisons. For fair comparison, except
the parameters of Gabor filters, the other parameters utilized in PCANet and
MulOri PCANet are set with the same values, the filter size k1 = k2 = 7, the
number filter L1 = L2 = 8, the block size and the block overlap ration used in
block-wise histogram pooling are set as 7 × 7, 0.5 respectively. In ScatNet, the
number of scales and orientations are set as 3 and 8. The parameters of AlexNet
are listed in Table 1 and the mean file of imagenet is utilized here.

Table 1. The parameters of AlexNet used on different databases.

Parameters Test iter Test interval Lr Lr policy γ Stepsize Max iter Momentum Weight decay

Mnist variations 100 500 0.01 INV 0.1 10000 10000 0.9 0.0005

Caltech101 100 1000 0.01 STEP 0.1 10000 45000 0.9 0.0005

Databases: MNIST variations [23], including background noise, rotations,
and background images, to MNIST. The Caltech101 dataset consists of 101
objects and a background category, it can be downloaded from http://www.
vision.caltech.edu. In each MNIST databases, there are 10000 train samples and
50000 test samples. For Caltech101, 30 images per category form the training
samples and the rest images are used as test samples.

For fair comparison, the linear SVM classifier [22] is utilized for both
MulOri PCANet and PCANet [10].

The results can be found in Table 2. From it, we can see that the perfor-
mance of our model uniformly better than PCANet and ScatNet-2 most cases,
which shows the robustness of MulOri PCANet. Although MulOri PCANet per-
forms not better than AlexNet sometimes, it has no data augmentation and
the filter learning in MulOri PCANet don’t include adjustments of parameters,
meanwhile, its unsupervised learning process with very simple structure is also
attractive.

Table 2. The error rate of different algorithms based on several databases.

Databases bg-img-rot bg-img rot Caltech101

MulOri PCANet 32.48 9.88 5.89 29.52

PCANet 35.48 10.95 7.37 31.54

ScatNet-2 [14] 50.48 18.40 7.48 46.04

AlexNet [3] 19.26 4.40 7.06 39.30

http://www.vision.caltech.edu
http://www.vision.caltech.edu
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4.2 IncPCANet: Achieve the Plasticity of Feature Extraction

Inspite great success achieved in many image processing fields, most bio-inspired
methods are infeasible when handling the large scale or flow data. This is due to
they need all samples available and lack of plasticity. To this end, IncPCANet
is proposed, aims at exploring the plasticity of feature extraction.

To validate the effectiveness of IncPCANet, we compare the performance
of IncPCANet and traditional PCANet on database with identical distribution,
specifically, it is Caltech101. The number of training and testing samples are
set the same as in Sect. 4.1. For each database, the whole training samples are
divided into 10 batches, these batches are sent to the IncPCANet continuously,
after each batch pass, the test samples are utilized to test the model.

To evaluate the effects of filter banks learned by IncPCANet and traditional
PCANet, the same number training samples are utilized to train their filter
banks. Specifically, the filter banks in PCANet are learned from all arriving
batch samples, while those in incremental PCANet are updated just utilize the
new arriving data based on earlier batches. For fair comparison, the features
are used to train SVM classifier in IncPCANet are the features of all training
samples extracted by the current filter banks every time.

The results can be found in Tables 3 and 4. With much less training time,
IncPCANet can obtain the comparable results with traditional PCANet, specif-
ically, the Training Time here means the PCA filter banks’ learning time. When
dealing with large scale data, IncPCANet is a better choice.

To verify the plasticity of feature extraction of IncPCANet, we compare the
performance of IncPCANet and PCANet on databases with different distribu-
tions. Here, the Mnist variations are utilized as a database with different distri-
butions. The database is organized with the order of Mnist basic, Mnist bg img,
Mnist bg rand, Mnist rot, each of them have 4000 training samples and 5000
test samples, further, the same distribution samples are arriving together and
1000 training samples are seen as a batch.

When the new batch samples arrive, the filter banks of PCANet are updated by
utilizing all arriving batch samples no matter the distribution of data has changed
or not. Nevertheless, the filter banks of IncPCANet are trained just using the

Table 3. The performance of Incremental PCANet based on Caltech101.

Training numbers 306 612 918 1224 1530 1836 2142 2448 2754 3060

Accuracy 66.64 60.43 51.26 39.77 38.18 34.56 31.55 30.78 30.45 29.81

Training Time 26.09 26.03 26.82 26.72 26.74 27.48 29.13 26.95 27.09 26.95

Table 4. The performance of PCANet based on Caltech101.

Training numbers 306 612 918 1224 1530 1836 2142 2448 2754 3060

Accuracy 66.96 54.73 46.38 37.68 36.37 33.89 31.72 30.735 29.76 29.40

Training Time 21.17 39.87 59.77 79.74 101.51 123.41 146.42 169.02 192.53 202.68
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Fig. 2. The comparison of PCANet and IncPCANet based on Mnist database with
different distributions.

current arriving batch samples based on the earlier filter banks. The samples
are used to train SVM classifier in PCANet are features of all training samples
extracted by the current filter banks, while in IncPCANet are just features of all
new distribution training samples extracted by the current filter banks.

The results are shown in Fig. 2. In Fig. 2, the name of arriving databases with
different distributions and their training numbers are listed in X-axis. From it,
we can see that when the distribution of data is changed, the accuracies of
PCANet and IncPCANet first decrease and then increase gradually most times,
and IncPCANet can obtain better performance than PCANet. This is because
when the new data arrive, the filter banks obtained earlier are not suitable for
the new situation, so the accuracy decreases. Further, with the number of new
samples becomes more and more, the filter banks obtained can better represent
the new data, lead to an increase accuracy. However, when Mnist rot arrive, the
performance of two models are not degenerate and IncPCANet first performs
worse than PCANet while better than it at last. This is due to Mnist rot sam-
ples have some similarities with the earlier databases, the filter banks of earlier
samples can represent Mnist rot at some extent, so the accuracy of Mnist rot is
not decrease. Furthermore, IncPCANet has less training samples than PCANet
at first, which leads to a worse result compared to PCANet. Nevertheless, with
the number of Mnist rot samples becomes more, IncPCANet can quickly adjust
the filter banks to better approximate the new data and obtain a better results.
Above all, the experimental results in this section reveal IncPCANet has plastic-
ity in feature extraction and owns better self-adaption and robustness compared
to PCANet.

4.3 Validate the Effectiveness of the End to End Lifelong Learning
Model Based on IncPCANet with Incremental SVM

The plasticity in primates’ brain not only include the feature extraction but also
classifier construction. Incremental PCANet with incremental SVM (dubbed as
IncPCANetIncSVM) is expected here to analog this end to end plasticity. In this
section, we first validate the effectiveness of IncPCANetIncSVM and in the next
section further verify the plasticity in visual cortex.

To varify the performance of IncPCANetIncSVM, the incremental PCANet
with offline SVM (IncPCANetSVM) and PCANet with incremental SVM
(PCANetIncSVM) are employed as comparisons. Mnist rot is utilized as their
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Fig. 3. The validations of the model’s plasticities based on different levels.

databases and the numbers of training and testing samples are 10000 and 50000
respectively. For fair comparison, the offline SVM we also use the batch SVM
offered in [18] other than linear SVM [22].

The result is shown in (a) subfigure of Fig. 3. Along with the number of train-
ing samples increased, the results of three models become better. Furthermore,
with much less time and space cost, the IncPCANetIncSVM can obtain compa-
rable or even better performance compared to other two models, which reveal
the efficient and effectiveness of IncPCANetIncSVM.

4.4 Analog and Validate the Functions of Plasticity of Different
Layers in Visual Cortex

Assume the databases with different distributions flow into the incremental
PCANet, when the data distribution is changed, to validate the plasticity of
which layer is crucial, we freeze some layer and adjust the rest layers. Here, the
adjustment operations via incremental technique to realize.

• Feature layers and classifier layer with no adjustments (dubbed as PCAP-
CASVM)

• Feature layers with no adjustments and classifier layer with adjustment
(dubbed as PCAPCAISVM)

• Low level feature layer and classifier layer with adjustments and high level
feature layer with no adjustment (dubbed as IPCAPCAISVM)

• High level feature layer and classifier layer with adjustments and low level
feature layer with no adjustment (dubbed as PCAIPCAISVM)

• Feature and classifier layers with adjustments (dubbed as IPCAIPCAISVM).

Mnist variations which include Mnist basic and Mnist bg img are utilized
as database with different distributions to validate the performance of above
different models. Here the Mnist basic has 1000 training samples and 5000 test
samples, Mnist bg img has 2000 training samples and 5000 test samples.

The results are show in (b) subfigure in Fig. 3. From it, we can see that when
the data distribution is changed, with no feature and classifier layers adjust-
ments, the performance decreased heavily. As long as the classifier layer has
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adjusted, the accuracy increase dramatically and becomes better along with the
number of training samples increase. This is because the high level classifier
layer similar like the neural center, it’s very effective by utilizing the supervised
information to adjust the model. Furthermore, the feature layers adjustments
also have effect in updating the model even the function of it is very smaller
when compared to that of the classifier layer. Finally, the IPCAIPCAISVM has
best results while the PCAPCAISVM has the worst among all compared mod-
els. These results validate the hypothesis of physiology that the plasticities exist
in every layer of brain cortex and the plasticity in high level is more efficient
and effective than the low level. However, it seems because the effect of the error
accumulation, PCAIPCAISVM has no better results than IPCAPCAISVM. This
is just the preliminary experiments and the further experiments are ongoing.

5 Conclusion

Inspired by the plasticity in primates’ visual cortex, a lifelong learning frame-
work based on incremental PCANet is proposed here to explore the plasticity of
both feature extractor and classifier construction. Gabor filters with maxpooling
layer are used to enforce the scale and shift tolerance to input samples. Incre-
mental PCANet dedicated to investigate the plasticity of feature extraction and
the incremental SVM devoted to validate the plasticity in classifier construction.
Experiment results show that our model have better self-adaption and robust-
ness compared to PCANet. Further, in the view of physiology, the incremental
PCANet with incremental SVM has achieved the plasticity of both feature and
classifier constructions. Finally, via our model, we validate the plasticity of high
level classifier layer is much better than that of the low feature extraction layers,
which is consist with the hypothesis of physiology.
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