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Data-Based Reinforcement Learning
for Nonzero-Sum Games With

Unknown Drift Dynamics
Qichao Zhang, Member, IEEE, and Dongbin Zhao , Senior Member, IEEE

Abstract—This paper is concerned about the nonlinear
optimization problem of nonzero-sum (NZS) games with
unknown drift dynamics. The data-based integral reinforcement
learning (IRL) method is proposed to approximate the Nash equi-
librium of NZS games iteratively. Furthermore, we prove that
the data-based IRL method is equivalent to the model-based
policy iteration algorithm, which guarantees the convergence of
the proposed method. For the implementation purpose, a single-
critic neural network structure for the NZS games is given. To
enhance the application capability of the data-based IRL method,
we design the updating laws of critic weights based on the offline
and online iterative learning methods, respectively. Note that the
experience replay technique is introduced in the online iterative
learning, which can improve the convergence rate of critic weights
during the learning process. The uniform ultimate boundedness
of the critic weights are guaranteed using the Lyapunov method.
Finally, the numerical results demonstrate the effectiveness of
the data-based IRL algorithm for nonlinear NZS games with
unknown drift dynamics.

Index Terms—Integral reinforcement learning (IRL), neural
network (NN), nonzero-sum (NZS) games, off-policy, single-critic,
unknown drift dynamics.

I. INTRODUCTION

AS A MAIN branch of operational research, game theory
has been widely used to solve the optimal problem

for nonlinear systems with multiplayers [1]. Differential
games [2], which focus on the continuous-time game sys-
tem, have attracted significantly increasing attention in various
fields, such as economics [3], marketing [4], computational
intelligence [5], control theory [6], [7], and so on. Based on
the roles and tasks of players, we can divide differential games
into three categories: 1) fully cooperative (FC) games [8];
2) zero-sum (ZS) games [9]; and 3) nonzero-sum (NZS)
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games [10]. For the FC game, players are completely coop-
erative to pursue the team interest and fulfill an overall task.
For the ZS game, players are completely competitive to pur-
sue their own interest and compete with each other. For the
NZS game, there are both cooperative and competitive play-
ers, which want to pursue their individual interest. To obtain
the Nash equilibrium [11] of NZS games, we have to solve
the coupled Hamilton–Jacobi (HJ) equations. However, it is
difficult to solve the HJ equations analytically for nonlinear
NZS games due to the nonlinear inherent property.

Recently, reinforcement learning (RL) and adaptive dynamic
programming (ADP) [12] based on neural network (NN) tech-
nique [13] have been investigated for approximating the Nash
equilibrium of differential games [14]–[17]. According to the
knowledge of the system dynamics, RL can be divided into
model-based RL and model-free RL. For the model-based
RL, an online synchronous policy iteration (PI) algorithm
was given in [18] and [19], where actor and critic NNs
were updated based on the full knowledge of system dynam-
ics. A single network adaptive critic structure instead of
actor–critic structure was presented in [20], which was used
to solve the optimal control synthesis of nonlinear system.
Zhang et al. [21] proposed a single-network ADP structure
without an initial stabilizing control policy to approach the
solution of the HJ equations. It should be mentioned that
the integral RL (IRL) technique [22] can be considered as
a data-based RL using partially knowledge of system dynam-
ics, where the knowledge of the drift dynamics is not required.
The IRL has been investigated for the linear and nonlinear ZS
games in [23] and [24]. Luo et al. [25] combined the IRL and
off-policy scheme for the partially unknown ZS game based
on offline iterative learning. Based on the data-based RL with
unknown drift dynamics, an online iterative algorithm was
employed to solve the coupled algebraic Riccati equations for
linear NZS games in [26]. For the nonlinear NZS games with
unknown drift dynamics, Kamalapurkar et al. [27] proposed a
novel actor–critic-identifier structure, where the identifier was
used to identify the unknown drift dynamics.

The model-free RL can be divided into two cate-
gories: 1) identifier-based RL and 2) data-driven (data-based)
RL [28], [29]. In [30]–[32], the actor–critic or single-critic
structures with an identifier were constructed for nonlin-
ear NZS games, where the NN identifier was designed
to model the unknown system dynamics. For the first
time, Zhang et al. [33] made a significant breakthrough
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in the optimal robust tracking control for unknown gen-
eral continuous-time nonlinear systems. The main advantages
of the proposed method lie in that only the availability of
input/output data is required instead of an exact system model,
and meanwhile the tracking error converges to zero asymptot-
ically in an optimal way. The results in this paper provides a
solid foundation for using ADP in the field of optimal tracking
control of the unknown general nonlinear systems. However,
the training of identifier was usually time-consuming and
introduced the detrimental identification error inevitably. The
data-driven RL is based on the IRL technique and off-policy
scheme [34], [35], which has been used in uncertain sys-
tems [36], ZS games or H∞ control [37]–[39], FC games [8],
and so on. Note that only one iteration equation for data-
driven RL is established rather than two phases in the PI
algorithm, where the collected system data is required instead
of the knowledge of system dynamics. In [40], the unknown
NZS game ẋ = f (x) + ∑N

j=1 g(x)uj was investigated based
on the data-driven RL with actor–critic structure using the
online iterative learning scheme. It should be mentioned that
the nonlinear dynamics functions gj(x) for each player uj were
assumed to be the same in [40], which is a special case for
the general nonlinear NZS games.

Motivated by the above observations and literature research,
this paper proposes a data-based IRL algorithm for gen-
eral nonlinear NZS games ẋ = f (x) + ∑N

j=1 gj(x)uj(t) with
unknown drift dynamics based on a single-critic structure.
Note that the online iterative learning using current data is
usually time-consuming and low efficiency for many practical
systems, such as intelligent driving [41], power systems [42],
and so on. To improve the application ability for various practi-
cal systems, the NN-based offline iterative learning and online
iterative learning with experience replay (ER) algorithms are
adopted for the data-based IRL, respectively.

The main contributions of this paper are listed as follows.
1) This paper extends the IRL technique for linear NZS

games [26] and nonlinear NZS games having a common
input-to-state dynamics for all players [40] to the general
nonlinear NZS games. A data-based IRL scheme is pro-
posed for nonlinear NZS games without the knowledge
of the system drift dynamics. Furthermore, the proposed
scheme is proved to be equivalent to the model-based
PI, which guarantees the convergence of the proposed
algorithm.

2) Different with the online learning based on the actor–
critic structure provided in [40], the NN-based offline
and online iterative learning algorithms based on single-
critic structure are proposed for the designed data-based
IRL scheme, which can extend the applicability of the
data-based IRL scheme. In addition, the convergence
analysis for the offline iterative learning and the online
iterative learning with ER are proposed, respectively.

The rest of this paper is organized as follows. Section II
introduces the problem formulation of N-player NZS games
and the model-based PI algorithm. The data-based IRL for
nonlinear NZS games with unknown drift dynamics and its
implementation based on the single-critic network structure
are proposed in Section III. In Sections IV and V, the offline
and online iterative learning algorithms are presented with the

convergence analysis, respectively. Simulation results and the
conclusion are presented in Sections VI and VII. In order to
compare the algorithm performances, the data-based IRL with
actor–critic structure is provided in the Appendix.

II. PRELIMINARY

A. Problem Statement

In this paper, we study the general N-player NZS differential
games

ẋ = f (x(t)) +
N∑

j=1

gj(x(t))uj(t) (1)

where x ∈ Rn denotes the state vector, uj ∈ Rmj denotes the
control vector for player j, and the system nonlinear dynamics
f (·) ∈ Rn, gj(·) ∈ Rn×mj are both smooth. Note that the input-
to-state dynamics gj(x) is known continuous vector. Let the
set of all players be N = {1, . . . , N}, and the supplementary
set of player i be u−i = {uj | j ∈ {1, . . . , i − 1, i + 1, . . . , N}}.

For the optimal control problem with partially unknown
dynamics, the following assumption is commonly used, as
in [25] and [26].

Assumption 1: The system drift dynamics f (x) is unknown
and Lipschitz continuous on a compact set � ⊆ Rn with
f (0) = 0.

Define the cost functions associated with player i as

Ji(x0, ui, u−i) =
∫ ∞

0

⎛

⎝Qi(x) +
N∑

j=1

uT
j Rijuj

⎞

⎠dt

=
∫ ∞

0
ri(x, ui, u−i)dt, i ∈ N (2)

where ri(x, ui, u−i) = Qi(x) + ∑N
j=1 uT

j Rijuj with Qi(x) =
xTQix, Qi ≥ 0, and Rii ≥ 0 are positive symmetric matrices,
Rij > 0 are positive semidefinite symmetric, and x0 = x(0)

denotes the initial state. To simplify the expression, we use x
and ui to represent x(t) and ui(t) in the following.

For any admissible policy ui ∈ �(�), i ∈ N defined in [18],
the value function for player i is given by

Vi(x, ui, u−i) =
∫ ∞

t

⎛

⎝Qi(x(τ )) +
N∑

j=1

uT
j (τ )Rijuj(τ )

⎞

⎠dτ

=
∫ ∞

t
ri(x(τ ), ui(τ ), u−i(τ ))dτ, i ∈ N. (3)

For the NZS games, it aims to obtain an optimal control
policy pair {u∗

i , u∗−i} = {u∗
1, . . . , ui, . . . , u∗

N} to minimize the
value functions associated with each player. The optimal pol-
icy pair {u∗

1, u∗−i} is called Nash equilibrium such that the
corresponding value function (3) will increase if any policy
u∗

i changes.
Definition 1 (Nash Equilibrium [43]): The N-player NZS

game with N-tuple of optimal control policies {u∗
i , u∗−i} is said

to have a Nash equilibrium solution, if

J∗
i

(
u∗

1, . . . , u∗
i , . . . , u∗

N

) ≤ Ji
(
u∗

1, . . . , ui, . . . , u∗
N

)
, i ∈ N.

(4)
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Algorithm 1 PI for NZS Games

1: Start with initial admissible policies {u0
1, u0

2, . . . , u0
N}.

2: Policy Evaluation. Find Vk
i (x) successively approximated

by solving

0 = ri

(
x, uk

i , uk−i

)
+

(
∇Vk+1

i

)T

⎛

⎝f (x) +
N∑

j=1

gj(x)u
k
j

⎞

⎠, Vk
i (0) = 0 (8)

with the iterative index k = 0, 1, · · ·.
3: Policy Improvement. Update the control policies simul-

taneously using

uk+1
i (x) = −1

2
R−1

ii gT
i (x)∇Vk+1

i (x). (9)

4: Let k = k + 1, go back to Step 2 and continue.

To obtain the Nash equilibrium of the NZS game, the solu-
tion of the coupled HJ equations should be approached. The
detailed description is summarized in the following lemma.

Lemma 1: Assume that the value function (3) is continu-
ously differentiable. Suppose there exists an N-tuple value set
{V∗

1 , . . . , V∗
N}, which is defined as

V∗
i (x) = min

ui

∫ ∞

t

⎛

⎝Qi(x(τ )) +
N∑

j=1

uT
j (τ )Rijuj(τ )

⎞

⎠dτ, i ∈ N

(5)

satisfies the coupled HJ equations

Qi(x) + (∇V∗
i

)T
f (x) − 1

2

(∇V∗
i

)T
N∑

j=1

gj(x)R
−1
jj gT

j (x)

×
(
∇V∗

j

)
+ 1

4

N∑

j=1

(
∇V∗

j

)T
gj(x)R

−1
jj RijR

−1
jj gT

j (x)∇V∗
j = 0

(6)

with V∗
i (x) ≥ 0, Vi(0) = 0 and ∇Vi = (∂Vi(x)/∂x). Then, the

optimal control policy for player i is

u∗
i (x) = −1

2
R−1

ii gT
i (x)∇V∗

i , i ∈ N. (7)

Note that the Nash equilibrium is composed by the optimal
control policy u∗

i (x).

B. Policy Iteration for Solving HJ Equations

To obtain the optimal control policies (7), we have to solve
the coupled HJ equations (6), which are nonlinear partial dif-
ferential equations. In fact, it is difficult to obtain the analytical
solution of the HJ equations for nonlinear systems. PI is one of
the most common methods to overcome this difficulty, which
can be described as follows [18] and [32].

According to [32], the PI algorithm is proved to be the
quasi-Newton’s method, which means Algorithm 1 will con-
verge to the solution of the HJ equations (6) when the iteration
goes to infinity, i.e., Vk

i (x) → V∗
i (x) and {uk

i (x), uk−i(x)} →

{u∗
i (x), u∗−i(x)} as i → ∞. Note that Algorithm 1 is an infinite

iterative process for theoretical analysis. For implementation
purpose, a small positive number is usually given in step 4 as
the threshold value of a termination condition.

Observe that the iterative equation (8) requires the com-
plete knowledge of system dynamics. For the NZS games
with the unknown drift dynamics f (x), Algorithm 1 cannot
approximate the solution of the HJ equations directly. For the
unknown NZS games, the actor–critic-identifier structure is
usually adopted [31], [32]. To avoid the time-consuming iden-
tification process, an off-policy IRL method is proposed for a
special NZS games with unknown dynamics [34], where the
input-to-state dynamics for all players are the same. In fact, the
input-to-state dynamics for different players are usually dis-
parate for most of real systems. In the following, we propose
a data-based IRL approach to solve the general NZS games,
where the system drift dynamics f (x) is unknown and each
player is allowed to have its own input-to-state dynamics.

III. DATA-BASED IRL FOR NZS GAMES WITH

UNKNOWN DRIFT DYNAMICS

In this section, a data-based IRL method for general NZS
games is presented, which avoids the identification of f (x).
Furthermore, we give the convergence analysis of the proposed
algorithm.

A. Data-Based IRL Method

Given arbitrary admissible control policies uj ∈ �(�), j ∈
N, the NZS differential games (1) can be formulated as

ẋ = f (x) +
N∑

j=1

gj(x)
(

uj − uk
j

)
+

N∑

j=1

gj(x)u
k
j (10)

where uk
j is obtained by (9). The derivative of Vk+1

i (x) in (8)
with respect to time for the {k+1}th iteration along the system
trajectory (10) is

dVk+1
i (x)

dt
=

(
∇Vk+1

i

)T

⎛

⎝f +
N∑

j=1

gj(x)u
k
j

⎞

⎠

+
(
∇Vk+1

i

)T N∑

j=1

gj(x)
(

uj − uk
j

)

= − ri

(
x, uk

i , uk−i

)
+

(
∇Vk+1

i

)T N∑

j=1

gj(x)
(
uj − uk

j

)
.

(11)

According to IRL technique, integrating both sides of (11)
on time interval [t, t + �t], we have

Vk+1
i (x(t)) − Vk+1

i (x(t + �t)) +
∫ t+�t

t

(
∇Vk+1

i (x(τ ))
)T

N∑

j=1

gj(x(τ ))
(

uj(τ ) − uk
j (τ )

)
dτ

=
∫ t+�t

t
ri

(
x(τ ), uk

i (τ ), uk−i(τ )
)

dτ. (12)
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Observe that the knowledge of system drift dynamics f (x) is
not required in (12). Then, Algorithm 1 is translated to the
data-based IRL by replacing equations (8) with (12) for NZS
games with unknown drift dynamics.

Compared with the ZS games or H∞ control in [25], the
multiple iterative equations (12) rather than only one itera-
tive equation is considered for the players. Accordingly, the
N-tuple value set {V∗

1 , . . . , V∗
N} should be approximated by

solving the N-tuple iterative equations in NZS games rather
than a common value function for all players. The difference
between the ZS games and NZS games is that the relationship
between the players is completely competitive or both com-
petitive and cooperative. It should be mentioned that the value
function Vi for player i defined in (3) is associated with all
the players’s policies. From (5), the player i only concerns to
minimize the corresponding value function Vi, where it can
compete or cooperate with the other players.

Remark 1: For the tracking problem in [44], ZS games or
H∞ control problem in [34] and [39], or the NZS games with
uniform input-to-state dynamics [40], the system dynamics
g(x) can be relaxed using a transformation of the con-
trol policies during the policy improvement. However, the
value function Vi(x) and system dynamics gi(x) are differ-
ent for each player in general NZS games. Although the
term {(δVk+1

i (x))Tgi(x)} can be removed using (9), the term
{(δVk+1

i (x))Tgj(x), j �= i} still exists in (12). To relax the
input-to-state dynamics gi(x) for general NZS games without
identification process still requires further investigation.

Motivated by [25], the equivalence between iterative equa-
tions (8) and (12) is established as follows.

Theorem 1: Let Vk+1
i (x) ∈ C1(�), C1(�) denotes a function

space on � with first derivatives continuous, Vk+1
i (x) ≥ 0,

Vk+1
i (0) = 0. Vk+1

i (x) is the solution of (12) if and only if it
is the solution of the equation (8).

Proof: According to the derivation of (12), we can conclude
that the solution Vk+1

i of (8) also satisfies (12). If we can prove
Vk+1

i is a unique solution of (12), (12) is equivalent to (8).
Now, we prove Vk+1

i is the unique solution of (12) by
contradiction. Suppose that there is another solution �i(x)
of (12) with �i(x) ≥ 0 and �i(0) = 0. Thus, �i(x) also
satisfies (11), i.e.,

d�i(x)

dt
= −ri

(
x, uk

i , uk−i

)
+ ∇�

T
i

N∑

j=1

gj(x)
(

uj − uk
j

)
. (13)

Substituting (13) from (11), we have

d

dt

(
Vk+1

i (x) − �i(x)
)

=
((

∇Vk+1
i

)T − ∇�
T
i

)

×
N∑

j=1

gj(x)
(

uj − uk
j

)
(14)

for uj ∈ �(�), j ∈ N. As the admissible control policy uj can
be arbitrarily for uj ∈ �(�), we choose uj = uk

j . Then we can
obtain

d

dt

(
Vk+1

i (x) − �i(x)
)

= 0 (15)

which means that the term Vk+1
i (x) − �i(x) equals to a

real constant for ∀x ∈ �. According to the boundary con-
ditions Vk+1

i (0) = 0, �i(0) = 0, we can deduce that
Vk+1

i (x) − �i(x) = 0, i.e., Vk+1
i (x) = �i(x) for ∀x ∈ �. Then,

{Vk+1
1 , . . . , Vk+1

N } is the unique solution set of (12) for all play-
ers, which means (12) is equivalent to (8). This completes the
proof.

According to [32], Algorithm 1 can approximate the optimal
value functions and control policies. Based on Theorem 1, we
know that the data-based IRL method for partially unknown
NZS games is equivalent to Algorithm 1 for completely known
NZS games. That is to say, the convergence of the pro-
posed method for NZS games with unknown drift dynamics
is guaranteed.

Remark 2: According to Theorem 1, the data-based IRL
is equivalent to Algorithm 1. Based on the property of
quasi-Newton’s method, the data-based IRL is also a local
optimization scheme, which is similar with the method
in [32], [39], and [40].

B. Off-Policy IRL Algorithm With Single-Critic Structure

For the implementation purpose, a single-critic NN approx-
imation is introduced to approach the solution of (12).
According to the Weirstrass high-order approximation theo-
rem, a smooth function can be uniformly approximated on a
compact set by NN

Vi
k(x) = wT

i,kφi(x) + εi,k (16)

where φi:Rn → RKi is linear independent basis function vector,
wi,k ∈ RKi is the unknown weight vector, Ki is the number of
hidden neurons, and εi,k denotes the reconstruction error for
i ∈ N. It is shown in [45] that as Ki → ∞, the reconstruction
error εi,k converges to zero.

According to (16), we rewrite the iteration equation (12) as

(φi(x + �t) − φi(x))
Twi,k+1

−
∫ t+�t

t

N∑

j=1

(
gj(x)

(
uj(τ ) − uk

j (τ )
))T∇φT

i (x)wi,k+1dτ

+
∫ t+�t

t
Qi(x) +

N∑

j=1

((
uk

j (τ )
)T

Riju
k
j (τ )

)

dτ

= ζi,k+1(x(t)) (17)

where

ζi,k+1(x(t)) = εi,k+1(x(t)) − εi,k+1(x(t + �t))

+
∫ t+�t

t

N∑

j=1

(
gj(x)

(
uj(τ ) − uk

j (τ )
))T

× ∇εi,k+1(x)dτ.

Denote ŵi,k as the estimations of the unknown weight vector
wi,k. Then the output of the critic NN approximation is

V̂i
k
(x) = ŵT

i,kφi(x). (18)

Based on (9), the approximate control policies are

ûk
i (x) = −1

2
R−1

ii gT
i (x)∇φT

i (x)ŵi,k, i ∈ N. (19)
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Remark 3: Since the input-to-state dynamics gj(x) are
known in this paper, we can obtain the approximated con-
trol policies (19) based on the critic NN approximation (18)
directly. Hence, the single-critic structure rather than the actor–
critic structure is adopted, which can save the computational
burden and eliminate the approximation error resulting from
action NNs. To compare the effectiveness of two structures
in Section VI, the off-policy IRL with actor–critic structure is
given in the Appendix.

Using V̂i
k+1

(x) to replace Vk+1
i (x) in (12), due to the exis-

tence of the truncation error of the estimated solution, the
residual error for the player i is obtained as

ek+1
i (x(τ ), ui(τ ), u−i(τ ))

= (φi(x(t)) − φi(x(t + �t)))Tŵi,k+1

+
∫ t+�t

t

N∑

j=1

(
gj(x)

(
uj(τ ) − uk

j (τ )
))T∇φT

i (x)ŵi,k+1dτ

−
∫ t+�t

t
Qi(x)dτ −

∫ t+�t

t

N∑

j=1

((
uk

j (τ )
)T

Riju
k
j (τ )

)

dτ

�= ek+1
i (t). (20)

Let

ρi(x(t), ui(t), u−i(t))
�= (φi(x(t)) − φi(x(t + �t)))T

+
∫ t+�t

t

N∑

j=1

(
gj(x)

(
uj(τ ) − uk

j (τ )
))T

× ∇φT
i (x)dτ

πi(x(t))
�=

∫ t+�t

t
Qi(x) +

N∑

j=1

((
uk

j (τ )
)T

Riju
k
j (τ )

)

dτ.

(21)

Note that

∫ t+�t

t

N∑

j=1

(
gj(x)

(
uj(τ ) − uk

j (τ )
))T∇φT

i (x)ŵi,k+1dτ

=
∫ t+�t

t

N∑

j=1

(
uT

j (τ )gT
j (x)

)
∇φT

i (x)ŵi,k+1dτ

+ 1

2

∫ t+�t

t

N∑

j=1

(
ŵT

i,k∇φj(x)gj(x)R
−1
jj gT

j (x)
)

× ∇φT
i (x)ŵi,k+1dτ

and

∫ t+�t

t

N∑

j=1

((
uk

j (τ )
)T

Riju
k
j (τ )

)

dτ

= 1

4

∫ t+�t

t

N∑

j=1

(
ŵT

j,k∇φj(x)gj(x)R
−1
jj Rij

× R−1
jj gT

j (x)∇φT
j (x)ŵj,k

)
dτ.

Let

Di,j(x)
�= ∇φj(x)gj(x)R

−1
jj gT

j (x)∇φT
i (x)

Ei,j(x)
�= ∇φj(x)gj(x)R

−1
jj RijR

−1
jj gT

j (x)∇φT
j (x)

η1(x(t))
�= (φi(x(t)) − φi(x(t + �t)))T

η2(x(t), ui, u−i)
�=

∫ t+�t

t

⎛

⎝
N∑

j=1

uT
j (τ )gT

j (x)

⎞

⎠∇φT
i (x)dτ

η3(x(t))
�=

⎡

⎢
⎣

∫ t+�t
t Di1(x)dτ

...
∫ t+�t

t DiN(x)dτ

⎤

⎥
⎦

η4(x(t))
�=

⎡

⎢
⎣

∫ t+�t
t Ei,1(x)dτ 0 0

0
. . .

...

0 · · · ∫ t+�t
t Ei,N(x)dτ

⎤

⎥
⎦

η5(x(t))
�=

∫ t+�t

t
Qi(x)dτ.

Then, one can get

ρi(x(t), ui(t), u−i(t)) = η1(x(t)) + η2(x(t), ui, u−i)

+ 1

2
ŴT

k η3(x(t))

πi(x(t)) = 1

4
ŴT

k η4(x(t))Ŵk + η5(x(t))

where Ŵk = [ŵT
1,k, . . . , ŵT

N,k]T .
Therefore, we can rewrite (20) as

ek+1
i (t) = ρi(x(t), ui(t), u−i(t))ŵi,k+1 − πi(x(t)). (22)

It should be mentioned that (22) is the key for the proposed
data-based IRL algorithm with unknown drift dynamics. In the
next section, the offline and online iterative learning schemes
are proposed to approach the ideal critic weight wi,k using ŵi,k

by minimizing the square error (1/2)(ek
i )

Tek
i .

IV. OFFLINE ITERATIVE LEARNING

A. Offline Iterative Learning Algorithm

For the developed offline learning algorithm, we use the
least-square (LS) scheme to update the estimated critic weight
vectors. Define a strictly increasing time sequence {tm}q

m=0,
where q denotes the number of collected samples. Define
the sample set as Mi = {(xm, ui,m, u−i,m)}q

m=0. For descrip-
tion simplicity, denote ρi,m = ρi(xm, ui,m, u−i,m) and πi,m =
πi(xm). To ensure the convergence of the estimated weight
vector ŵi,k+1, the following persistency of excitation (PE)
assumption is given.

Assumption 2: Let ρi,m be persistently existed. If there exist
q0 > 0 and δ > 0 such that for all q ≤ q0, one can get

1

q

q−1∑

k=0

ρi,mρT
i,m ≥ δIi,m

with the identity matrix Ii,m.
For the offline learning algorithm, we aim to update the

estimated weight vector ŵi,k+1 by minimizing the square
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Algorithm 2 Offline Iterative Learning for NZS Games
1: For NZS games, select any initial admissible con-

trol policies {ui, u−i}. Collect the available system
data (xm, ui, u−i) for sample set M, then compute
η1(xm), η2(xm, ui, u−i), η3(xm), η4(xm) and η5(xm);

2: For each player i, select initial critic NN weight vector
ŵi,0. Let the iteration index k = 0;

3: Compute Pi and �i, and update ŵi,k+1 for each player
using (23);

4: Let k = k+1, if ‖ŵi,k+1−ŵi,k‖2 ≤ ε (ε is a small positive
number), stop iteration and ŵi,k is employed to obtain the
control policy (19), else go back to Step 3 and continue.

error (1/2)(ek+1
i,m )Tek+1

i,m . Based on the Monte Carlo integra-
tion method in [25], the updating law of the estimated weight
vector is given by

ŵi,k+1 = [PT
i Pi]

−1PT
i �i (23)

where

Pi = [
ρi,0, . . . , ρi,q−1

]T ; �i = [πi,0, . . . , πi,q−1]T .

According to the updating law (23), we present the
offline iterative learning algorithm for the data-based IRL in
Algorithm 2. It includes the measurement phase and offline
learning phase, where the measurement phase of step 1 is
used to collect the available system data and the offline learn-
ing phase of steps 2–4 is used to approach the ideal weight
vectors. Next, the control policies (19) based on the approxi-
mate ideal weight vectors can be applied to the real-time NZS
games.

Remark 4: Note that the PE assumption is to guarantee
the existence of the inverse matrix [PT

i Pi]−1. For the real
implementation, exploration noises, such as random noises,
sinusoidal function with different frequencies, and so on, are
usually added to the given control inputs to satisfy the PE
condition. Meanwhile, a large size of sample set Mi can
also guarantee the richness of sample data. However, the PE
condition is not easy to check. How to choose the num-
ber of samples q and the exploration noises are generally
experience-based.

B. Convergence Analysis for Offline Iterative Learning

For the NN-based offline iterative learning algorithm, it is
necessary to analyze the convergence of the critic weights,
which is given in Theorem 2.

Theorem 2: Suppose that Assumption 2 holds and Vk+1
i is

the solution of the iteration equation (12). For ∀β > 0, there
exists an integer K∗

i > 0 such that Ki > K∗
i , then:

1) sup
x∈�

|V̂k+1
i (x) − Vk+1

i (x)| < β;

2) sup
x∈�

|V̂k+1
i (x) − V∗

i (x)| < β.

Proof: 1) Define the weight estimation error as w̃i,k+1 =
ŵi,k+1 − wi,k+1. From (23), we have

PT
i Piw̃i,k+1 = PT

i �i − PT
i Piwi,k+1. (24)

Multiplying w̃T
i,k+1 on both sides of (24) yields

PT
i Pi‖w̃i,k+1‖2 = w̃T

i,k+1PT
i

(
�i − Piwi,k+1

)
. (25)

According to Assumption 2, we have PT
i Pi‖w̃i,k+1‖2 ≥

δqIi,m‖w̃i,k+1‖2.
According to the definition of Pi,�i, (17) and (21), we have

PT
i

(
�i − Piwi,k+1

)

=
q−1∑

m=0

⎡

⎣ρT
i,m

⎛

⎝
(
φi(x(tm+1)) − φi(x(tm))

)T
wi,k+1

−
∫ tm+1

tm

N∑

j=1

(
gj(x)

(
uj − uk

j

))T∇φT
i (x)wi,k+1dτ

+
∫ tm+1

tm
Qi(x) +

N∑

j=1

((
uk

j

)T
Riju

k
j

)

dτ

⎞

⎠

⎤

⎦

=
q−1∑

m=0

(
ρT

i,mζi,k+1(xm)
)

where ζi,k+1(xm) denotes the residual error for the time interval
[tm, tm+1] instead of [t, t + �t] for (17).

Based on (25), we have

δq
∥
∥w̃i,k+1

∥
∥2 ≤ ∥

∥w̃i,k+1
∥
∥

q−1∑

m=0

∥
∥ρT

i,m

∥
∥
∣
∣ζi,k+1(xm)

∣
∣

≤ ∥
∥w̃i,k+1

∥
∥

q−1∑

m=0

∥
∥ρT

i,m

∥
∥ζi,max (26)

where ζi,max denotes the bound of ζi,k+1. Note that
limKi,k+1→∞ ζi,k+1(xm) = 0. Based on (26), we have
limKi,k+1→∞ w̃i,k+1 = 0.

As

V̂k+1
i − Vk+1

i = w̃T
i,k+1φi(x) − εi,k+1. (27)

As limKi,k+1→∞ εi,k+1 = 0, we can get

lim
Ki,k+1→∞ V̂k+1

i = Vk+1
i . (28)

That is to say, there exists an integer K∗
i > 0 for

∀x ∈ �,β > 0 such that if Ki > K∗
i , then

∣
∣
∣V̂k+1

i (x) − Vk+1
i (x)

∣
∣
∣ < β.

2) According to [45, Ths. 3 and 4], the result of
supx∈� |V̂k+1

i (x) − V∗
i (x)| < β can be proven directly. Some

similar proof steps are omitted for avoidance of repetition.
This completes the proof.
Remark 5: According to the conclusion of Theorem 2, we

known that the critic weight estimation error converges to
zero as the number of hidden neurons goes to infinite. For
arbitrarily Ki > K∗

i , the critic weight estimation error w̃i,k+1
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satisfies UUB. Then, we can get the control policies (19) will
converge to the Nash equilibrium based on [30, Th. 3].

V. ONLINE ITERATIVE LEARNING

A. Online Iterative Learning Algorithm

For the online learning algorithm, we use the gradient
descent method to update the estimated critic weight vectors.
For the ER technique, the current data and past data are both
used to approach the critic NNs’ weights. As the estimated
critic weight vectors are learned continuously, we can replace
wi,k+1, ek+1

i with wi, ei, respectively.
According to (22), let the residual errors at interval

[td, td+1] be

ei(td) = ρi(td)ŵi + πi(td). (29)

It is aimed to update the estimated weight vector ŵi,k+1 by
minimizing the square error

Ei = 1

2
(ei(t))

Tei(t) + 1

2

l∑

d=1

(ei(td))
Tei(td).

Condition 1: Define Di = [ρi(td), ρi(td+1), . . . , ρi(td+l)] as
the recorded data matrix for each player i. There are as many
linearly independent elements as the number of corresponding
critic NN’s hidden neurons for the recorded data matrix Di,
such that rank(Di) = Ki.

The estimated weight vector of the critic NN is updated
using the gradient descent scheme and ER, which is given by

˙̂wi = −αi

[
ρT

i (t)
(
1 + ρT

i (t)ρi(t)
)2

(
ρiŵi + πi(t)

)

+
l∑

d=1

ρT
i (td)

(
1 + ρT

i (td)ρi(td)
)2

(
ρi(td)ŵi + πi(td)

)
]

.

(30)

B. Convergence Analysis for Online IRL With ER

The following theorem demonstrates the UUB of the
weights estimation error of critic NNs using Lyapunov method.

Theorem 3: If recorded data Di for each critic NN satisfy
Condition 1, the critic weights estimation error w̃i,k+1 is UUB
and the system state x is asymptotically stable.

Proof: Choose Lyapunov function candidate as

Li = 1

2αi
w̃T

i w̃i.

Its time derivative is

L̇i = 1

αi
w̃T

i
˙̃wi. (31)

Note that

˙̃wi = ˙̂wi

ρi(t)ŵi + πi(t) = ρi(t)w̃i + πi(t) + ρi(t)wi

= ρi(t)w̃i − ζi(t).

Then, (31) can be written as

L̇i = w̃T
i

[
ρT

i (t)
(
1 + ρT

i (t)ρi(t)
)2 (ρi(t)w̃i − ζi(t))

+
l∑

d=1

ρT
i (td)

(
1 + ρT

i (td)ρi(td)
)2 (ρi(td)w̃i − ζi(td))

]

=
[

ρ̄T
i ρ̄i +

l∑

d=1

ρ̄T
i (td)ρ̄i(td)

]

‖w̃i‖2

−
[

ρ̄T
i (t)

m(t)
ζi(t) +

l∑

d=1

ρ̄T
i (td)

m(td)
ζi(td)

]

|w̃i| (32)

where ρ̄i = ρi/(1+ρT
i ρi) and m = 1+ρT

i ρi. Denote that Hi =
ρ̄T

i (t)ρ̄i(t)+∑l
d=1 ρ̄T

i (td)ρ̄i(td) and ζB = [(ρ̄T
i (t))/m(t)]ζi(t)+∑l

d=1 [(ρ̄T
i (td))/m(td)]ζi(td). If Condition 1 is satisfied, then

Hi > 0. Therefore, L̇i is negative definite provided that

‖w̃i,k+1‖ >
(l + 1)ζi,max

λmin(Hi)
. (33)

For the NZS games, define Lyapunov function candidate
as (3) with the feedback control policy (7). Take the time
derivative to obtain

V̇i = −Qi(x) −
N∑

j=1

uT
j Rijuj < 0.

That is to say, Vi(x) for each player i is a Lyapunov func-
tion. The closed-loop system is asymptotically stable. This
completes the proof.

Remark 6: Similarly with Remark 5, suppose that the
hypotheses of Theorem 3 holds, the obtained control poli-
cies (19) can converge to the approximate Nash equilibrium
solution of the NZS games.

Remark 7: Observe that the Condition 1 for ER is used to
guarantee the matrix Hi to be positive in the online iterative
learning. It is similar with the PE assumption in the offline
iterative learning. In fact, the Condition 1 is a PE-like con-
dition, which can be checked online easily [30]. During the
learning process, the ER can improve the convergence rate
under the persistent exciting input signals. Compared with the
on-policy ER, the ER performs a more positive role in the
off-policy scheme [44].

Remark 8: According to Remark 2, the data-based IRL
is a local optimization method. For the proposed offline
and online iterative learning algorithms, the value function
V̂0

i (x) computed by the initial weights of critic NNs should
be located in a neighborhood of the solution of the HJ
equations (6). The initial weights of critic NNs are choose
based on experience in most of the off-policy RL algo-
rithms [8], [25], [34], [38], [39].

VI. SIMULATION STUDY

Consider the two-player nonlinear NZS differential games
as follows [18]:

ẋ = f (x) + g(x)u + k(x)w (34)
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where

f (x) =
⎡

⎣
x2

−x2 − 0.5x1 + 0.25x2(cos(2x1) + 2)2

+0.25x2(sin(2x1) + 2)2

⎤

⎦

g(x) =
[

0
cos(2x1) + 2

]

, k(x) =
[

0
sin

(
4x2

1

) + 2

]

x = [x1, x2]T ∈ R2 is the state vector, and u, w ∈ R are the
control inputs.

The computer processor is Intel Core i5-4570 CPU
@3.20 GHz, and the simulation platform is MATLAB R2014a.
Select Q1(x) = 2xTx, Q2(x) = xTx, R11 = R12 = 2I, and
R21 = R22 = I. Note that I denotes an identity matrix with
appropriate dimensions. Based on [18], we can get the optimal
value functions V∗

1 (x) = 0.5x2
1+x2

2 and V∗
2 (x) = 0.25x2

1+0.5x2
2.

For the data-based IRL algorithm, we choose the activation
functions of the two NN approximators as

φc1(x) = φc2(x) =
[
x2

1 x1x2 x2
2

]T
.

Then, we can obtain the ideal weights

wc1 = [0.5 0.0 1.0]T ; wc2 = [0.25 0.0 0.5]T .

A. Offline Iterative Learning

In this section, we compare the effects of the
offline iterative learning with single-critic structure and
with actor–critic structure. Let the initial state vec-
tor be x0 = [2,−2]T . The hyper-parameters setting is
given as follows. Set the initial probing control inputs
u′

1 = 0.7e−0.006t sin(t)2 cos(t) + sin(2t)2 cos(0.1t) +
sin(−1.2t)2 cos(0.5t) + sin(t)5 + 0.5(x1 + x2)(cos(2x1) + 2)

and u′
2 = 0.7e−0.006t sin(t)2 cos(t) + sin(2t)2 cos(0.1t) +

sin(1.12i)2 + cos(2.4t) sin(2.4t)3 + (x1 + x2)(sin(4x1) + 2).
The integral time interval is 0.1 s. We choose the length
index q = 200. That is to say, the online data collection phase
will last 20 s. For the single-critic structure in Section IV,
the initial weights of the critic NNs are initialized randomly
in [0, 1]. For the actor–critic structure in the Appendix, the
initial weights of critic NNs are the same as the ones with
single-critic structure. The activation functions of the actor
NNs in (35) are chosen as ϕ1(x) = [x2

1 x1x2 x2
2 x3

1 x3
2], and the

initial weights of actor NNs are chosen randomly in [0, 1].
The iterative termination condition is ‖ŵi,k+1 − ŵi,k‖2 ≤ with
ε = 10−6.

The convergence curves of wci are given in Figs. 1 and 2.
It can be seen that the estimated weights of actor–critic and
single-critic structures can both converge to

ŵc1 = [0.4896 0.091 1.0113]T

ŵc2 = [0.2216 0.053 0.5158]T

which are approximate ideal values. However, the number of
iterations for the single-critic structure is 4, while the one for
the actor–critic structure is 7. In addition, the recorded compu-
tation time for the offline learning is 5.0121 s for single-critic
structure and 8.0635 s for the actor–critic structure, where less
computational burden is required for the single-critic structure.
The similar approached results are shown based on the online

Fig. 1. Weights wc1 of critic NN for player 1.

Fig. 2. Weights wc2 of critic NN for player 2.

Fig. 3. Trajectories of system state.

learning scheme in [18]. Compared with [18], the knowledge
of drift dynamics is not required in the proposed data-based
IRL algorithm. The trajectories of system state, the control
inputs u and w are shown in Figs. 3 and 4, respectively. We
can see the system state is stable under the obtained optimal
controllers.
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Fig. 4. Trajectories of control inputs.

Fig. 5. Trajectories of system state.

Fig. 6. Weights wc1 of critic NN for player 1.

B. Online Iterative Learning

Set the initial state vector as x0 = [1,−1]T . The hyper-
parameters setting is given as follows. Let the initial probing
control inputs u′

1 = e−0.2t sin(t)2 cos(t) + sin(2t)2 cos(0.1t) +
sin(−1.2t)2 cos(0.5t) + sin(t)5 + 0.5(x1 + x2)(cos(2x1) + 2)

and u′
2 = e−0.2t sin(t) cos(t)+sin(3t)2 cos(0.1t)+sin(1.12i)2+

cos(2.4t) sin(2.4t)3+(x1+x2)(sin(4x1)+2). Let the experience
set size be l = 20 and the integral time interval be 0.1 s. Note
that the initial probing control inputs are removed at 80 s. The
learning rates are α1 = 2 and α2 = 4.

For the online adaptation law (30) with single-critic struc-
ture, the activation functions of critic NNs are the same with

Fig. 7. Weights wc2 of critic NN for player 2.

Fig. 8. Weights of actor–critic NNs for player 1.

Fig. 9. Weights of actor–critic NNs for player 2.

the offline iterative learning algorithm. The trajectories of sys-
tem state is shown in Fig. 5. The system states are converged
rapidly after 80 s. The estimated weights for player 1 and
player 2 for the online learning with ER technique are

ŵc1 = [0.5156 0.0114 0.9906]T

ŵc2 = [0.2592 0.0111 0.4901]T .

Compared with the online learning without ER technique, we
can see that the convergence rate of critic NNs is improved
effectively in Figs. 6 and 7.

For the online adaptation law (39) with actor–critic struc-
ture, the activation functions of critic and actor NNs are
the same with the offline iteration learning algorithm. The
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weights of actor–critic NNs for player 1 and 2 are shown in
Figs. 8 and 9, respectively. Compared with Figs. 6 and 7, the
convergence curves of critic NNs are similar. However, the
recorded computation time for the online learning with ER
is 43.5612 s for single-critic structure and 48.7362 s for the
actor–critic structure. Thus, the simulation results prove the
effectiveness of the proposed online data-based IRL method
with single-critic structure.

VII. CONCLUSION

In this paper, we propose the data-based IRL algorithm
for the nonlinear NZS games with unknown drift dynamics.
For the implementation purpose, NN-based offline iterative
learning and online iterative learning algorithms based on
the single-critic structure are proposed, where the conver-
gence analysis are given respectively. Finally, numerical results
are given to demonstrate the effectiveness of the developed
algorithms.

The approaches to tradeoff exploration and exploitation in
RL fall into two main classes: 1) on-policy and 2) off-policy.
For on-policy methods such as Sarsa, Monte Carlo policy
gradient, etc., the value function is estimated based on the
evaluating policy while using it to control systems and gener-
ate data simultaneously. Although on-policy methods can offer
nearly unbiased estimates of the policy gradient, they only
use the on-policy samples during the learning process which
means that a large number of samples is required. Therefore,
on-policy methods are usually sample intensive. Meanwhile,
the evaluating policy has to complete the exploration and
exploitation tasks, which usually makes the on-policy learn-
ing process time-consuming. In off-policy methods such as
Q-learning, off-policy actor–critic, etc., the behavior policy
used to generate data may be unrelated to the evaluating pol-
icy that is improved. An advantage of this separation is that
the evaluating policy may be deterministic, while the behav-
ior policy can continue to sample all possible actions [46]. All
of the samples including past samples can be used efficiently.
However, convergence of such methods is difficult to guarantee
with nonlinear function approximators [47]. In this paper, we
prove the proposed data-based IRL for NZS games is equiv-
alent to the model-based PI algorithm, which guarantees the
convergence of the proposed method.

The learning approaches to train the weights of NNs can
be divided into two major categories: 1) online learning and
2) offline learning. For online learning methods, the gener-
ated sample at each time step is used to train at once rather
than collecting a static dataset in offline learning methods.
Note that most of the on-policy methods are implemented
online [25]. In fact, the online off-policy IRL can be consid-
ered as a batch online learning, where the samples generated
during each integral interval are a batch data. Online learning
could adapt to the new or unseen data. Meanwhile, a small
memory footprint is used without storing a large static data
set for online learning. However, online learning is impracti-
cal for many expensive or dangerous control systems, such as
unmanned driving, industrial control systems, and so on. For
the offline learning, a static data set is collected beforehand,

and the collected data set can be utilized repeatedly for differ-
ent hyperparameter settings. Although it is safe and effective,
the offline learning is not sensitive enough to the real-time
process especially for the new or unseen data. Combined with
the above discussion, we propose the offline and online iter-
ative learning algorithms to improve the applicability of the
data-based IRL scheme.

APPENDIX

OFF-POLICY IRL WITH ACTOR–CRITIC STRUCTURE

To compare with the single-critic structure, we give the off-
policy IRL with actor–critic structure in the Appendix. The
offline and online iterative learning algorithms are proposed,
respectively. Note that the approximated value functions is
described in (18). To approach the control policy, the actor
NN approximation for each player i is designed as

ûk
i (x) = ŵT

ai,kϕi(x) (35)

where ŵT
ai,k

∈ RKa
i ×mi based on the critic NN (18) and actor

NN (35) for the player i, the residual error in (12) is

ek+1
i,ac (t) = (φi(x(t)) − φi(x(t + �t)))Tŵi,k+1

−
∫ t+�t

t
2ϕT

i (x)ŵai,k+1Rii

(
ui(τ ) − uk

i (τ )
)

dτ

+
∫ t+�t

t

N∑

j=1,j �=i

(
gj(x)

(
uj(τ ) − uk

j (τ )
))T

× ∇φT
i (x)ŵi,k+1dτ

−
∫ t+�t

t
Qi(x)dτ

−
∫ t+�t

t

N∑

j=1

((
uk

j (τ )
)T

Riju
k
j (τ )

)

dτ. (36)

According, (36) can be rewritten as

ek+1
i,ac (t) = ρk

i,ac(x(t), ui(t), u−i(t))Ŵi,k+1 − πi(x(t)) (37)

where Ŵi,k+1 = [ŵT
i,k+1, vec(ŵai,k+1)

T ]T ∈ RKi+Ka
i ×mi is

named the estimated weighting function vector

ρi,ac(x(t), ui(t), u−i(t)) =
⎡

⎢
⎢
⎢
⎣

(φi(x(t)) − φi(x(t + �t)))T+
∫ t+�t

t

∑N
j=1,j �=i

(
gj(x)

(
uj(τ ) − uk

j (τ )
))T∇φT

i (x)dτ

∫ t+�t
t −2Rii

(
ui(τ ) − uk

i (τ )
) ⊗ ϕi(x)dτ

⎤

⎥
⎥
⎥
⎦

.

Similarly, the offline and online iterative learning schemes
can be proposed to approach the ideal critic and actor weights
by minimizing the square error (1/2)(ek

i,ac)
Tek

i,ac.
Remark 9: Note that the dimension of the vector ρi,ac

in (37) is Ki + Ka
i × mi for the actor–critic structure while

the dimension of ρi in (22) is Ki for the single critic
structure. Evidently, higher dimensional data is required for
the actor–critic structure, which increases the computational
burden.
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For the offline iterative learning, we can obtain the solution
to the corresponding LS problem yield

Ŵi,k+1 = [
PT

i,acPi,ac
]−1

PT
i,ac�i (38)

where Pi,ac = [ρ0
i,ac, . . . , ρ

q−1
i,ac ]T .

Similar with Algorithm 2, the real system data is collected
to compute Pi,ac and �i, then the estimated weighting function
vector is updated based on (38) until it converged to a small
positive number.

For the online iterative learning, the gradient-based adapta-
tion law with ER for Ŵi is given by

˙̂Wi = − αi

[
ρT

i,ac(t)
(
1 + ρT

i,ac(t)ρi(t)
)2

(
ρi,acŴi + πi(t)

)

+
l∑

d=1

ρT
i,ac(td)

(
1 + ρT

i,ac(td)ρi(td)
)2

(
ρi,ac(td)Ŵi + πi(td)

)
]

.

(39)

The convergence analysis for the offline IRL and online IRL
with actor–critic structure is similar with Theorem 2 and 3, so
we omit it here.
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