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A B S T R A C T

Purpose: To investigate the efficiency of radiomics signature in discriminating between benign and malignant
prostate lesions with similar biparametric magnetic resonance imaging (bp-MRI) findings.
Experimental design: Our study consisted of 331 patients underwent bp-MRI before pathological examination
from January 2013 to November 2016. Radiomics features were extracted from peripheral zone (PZ), transition
zone (TZ), and lesion areas segmented on images obtained by T2-weighted imaging (T2WI), diffusion-weighted
imaging (DWI), and its derivative apparent-diffusion coefficient (ADC) imaging. The individual prediction
model, built using the clinical data and biparametric MRI features (Bp signature), was prepared using data of 232
patients and validated using data of 99 patients. The predictive performance was calculated and demonstrated
using receiver operating characteristic (ROC) curves, calibration curves, and decision curves.
Results: The Bp signature, based on the six selected radiomics features of bp-MRI, showed better discrimination
in the validation cohort (area under the curve [AUC], 0.92) than on each subcategory images (AUC, 0.81 on
T2WI; AUC, 0.77 on DWI; AUC, 0.89 on ADC). The differential diagnostic efficiency was poorer with the clinical
model (AUC, 0.73), built using the selected independent clinical risk factors with statistical significance
(P < 0.05), than with the Bp signature. Discrimination efficiency improved when including the Bp signature
and clinical factors [i.e., the individual prediction model (AUC, 0.93)].
Conclusion: The Bp signature, based on bp-MRI, performed better than each single imaging modality. The in-
dividual prediction model including the radiomics signatures and clinical factors showed better preoperative
diagnostic performance, which could contribute to clinical individualized treatment.

1. Introduction

Prostate cancer (PCa) is the most common cause of new cases of
cancer, and is the third leading cause of estimated deaths among male
individuals, according to cancer statistics estimated by the American
Cancer Society [1]. Among the 10 most common cancers in men in
China, prostate cancer has a marked upward trend in age-standardized
mortality rates. For prostate cancer patients, radical prostatectomy is
appropriate for any patient whose cancer appears clinically localized to

the prostate according to NCCN 2018. Treatment of non-prostate cancer
patients are usually transurethral resection of the prostate (TURP),
antiandrogenic therapy, anti-inflammatory therapy and so on, which
depends on specific prostate diseases. A good prognosis can be obtained
with accurate diagnosis and immediate treatment [2].

Conventional diagnostic methods for prostate cancer are prostate-
specific antigen (PSA) level, digital rectal examination (DRE), and bi-
parametric magnetic resonance imaging (bp-MRI) [3]. The combination
of PSA screening and digital rectal examination, which can detect PCa
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at an early stage, is widely used in the PCa general examination in
clinical practice [4]. As a tumor marker, the PSA level has high sensi-
tivity but low specificity, benign prostate conditions also affect PSA
levels [5,6]. A pathologic examination used to be the ground truth in
discriminating between benign and malignant tumors. Approximately
over thirty percent of men who have experienced prostate biopsy occur
pain, infection, fever, haematuria, transient dysuria and about 1% re-
quire to be hospitalized for observation [7].

In past decades, bp-MRI has gradually become a crucial assessment
tool in staging and newly diagnosed PCa [8]. Patients with a raised PSA
level are usually requested to have a pelvic MRI scan before prostate
biopsy on clinical practice [9]. According to the Prostate Imaging Re-
porting and Data System (PI-RADS) (version 2), T2-weighted imaging
(T2WI), diffusion-weighted imaging (DWI), and its derivative apparent-
diffusion coefficient (ADC) maps have a leading role in prostate cancer
diagnosis [10]. Anatomic information and TNM staging is primarily
provided by T2WI, whereas functional and physiologic information is
provided by DWI and ADC [11,12]. Many patients have similar imaging
findings for benign and malignant prostate lesions, which is difficult to
differentiate these lesions.

The emerging technique radiomics is a noninvasive, efficient, and
reliable method used in disease diagnosis and prediction [13,14]. In
previous research, radiomics has been mostly applied in oncology such
as colorectal cancer, lung cancer, and breast cancer [15–17]. Experi-
mental results showed that radiomics connected imaging features with
clinical manifestations and features at the molecular gene level. This
combination can attain better recognition rates in tumor classification,
tumor metastasis, and recurrence [18–20]. In addition, radiomics has
also made significant progress toward application maturity in different
medical image modalities such as ultrasonic imaging, computed to-
mography (CT), MRI and positron emission tomography (PET)
[15,16,21].

Therefore, our study aims to (1) investigate whether radiomics
signatures based on bp-MRI can help to improve the discrimination
efficiency of prostate cancer, and (2) develop and validate an in-
dividualized prostate cancer prediction model that incorporates clinical
independent risk factors and radiomics signatures.

2. Methods

2.1. Patients

The primary cohort of our study consisted of an existing database of
331 inpatients who underwent pathological examination and pre-op-
erative bp-MRI between the dates of January 2013 (initiation of pros-
tate bp-MRI program at our institution) and November 2016. The entire
MRI records of the included patients were obtained from the Picture
Archiving and Communication System (PACS) of our hospital. Ethical
approval was obtained for this retrospective study, and the informed
consent requirement of patients was waived.

Patients included in our study followed the inclusion criteria as (1)
prostate lesions with definite boundaries on three types of MR images
according to PI-RADS version 2 (T2WI, DWI, and ADC) (Fig. 1); (2)
preoperative pathological examination results; (3) PZ, TZ, and lesion
areas all could be segmented on the MR images (considering of PZ areas
of patients with severe prostate hyperplasia were hard to segment); and
(4) complete clinical information.

The Exclusion criteria were (1) patients who had definite extra-
prostatic extension/invasive behavior; (2) patients who had a time in-
terval between screening and pathological examination of more than 2
months.

Among the identified 331 patients in the study cohort (range, 46–94
years; mean age, 71 years), pathological examination revealed 166
patients had PCa. The primary cohort consisted of 232 patients who
were treated from January 2013 to October 2015. A total of 99 patients
from November 2015 to November 2016 constituted the independent

validation cohort. The primary cohort and validation cohort were di-
vided by chronological order.

We collected the clinical details from our electronic hospital in-
formation system, which included the PSA levels, carcinoembryonic
antigen (CEA) level, cancer antigen-125 (CA125) level, cancer antigen-
19-9 (CA19-9) level, diabetes, and hypertension conditions. The cutoff
values for PSA level were 10 ng/mL. The threshold value for the CA125
level and CA 19-9 level was 35 U/mL, whereas that of the CEA level was
5 μg/L, based on the normal range used in our hospital.

2.2. Magnetic resonance imaging protocols

All patients were scanned at a single institution with 3.0-T MR
scanners (MAGNETOM Verio, Siemens Healthcare, Erlangen, Germany)
using pelvic phased-array coils. To guarantee the image quality, the MR
machine was checked on by a hospital radiological technician every
month and was further maintained by a Siemens engineer on a bi-
monthly basis. For every standard prostatic MRI examination con-
ducted in our hospital, the protocol included a combination of T1-
weighted imaging (T1WI), T2WI, DWI and its derivative ADC imaging.
We used three types of MR images in our study: T2WI, DWI, and ADC.
The parameters for the axial, coronal, and sagittal T2WI were repetition
time/echo time (TR/TE), 4000/100ms; section thickness, 3 mm; flip
angle, 150°; intersection gap, 3mm; pixel spacing, 0.75/0.75; field of
view (FOV), 216 mm2 × 240mm2 and matrix, 288×320. The para-
meters of the used readout segmentation of long variable echo-trains
(RESOLVE) DWI were the used b values, 0 s/mm2, 800 s/mm2; TR/TE,
3200/84ms; section thickness, 3 mm; flip angle, 90°; intersection gap,
3mm; FOV, 250 mm2 × 250mm2; matrix, 192× 192).

2.3. Segmentation

The standard of histological-radiological correlations was estab-
lished through a systematic consensus-seeking correlative review of
histological and MR findings by an experienced genitourinary

Fig. 1. Axial images of predicted samples in bi-parametric MR images and the
four patients had different pathological results.
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pathologist. Anatomical landmarks including prostatic capsule, urethra
and ejaculatory ducts were used to pinpoint the appropriate region of
interest (ROI), for example, the transition zone was defined as tissue
around the urethra separated from the peripheral zone by‘surgical
capsule’ delineated as a low signal line on T2W-MRI [10].

Potentially clinically significant tumor foci within each RP specimen
were identified. For patients with multiple significant lesions,
lesions> 0.5mL in size [22–24] were all determined for each prostate
section for further analysis. Lesions, PZ and TZ were confirmed and
segmented on both the T2WI, DWI and ADC MR images. The segmen-
tation section was selected, based on the largest lesion layer of benign
and malignant lesions. The areas were segmented by using a free, open-
source multiplatform image analysis software application for visuali-
zation and medical image computing (ITK SNAP version 3.6.0; avail-
able at: http://www.itksnap.org/).

The three areas were all manually drawn by a radiologist with 3
years of experience (i.e., Reader 1). Integrated imaging data of 40 pa-
tients treated from January 2013 to November 2016 were selected
randomly from the study cohort, intraobserver segmentation was per-
formed by Reader 1 three months later, and interobserver segmentation
reproducibility was performed by another radiologist with 30+ years of
prostatic MRI interpretation experience (i.e., Reader 2). During the
segmentation process, the doctors were blinded to the histologic results
and all clinical information of the retrospective prostate MR images.

2.4. Radiomics feature extraction

On each MR image, 324 radiomics features were extracted from
each area, (i.e., the PZ area, the TZ area, and the lesion area).
Therefore, the overall number of the radiomics features in this study
was 2916.

For each area on each MR image, the value of the area (i.e., area-
based feature [n=1]) and features that were based on the original
grayscale histogram (i.e., histogram-based feature [n=23]) were first
extracted. Three types of image filtering processes (i.e., gradient fil-
tering, standard deviation filtering, and average filtering) were im-
plemented on the original images. Based on the three filtered images
and one nonfiltered image, the following features were extracted: fea-
tures based on Gray Level Co-occurrence Matrix (GLCM-based features
[n= 23]), features based on Gray Level Run Length Matrix (i.e.,
GLRLM-based features [n= 11]), features based on Gray Level Size
Zone Matrix (i.e., GLSZM-based features [n=13]), features based on
Neighborhood Gray Tone Difference Matrix (i.e., NGTDM-based fea-
tures [n= 5]), and features based on normalized grayscale histogram
(i.e., norm-histogram-based features [n=23]).

The characteristics of the first order texture were quantified by
using histogram-based features and norm-histogram-based features.
The characteristics of the second order texture were quantified by using
GLCM-based features. The characteristics of the high order texture were
quantified by using GLRLM-based features, GLSZM-based features, and
NGTDM-based features.

2.5. Feature selection and model building

Feature selection and radiomics signature building were conducted
on the basis of primary cohort. The intra- and inter observer agreement
of feature extraction were evaluated through intraclass correlation
coefficients (ICCs). An ICC greater than 0.8 indicated good agreement
[25]. Stable and reproducible features were selected.

Features with a Pearson correlation coefficient> 0.75 were then
grouped as a category [26]. To remove redundant features, only fea-
tures with the highest relief F score among the categories were entered
into the signature building process [27].

Four radiomics signatures (i.e. T2WI signature, DWI signature, ADC
signature and Bp signature) were respectively built, based on the fea-
tures of each single imaging modality and a combination of multiple

modalities. To select the most powerful predictive combination of fea-
tures, we use the least absolute shrinkage and selection operator
(LASSO) regularization method in 1000 bootstrap resamples, which is
proved effective for high-dimensional medical data clinically [15]. The
logistic regression model was used to build each radiomics signature.

To simulate the usual clinical decision, multivariable logistic re-
gression analysis incorporated the clinical factors (i.e., age, PSA level,
CEA level, CA125 level, CA19-9 level, hypertension, and diabetes) to
build a clinical model. Backward step-wise variable selection was ap-
plied to clinical model building with the Akaike information criterion
(AIC) as the stopping rule [28]. Using the same modeling method, a
quantitative and easy-to-use individual prediction model was built to
predict individual PCa probability, based on the Bp signature and the
clinical independent risk factors.

2.6. Statistical analysis

Univariate analysis was applied to assess the relationship between
the characteristics of the patients and prostate disease type. To identify
the potential association of variables with the prostate cancer, we as-
sessed continuous variables by using the independent t-test or the
Mann–Whitney U test, and evaluated categorical variables by using the
chi-square test or the Fisher exact test. Multivariable logistic regression
analysis was used to identify the independent predictors in the com-
bination of features. The odds ratio was used to indicate the degree of
risk when the classification result was “1.” The ROC curves and AUCs of
the predictors were obtained to assess their predictive performance and
were compared using the Delong test. The point on ROC curve in the
primary cohort for which the positive likelihood ratio was maximal was
seen as the optimal cutoff threshold value and was applied to the va-
lidation cohort. The accuracy of the predictor was assessed using the
values of sensitivity and specificity.

The calibration efficiency of Bp signature was intuitively demon-
strated on calibration curve accompanied by Hosmer–Lemeshow test.
The clinical value of individual prediction model was assessed by de-
cision curve analysis, which quantified the net benefits at different
threshold probabilities in the two cohorts [29]. With the concern that
there may be confounding within the derived results, we conducted a
stratified analysis by age and PSA level.

3. Results

3.1. Clinical characteristics of the patients

There were no significant differences in clinical characteristics and
pathological results between the two cohorts (Table 1), which con-
firmed their use as the primary and validation cohorts. Patients with
PCa constituted 49.1% and 52.5% of the primary and validation cohorts
respectively.

In addition, between the PCa patients group and non-PCa patients
group, there were no significant differences in the primary and vali-
dation cohorts in the levels of CEA, CA125, and CA19-9, or in the
presence of diabetes and hypertension (P > 0.05; Table 2). Age and the
proportion of abnormal PSA findings were significantly higher in PCa
patients than non-PCa patients in both cohorts.

3.2. Radiomics signature and clinical model building

Many radiomics features (461 T2WI features, 211 ADC features, and
216 DWI features) showed satisfactory inter- and intraobserver agree-
ment (i.e., the ICCs were> 0.8). After removing the highly correlated
features, four radiomics signatures were built using the LASSO method.
This information is presented in the Supplementary Material. It should
be noted that, among the features analyzed from the 331 patients, 2916
features were finally reduced to two predictors from the DWI sequence
and to four predictors from the corresponding ADC image, which
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constructed the Bp signature.
For clinical model building, backward step-wise selection showed

that age and PSA were important independent indicators. The corre-
sponding regression equation is listed in the Supplementary Material.

3.3. Predictive performance of the radiomics signatures

Receiver operating curves were used to compare using single MR
image type and biparametric MR images to discriminate between pa-
tients with and without PCa. For PCa prediction, T2WI, ADC imaging,
and DWI yielded AUCs of 0.812, 0.893, and 0.775, respectively. The
ROC curves in Fig. 2(A) and (B) indicated that the Bp signature showed
better discrimination efficiency, and that the AUC further improved to
0.920. The Delong test revealed significant differences between the
AUCs of the Bp signature and each signal MR image type (T2WI:
P=0.009; ADC: P= 0.048; and DWI: P=0.001). The Bp signature
also yielded not only the highest sensitivity (0.873, 0.827 respectively),
but also highest specificity (0.839, 0.894 respectively) in discriminating
between lesions in the primary and the validation cohorts (Appendix
Table S1).

3.4. Development of an individual prediction model

The Bp signature, age, PSA level, CEA level, and hypertension

appeared to be useful for discriminating between malignant and benign
prostate lesions in the primary cohort (P < 0.1). These variables were
subjected to multivariable logistic regression analysis. The Bp sig-
nature, age, and PSA level were independent predictors (Table 3). An
individual prediction model was then built, based on the three variables
with their regression coefficients, and was presented as the nomogram
(Appendix Fig. S1). The ROC curves in Fig. 2(C) and (D) indicated that
the individual prediction model had the best discrimination efficiency,
and that the AUC improved to 0.933 (Appendix Table S2).

3.5. Validation of the individual prediction model

The validation cohort indicated good calibration in differentiating
between benign and malignant lesions (Fig. 3(A) and (B)). The Hos-
mer–Lemeshow test yielded a nonsignificant statistic (P=0.586 and
P= 0.201 in the primary cohort and validation cohort, respectively),
which suggested no departure from a perfect fit. The AUC of the in-
dividual prediction model for discrimination was 0.933. Furthermore,
the stratified analysis showed the individual prediction model was still
significant after adjusting for sex and PSA level (Appendix Fig. S2).

3.6. Clinical use

The prediction efficiency of the individual prediction model for PCa
is presented by the decision curve analysis in Fig. 4. The decision curve
showed that, compared to the treat-all-patients scheme or the treat-
none scheme, using our individual prediction model to identify PCa and
non-PCa patients added more benefit if the threshold probability of a
patient or doctor was>10%.

The prediction efficiency of the individual prediction model for PCa
is presented by the decision curve analysis in Fig. 4. The decision curve
showed that, compared to the treat-all-patients scheme or the treat-
none scheme, using our individual prediction model to identify PCa and
non-PCa patients added more benefit if the threshold probability of a
patient or doctor was>10%. Undiagnosed prostate cancer patients will
miss the best time for treatment, which results in poor prognosis. And
for the non-prostate cancer patients, the overtreatment is harmful. With
a good prediction accuracy, our model is able to benefit patients care
without subjecting them to unnecessary interventions and thus could be
very helpful for clinical management.

4. Discussion

In our research, we developed a noninvasive individual prediction
model to differentiate prostate lesions with clear boundaries in a pri-
mary cohort, and assessed its performance on an independent valida-
tion set. Based on the primary cohort, an individual prediction model
incorporating significant clinical risk factors and Bp signature was
constructed with the goal of transferring this model into an easy-to-use
tool.

Six potential predictors constructed the Bp signature, which were
reduced from 126 candidate radiomics features extracted from multiple
areas and bp-MRI by examining the predictor-outcome association by
shrinking the regression coefficients with the LASSO method.
Combining multiple imaging features, Bp signature demonstrated fa-
vorable discrimination efficiency in the primary cohort (AUC, 0.887),
and improved in the validation cohort (AUC, 0.920). Improved dis-
crimination efficiency indicated that the radiomics signature was stable
and robust for PCa prediction, which implied its universality.

Previous studies have revealed that age and the PSA level are cor-
related with prostate diseases [3,4]. According to the NCCN Clinical
Practice Guidelines in Oncology for Prostate Cancer [30], a PSA
level> 10 ng/mL, Gleason score of 9 or 10, and clinical stage T2b or
higher were assumed to be adverse prognostic factors. Hence, our study
set 10 as the threshold value of PSA to determine its efficiency in
prostate cancer discrimination. Except for age and PSA, our study also

Table 1
Clinical characteristics of patients in the primary cohort and validation cohort.

Characteristics Primary cohort P Validation cohort P

Non-PCa PCa Non-PCa PCa

No. of patients 118 114 47 52
Age (y) 0.00012 0.0032

<65 33 12 16 7
65–75 58 59 26 26
>75 27 43 5 19

PSA <0.0001 <0.0001
<10 ng/mL 57 17 26 8
>10 ng/mL 61 97 21 44

CEA 0.0657 0.5826
<5 μg/L 115 105 43 50
>5 μg/L 3 9 4 2

CA125 1 NA
<35 U/mL 117 113 47 52
>35 U/mL 1 1 0 0

CA19-9 0.1379 1
<35 U/mL 107 109 45 49
>35 U/mL 11 5 2 3

Diabetes 0.4149 0.5127
0 100 92 36 38
1 18 22 10 14

Hypertension 0.0578 0.8996
0 58 41 22 25
1 60 73 25 27

Table 2
Clinical factors in the primary and validation cohorts.

Characteristic Primary cohort Validation cohort P

Age, y (mean ± SD) 71.13 ± 7.72 70.08 ± 7.81 0.2634
PSA 0.6638

<10 ng/mL 74 34
>10 ng/mL 158 65

CEA 0.7442
<5 μg/L 220 93
>5 μg/L 12 6

Pathology 0.5725
Benign 118 47
Malignant 114 52

SD, standard deviation.
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incorporated three biochemical factors (i.e. the levels of CEA, CA 125,
and CA 19-9), along with hypertension and diabetes, which were
completely described in the patients’ medical records. Univariate ana-
lysis showed that age, PSA level, and CEA level make sense in the
discrimination of prostate cancer, which indicates that these three
clinical factors were risk factors. Multivariable logistic regression ana-
lysis revealed that age and PSA level were independent clinical risk
factors.

In several previous studies, the associations between DWI, ADC and
prostate cancer have been proved [31,32]. T2W images are commonly
applied to identify prostatic zonal anatomy, evaluate abnormalities
within the prostate gland, and to assess invasive behavior. In our study,
we found that none of the extracted features were associated with
T2WI, which reflected that functional imaging provided more extra
information about prostate cancer, compared to anatomical MR se-
quence.

Fig. 2. The receiver operating curves of the four radiomics signatures in discriminating prostate cancer. (A) The primary cohort (B) The validation cohort. The
efficiency of the three discrimination models is presented for (C) the primary cohort and (D) the validation cohort. The area under the receiver operating curve (AUC)
is presented.

Table 3
Multivariable logistic regression analysis results.

Variable Model 1 Model 2 (nomogram)

β OR P β OR P

Intercept −2.538 0.0001 −2.109 0.0005
Bp signature score 0.944 2.569 (2.011–3.282) < 0.0001 0.931 2.536 (1.996–3.221) < 0.0001
Age (2 vs. 1) 1.13 3.096 (0.963–9.950) 0.0578 1.256 3.513 (1.157–10.663) 0.0266
Age (3 vs. 1) 1.621 5.057 (1.416–18.066) 0.0126 1.654 5.228 (1.542–17.728) 0.0079
PSA (1 vs. 0) 1.382 3.982 (1.736–9.138) 0.0011 1.34 3.953 (1.731–8.945) 0.0011
CEA (1 vs. 0) 1.586 4.886 (0.556–42.916) 0.1525 NA NA NA
Hypertension (1 vs. 0) 0.794 2.212 (0.906–4.647) 0.0573 NA NA NA
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We noted that, among the ultimately selected six features of bi-
parametric MR images, one-half of these features were histogram-based
features at different percentiles of the intensity of pixels in a region.
Histogram analysis was used in previous tumor study, such as tumor
discriminating and grading [33–35]. In this study, histogram analysis is
part of the machine learning analysis applied to prostate cancer dis-
crimination, we validated the role of traditional histogram feature in
prostate cancer and other new machine learning features. Furthermore,
to explore comprehensive information from images, we extracted
multiple percentages of histogram feature from bp-MRI scans.

Aiming to investigate whether PZ and TZ can contribute to the
discrimination of prostate cancer, we segmented lesions with cancer or
with suspected cancer, as well as the PZ and TZ in the same section,
which also was included in our inclusion criterion. Based on the results
of our study, the features extracted from PZ and TZ had a more im-
portant role, even more so than the features extracted from the lesions.

Prior studies also used machine learning methods like texture ana-
lysis, fractal analysis to differentiating non-cancerous prostate from
prostate cancer or detecting cancer [36,37]. Compared to these studies,
our study had a relatively large number of experimental subjects and
radiomics based on comprehensive machine learning methods. In ad-
dition, we combined clinical independent risk factors with Bp signature
to build an individual prediction model.

Our study had some limitations. First, the radiomics analysis was
retrospectively applied to existing single-center data, which needs fur-
ther verification in a multicenter clinical study. Second, the segmen-
tation results were manually conducted by radiology doctors. Third, in
this study, we haven’t compared our method with PI-RADS 2 guideline

since lots of patients didn’t have high b-value DWI images. In the future,
the comparison with PI-RADS 2 should be investigated.

In providing the ability to mine imaging data, radiomics has broad
application prospects in the fields of medical and individual diagnosis.
Radiomics could be applied to solve various clinical problems, besides
correlating imaging with pathological examination results. In further
studies, we hope to correlate genomic characteristics and im-
munohistochemical information with radiomics to correlate with the
Gleason score and aggressiveness of diagnosed prostate cancer and
choose the most appropriate treatment programs with maximum ther-
apeutic effect and minimum side effects.

In conclusion, firstly we investigated the bp-MRI based radiomics
signature can serve as a predictive factor in prostate cancer dis-
crimination. Secondly, we developed an individual prediction model
incorporates Bp signature and the above clinical independent risk fac-
tors, which presents as an easy-to-use individual prediction model for
doctors.
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