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Background: Precise diagnosis and early appropriate treatment are of importance to reduce neuromyelitis optica spec-
trum disorder (NMOSD) and multiple sclerosis (MS) morbidity. Distinguishing NMOSD from MS based on clinical manifes-
tations and neuroimaging remains challenging.
Purpose: To investigate radiomic signatures as potential imaging biomarkers for distinguishing NMOSD from MS, and to
develop and validate a diagnostic radiomic-signature-based nomogram for individualized disease discrimination.
Study Type: Retrospective, cross-sectional study.
Subjects: Seventy-seven NMOSD patients and 73 MS patients.
Field Strength/Sequence: 3T/T2-weighted imaging.
Assessment: Eighty-eight patients and 62 patients were respectively enrolled in the primary and validation cohorts. Quan-
titative radiomic features were automatically extracted from lesioned regions on T2-weighted imaging. A least absolute
shrinkage and selection operator analysis was used to reduce the dimensionality of features. Finally, we constructed a
radiomic nomogram for disease discrimination.
Statistical Tests: Features were compared using the Mann–Whitney U-test with a nonnormal distribution. We depicted the
nomogram on the basis of the results of the logistic regression using the rms package in R. The Hmisc package was used
to investigate the performance of the nomogram via Harrell’s C-index.
Results: A total of 273 quantitative radiomic features were extracted from lesions. A multivariable analysis selected
11 radiomic features and five clinical features to be included in the model. The radiomic signature (P < 0.001 for both the
primary and validation cohorts) showed good potential for building a classification model for disease discrimination. The
area under the receiver operating characteristic curve was 0.9880 for the training cohort and 0.9363 for the validation
cohort. The nomogram exhibited good discrimination, a concordance index of 0.9363, and good calibration in the primary
cohort. The nomogram showed similar discrimination, concordance (0.9940), and calibration in the validation cohort.
Data Conclusion: The diagnostic radiomic-signature-based nomogram has potential utility for individualized disease dis-
crimination of NMOSD from MS in clinical practice.
Level of Evidence: 4
Technical Efficacy: Stage 2
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Neuromyelitis optica spectrum disorder (NMOSD) and
multiple sclerosis (MS) are inflammatory demyelinating

diseases of the central nervous system (CNS) that cause
chronic neurological disability in early to middle adult-
hood.1,2 Optic neuritis, myelitis, and brain involvement are
common manifestations in both of these disorders.3 Recent
studies showed that NMOSD is an independent disease asso-
ciated with aquaporin-4 antibody (AQP4-Ab) expression,
rather than being a variant of MS.4–7 Indeed, MS and
NMOSD have divergent pathophysiologies, recommended
treatment strategies for attack prevention, and prognoses.8–12

Immunosuppressive agents, such as azathioprine, are the first-
line treatment for NMOSD, whereas immunoregulatory
agents, such as interferon beta (IFN-β), are recommended for
the early treatment of MS.9,13 Moreover, immunotherapies
for MS appear to exacerbate NMOSD; IFN-β is thought to
be ineffective or even harmful in patients with NMOSD.13,14

Thus, the precise diagnosis and early appropriate treatment
are crucial for reducing MS and NMOSD morbidity.9,10,14

Laboratory findings such as serum AQP4-Ab levels have
been widely applied in clinical practice and medical research
to discriminate NMOSD from MS.9,10,13,15 However, a por-
tion of NMOSD cases are AQP4-Ab negative, and a minority
of MS patients are AQP4-Ab positive.16 Magnetic resonance
imaging (MRI) is also routinely employed for the screening,
diagnosis, evaluation, and monitoring of patients with
NMOSD or MS. However, conventional MRI interpretation
is limited by using subjective and qualitative imaging descrip-
tors such as signal characteristics, lesion distribution, and
morphology, while advanced imaging modalities such as iron-
deposition imaging only provide a single or a few markers.17

Even with the currently available diagnostic tools, distinguish-
ing NMOSD from MS based on clinical manifestations and
neuroimaging remains a significant challenge, especially for
NMOSD cases with multiple brain lesions resembling
MS.4,15,18–20

In recent years, radiomics has emerged as an intelligent
technique for medical imaging analysis. Radiomics is a pro-
cess of extracting quantitative features from digital medical
images and combining relevant clinical variables to develop a
scientific and largely data-driven analysis model.21–23 Com-
pared to individual analyses, radiomics provides better
grounds for medical decisions. Previous studies have demon-
strated that, in addition to being correlated with gene expres-
sion patterns, radiomic features are of great significance to
distant metastasis prediction and prognosis in patients with
various malignancies such as intrahepatic cholangiocarcinoma,
glioblastoma, and colorectal cancer.24–26 However, research
using radiomics for the diagnosis of demyelinating CNS dis-
eases is limited. The primary goal of the present study was to
investigate whether radiomic features could be used to distin-
guish NMOSD from MS, and to develop and validate a

radiomic-signature-based diagnostic nomogram for individu-
alized disease discrimination in patients with these disorders.

Materials and Methods
Ethics Statement
The study was approved by the Ethics Committee of our hospital
and all patients provided written informed consent prior to study
participation.

Subjects
We enrolled 150 patients in our study. For the primary cohort,
47 patients who had received a diagnosis of NMOSD and
41 patients who had received a diagnosis of MS from January 2012
to December 2015 were retrospectively enrolled. An additional
30 patients who had received a diagnosis of NMOSD and
32 patients who had received a diagnosis of MS from November
2015 to March 2017 were retrospectively included in the validation
cohort. The inclusion criterion was: a diagnosis of MS as per the
2010 revision of the McDonald criteria27 or a diagnosis of NMOSD
as per the 2015 international consensus diagnostic criteria.5 The
exclusion criteria were: 1) intravenous corticosteroid treatment in the
last 30 days prior to imaging; 2) a clinical relapse in the last 3 months
prior to imaging; 3) contraindications for MRI such as claustropho-
bia; 4) poor image quality or large motion artifacts; 5) other neuro-
degenerative diseases, metabolic disorders, or cerebrovascular
diseases; 6) recent use of antidepressant medication; 7) alcoholism;
or 8) psychological disorders, except for depression as per the Diag-
nostic and Statistical Manual of Mental Disorders, 4th edition, diag-
nostic guidelines.

Baseline demographic and laboratory data including age, gen-
der, current treatment, AQP4-Ab status, oligoclonal band (OCB),
diagnosis, and clinical status (relapse or remission) were assessed
independently by two neurologists, each with more than 10 years of
experience. Disagreements between the two specialists were resolved
by discussion and consensus. Serum AQP4-Ab levels were deter-
mined using an indirect immunofluorescence kit (EUROIMMUN
Medizinische Labor Diagnostika, Lübeck, Germany) in accordance
with the manufacturer’s guidelines after diluting the serum samples
1:9. For OCB detection, 2 mL of cerebrospinal fluid (CSF) was
obtained by lumbar puncture. OCB was detected by isoelectric
focusing on a polyacrylamide gel followed by immunoblotting. Two
or more bands indicated OCB positivity.

MRI Protocol
Whole-brain imaging was performed on a 3.0T scanner
(GE Discovery MR 750, GE Healthcare, Milwaukee, WI). The MRI
protocol included axial T2-weighted (T2WI), coronal T2 fluid attenua-
tion inversion recovery (FLAIR), axial T1-weighted (T1WI), and
matching T1-weighted postcontrast imaging. The following scan
parameters were used. Axial T2WI: repetition time (TR) = 6829 msec,
echo time (TE) = 93 msec, echo train length (ETL) = 32, slice num-
ber = 24, slice thickness = 5.0 mm, field of view (FOV) = 24 ×
24 cm, matrix size = 512 × 512; coronal T2 FLAIR: TR = 8500
msec, TE = 162 msec, ETL = 40, slice number = 24, slice thickness =
5.0 mm, FOV = 24 × 24 cm, matrix size = 288 × 224; axial T1WI:
TR = 1850 msec, TE = 24 msec, ETL = 10, slice number = 24, slice
thickness = 5.0 mm, FOV = 24 × 24 cm, matrix size = 320 × 320).
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Lesion Delineation and Selection
MS and NMOSD lesions were manually segmented on axial T2WI
projections to obtain regions of interest (ROIs) with the ITK-SNAP
software (open-source software; www.itk-snap.org). Segmentation
was completed by a radiologist with more than 5 years of experience
(X.L.) and validated by another radiologist with 2 years of experience
(X.X.M.). Lesions were selected if the lesion diameter was greater
than 3 mm in the slice with the largest cross-section, and if the
lesion was in the periventricular, juxtacortical, or infratentorial
regions, or the subcortical white or deep gray matter.28 Axial T1WI
and coronal T2 FLAIR imaging were used to identify and delineate
lesions. Only lesions presented on all three sequences were selected
to reduce the possibility of misidentification. When a lesion was
large and presented at multiple slices, we drew a ROI for one lesion
at a single slice with the largest cross-section. T1-weighted postcon-
trast imaging was used to assist neurologists in evaluating the clinical
status of the patients.

For each patient, we delineated several ROIs and checked
them to ensure that a patient only had NMOSD or MS at the same
time and each ROI belonged to one group. Therefore, an MS or
NMOSD patient had many ROIs and we designated each ROI as
an individual case to increase the amount of data.

Radiomic Feature Extraction and Selection
We quantified imaging phenotype by radiomic features extracted
from each ROI; the visualized process of the radiomic approach is
shown as Fig. 1.23 To read easily, we described the radiomic features
with more detailed information in the Supplementary Materials. To
ensure the stability of radiomic features against delineation inaccura-
cies, 30 patients were randomly selected from the entire sample, and

another radiologist, with 5 years of experience in the study of inflam-
matory demyelinating diseases, delineated lesion ROIs, which were
used to calculated interobserver correlation coefficients (ICCs) to
evaluate the reliability and validity of all radiomic features.29 The
least absolute shrinkage and selection operator (LASSO) method was
applied to select certain representative features,30 and the selected
features were used to build radiomic signature and calculate radiomic
score (Rad-score) for each patient. Most of the covariate coefficients
were reduced to zero, and the remaining nonzero coefficients were
selected. The formula of the model constructed by the nonzero coef-
ficient of selected features was defined as the Rad-score. A radiomic
signature (the output value of Rad-score) was built in the primary
and validation cohorts.

Visualized Nomogram Analysis
Neurologists and patients want to have reliable discriminative tools
that are tailored to the individual patient. A radiomic nomogram
with user-friendly graphical interfaces was created to visualize a mul-
tivariable logistic regression model predictive of differential diagnosis
between NMOSD and MS with the following representative predic-
tors: gender, AQP4-Ab, OCB, spinal lesions, and radiomic
signature.26,31

Calibration Curves of the Radiomic Nomogram
We built the radiomic nomogram on the basis of a multivariable
logistic analysis of the primary cohort. To assess nomogram calibra-
tion, we plotted calibration curves of the radiomic nomogram for
the primary and validation cohorts. Crossvalidation was performed
using the patient datasets. The performance of the validated nomo-
gram was tested in the validation cohort. The logistic regression

FIGURE 1: Radiomic analyses. (I) Original region selection and phenotypes from three patient ROIs. Patient labels are shown on the
left. (II) Extraction of features from ROIs, such as lesion shape, intensity, texture, and wavelet features. (III) Prediction and analysis.
MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; ROC, receiver operating curve.
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formula derived from the primary cohort was applied to the valida-
tion cohort and total point was calculated for each patient.

Statistical Analyses
Feature extraction was performed using MATLAB 2015b
(MathWorks, Natick, MA), and statistical analyses were performed
with the R software (v. 3.3.3; http://www.R-project.org). The
SPM12 package was implemented in MATLAB 2015b to read origi-
nal images. Representative features were selected from 273 features
using the glmnet package. Features were compared using the Mann–
Whitney U-test with a nonnormal distribution.32 The prediction
model was developed using a binary logistic regression analysis. We
depicted the nomogram on the basis of the results of the logistic
regression using the rms package in R. The Hmisc package was used
to investigate the performance of the nomogram via Harrell’s C-
index.33 The range of the C-index is from 0.5 to 1.0, with the high-
est value (C-index = 1) indicates a perfect ability to show no differ-
ence between the real value of the model and the predicted value.
Bootstrap analyses with 1000 resamples were used to obtain C-index

statistics that were corrected for potential overfitting. P < 0.05 was
considered to be statistically significant.

Results
Clinical Data Analysis
Clinical characteristics of patients for the primary and valida-
tion cohorts are shown as Table 1. We found no significant
differences between the cohorts (P > 0.81) in age, gender,
AQP4-Ab, OCB, spinal lesions, or Rad-score.

Feature Extraction and Selection
We delineated a total of 1119 ROIs in 150 patients and
extracted 273 radiomic features from each ROI. The primary
cohort consisted of 715 regions in 88 patients, and the valida-
tion cohort consisted of 404 regions in 62 patients (Table 1).
Significant clinical variables included age, gender, AQP4-Ab,
OCB, and spinal lesions (P < 0.05 for all). Ten-fold crossvali-
dation was performed for LASSO regression analysis. Finally,

TABLE 1. Analysis of Patient Characteristics in the Primary and Validation Cohorts

Primary cohort Validation cohort

Characteristic MS NMOSD P MS NMOSD P

No. of patients 41 47 — 32 30 —

Regions 361 354 — 218 186 —

Age (mean ± SD), years 33.9 ± 10.5 35.4 ± 14.2 0.005 38.9 ± 9.3 38.5 ± 15.4 <0 .001

Gender <0 .001 < 0.001

Male 16 (39%) 2 (4%) 10 (31%) 6 (20%)

Female 25 (61%) 45 (96%) 22 (69%) 24 (80%)

AQP4-Ab <0 .001 < 0.001

Positive (+) 0 (0%) 37 (79%) 0 (0%) 19 (63%)

Negative (–) 41 (100%) 10 (21%) 32 (100%) 11 (37%)

OCB <0 .001 0.021

Positive (+) 32 (78%) 12 (26%) 20 (63%) 12 (40%)

Negative (–) 9 (22%) 34 (72%) 5 (16%) 13 (43%)

Unknown 0 (0%) 1 (2%) 7 (21%) 5 (17%)

Spinal lesions 0.015 0.222

Positive (++) 6 (14%) 16 (34%) 8 (25%) 16 (53%)

Positive (+) 13 (32%) 15 (32%) 9 (28%) 9 (30%)

Negative (–) 22 (54%) 16 (34%) 15 (47%) 5 (17%)

Rad-score (mean) 2.241 −3.120 <0 .001 14.806 0.860 <0 .001

For spinal lesions, positive (++) represents longitudinally extensive lesions involving ≥3 vertebral segments, positive (+) represents lesions
involving < 3 vertebral segments, and negative (–) represents absence of lesions. AQP4-Ab, aquaporin-4 antibody; MS, multiple sclerosis;
NMOSD, neuromyelitis optica spectrum disorder; OCB, oligoclonal band; Rad-score, radiomic score; SD, standard deviation.
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16 potential predictors were used to develop a LASSO logistic
regression model (Fig. 2). Cronbach’s α values of 0.7–0.8 are
considered satisfactory for ICC-based evaluation of the reli-
ability and validity of radiomic features. In our test of feature
reliability, Cronbach’s α for interobserver agreement
was 0.927.

Development of the Prediction Model and ROC
Curve Analysis
The LASSO logistic regression analysis indicated that
11 radiomic features combined with five clinical features
could potentially be used to build a prediction model. More
information on the model can be found in the Supplementary
Materials (eTables 1–4).

We evaluated the performances of each clinical feature
(Fig. 3a): age (AUC = 0.5867), gender (AUC = 0.7501),

AQP4-Ab (AUC = 0.8815), OCB (AUC = 0.7313), and spi-
nal lesions (AUC = 0.4754). A model incorporating these
clinical features (AUC = 0.8206) showed similar performance
with radiomic features (AUC = 0.8212) in the validation
cohort. Moreover, the model combining both clinical features
and radiomic features showed the best performance for the
discrimination (AUC in primary cohort: 0.9880; AUC in val-
idation cohort: 0.9363).

Development of an Individualized Nomogram
We found that gender (P < 0.001), AQP4-Ab (P < 0.001),
OCB (P < 0.001), spinal lesions (P = 0.015), and radiomic
signature (P < 0.001) as independent differentiators between
NMSOD and MS by logistic regression analysis. An individu-
alized NMOSD/MS prediction model consisting of the afore-
mentioned independent predictors was visualized as a
nomogram (Fig. 4a). The nomogram showed good discrimi-
nation performance between NMSOD and MS (C-index:
0.9363, 95% confidence interval [CI]: 0.9826–0.9942).

Validation of the Radiomic Nomogram With
Calibration Curves
We plotted calibration curves to validate the performance of
the nomogram in the primary cohort with the Hosmer-
Lemeshow test (Fig. 4b). We calculated Harrell’s C-index
and 1000 bootstrap resamples for validation. The calibrated
C-index was 0.9940 (95% CI: 0.990–0.997; Fig. 4c).

Discussion
In the present study, we investigated the ability of radiomic
features extracted from conventional MRI to accurately dis-
tinguish NMOSD from MS. A radiomic signature assembled
from 11 differentiation-associated features showed good
potential as a biomarker for distinguishing the two disorders
in the primary and validation cohorts. When combined with
related clinical characteristics, the radiomic signature exhib-
ited excellent discriminative performance. We used these
results to develop a radiomic-signature-based nomogram for
individualized discrimination in patients with
NMOSD or MS.

We studied a total of 273 radiomic features extracted
from T2WI projections, including semantic, intensity, tex-
ture, and wavelet features. The 11 radiomic features, identi-
fied by shrinking the regression coefficients with the LASSO
method, were selected for a radiomic signature. A multivari-
able logistic regression analysis demonstrated a diagnostic
accuracy of the radiomic signature comparable to the clinical
method of AQP4-Ab, which is routinely used in clinical set-
tings to distinguish NMOSD from MS.9,10,13 We found that
the application of radiomics on traditional T2WI is noninva-
sive, feasible, cost-efficient, reproducible, and comparable
with AQP4-Ab. Combining radiomics with the key variables
(age, gender, AQP4-Ab, OCB, and spinal lesions) improved

FIGURE 2: LASSO binary logistic regression model for feature
selection. a: With the number of coefficients of the 273 radiomic
features and five clinical variables shrinking, the value of
In(Lambda) increased. The optimal value of Lambda was 0.022, and
the value of In(Lambda) was –3.817. The vertical dotted line
represents the value selected by 10-fold crossvalidation, where
16 optimal coefficients were obtained. b: The relationship between
the AUC and the parameter is shown. When In(Lambda) increased
to –3.817, the AUC peaked again with the appropriate number of
features as per the 10-fold crossvalidation. X-axes represent the
dynamic change of the tuning parameter of Lambda for the LASSO
feature selection.
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its differentiation accuracy in the primary and validation
cohorts. Therefore, the proposed model is promising and
appealing for clinical decision support in patients with
NMOSD or atypical MS.

Although diagnosis criteria are accepted and acknowl-
edged by most neurologists, NMOSD and MS are still hard
to differentiate by experienced experts from visual inspection
of imaging. Subtle structural and pathological differences
between NMOSD and MS have been reported.4,8,34,35 For
example, MS presented a varying extent of inflammation,
axonal loss, oligodendrocyte injury, gliosis, neurodegenera-
tion, microglia, and macrophage infiltration, while NMOSD
showed a perivascular deposition of immunoglobulin and
complement activation.1,11 Most MS lesions were traversed
by the central venule and extended along it, whereas few
NMOSD lesions involved the central venule.4,34,35 About
23% of MS lesions had a clear hypointense rim that was
rarely detected in NMOSD lesions.8 Iron metabolism result-
ing from iron-rich macrophages, microglia or oligodendro-
cytes, perivascular hemoglobin leakage, or a loss of

diamagnetic myelin was more frequently detected in MS than
in NMOSD lesions.8 Differences in the extent of tissue
injury may cause alterations in the distribution pattern of
MRI intensity which unfortunately are indistinguishable by
conventional imaging interpretation.36

A previous study demonstrated that texture analysis
may be useful to reflect the subtle tissue-level features, in line
with pathological findings.36 It was reported that texture het-
erogeneity was associated with the severity of tissue pathologi-
cal damage.36 The texture feature of GLRLM_GLN measures
the similarity of gray level values throughout the ROI. If the
gray level values are similar, the value is small. In our study
we found that patients with MS had a smaller GLRLM_GLN
value than NMOSD, which may reflect that more severe tis-
sue damage existed in patients with NMOSD than
MS. Besides textural features, radiomics is able to extract
other types of features from medical images. We also found
that several wavelet features were significantly different
between the two diseases. Further investigations are necessary
to verify and confirm the findings between radiomic features

FIGURE 3: ROC analysis. a: ROC curves were plotted to describe the clinical variables. Each curve represents a model built for the
indicated variable. b: ROC curves for the primary and validation cohorts. c: ROC curves plotted for radiomic features, clinical features, or
both showed good discriminative performance in the primary cohort. d: ROC curves were plotted for radiomic features, clinical features,
or both to differentiate MS from NMOSD in the validation cohort.
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and pathophysiological changes, and facilitate our intelligent
diagnosis model into clinical application.

Although the spinal lesions alone were insufficient to
separate NMOSD from MS, as revealed in the multivariable
logistic regression, they were important markers in the diag-
nosis of NMOSD or MS. The presence of longitudinally
extensive spinal cord lesions (involving ≥3 vertebral segments)
that preferentially affect spinal central gray matter is a typical
characteristic of NMOSD, whereas other lesion types are
indicative of MS.37 Iasonos et al proposed that the range of
variables utilized in nomograms was determined by data avail-
ability and clinical evidence rather than statistical signifi-
cance.31 Therefore, spinal lesions should be considered an
important differentiating NMOSD/MS biomarker.

In our study, we built a nomogram that combined the
radiomic signature with the representative clinical factors

(gender, AQP4-Ab, OCB, and spinal lesions), which exhib-
ited good performance in individualized discrimination for
patients with MS and NMOSD. The nomogram would facil-
itate our diagnosis model into clinical practice.

The present study has several important limitations.
The major limitation was that although a series of radiomic
features were identified to differentiate NMOSD from MS,
the underlying pathological indication of a specific feature
was not clear and not correlated with clinical manifestations.
Second, we enlarged the patient size by the method that we
designated each ROI as an individual case, which may influ-
ence the statistics analysis for the significance of clinical fea-
tures. Further work should follow this method. Third, optic
neuropathy graphics were not obtained to support the differ-
entiation, although involving of optic nerve could be different
in NMOSD and MS.38 Fourth, radiomic analysis was

FIGURE 4: Construction of radiomic nomogram and calibration. a: The nomogram was generated to depict the potential predictive
ability of the model for each patient in the primary cohort, incorporating gender, aquaporin-4 antibody (AQP4-Ab), spinal lesions (1, more
than 3 spinal segments; –1, less than 3 spinal segments; 0, no lesions), oligoclonal band (OCB), and radiomic signature (Rad_signature). b:
Calibration curve of the radiomic nomogram in the primary cohort. c: Calibration curve of the radiomic nomogram in the validation
cohort. X-axes represent the nomogram-predicted probability. Y-axes represent the actual probability. The blue diagonal line shows an
ideal prediction by an optimal model, and the pink line shows the calibrated values of the nomogram. The calibration curve was drawn by
plotting P1 on the X-axis and P2 = [1+exp-(x1+ax2)]-1 on the Y-axis, where P2 is the real probability, a = logit (P1), P1 is the predicted
probability, x1 is the calibration intercept, and x2 is the estimated slope.
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performed on T2WI alone and in 2D images. The reason was
that in our routine head protocol, T2WI had the highest axial
spatial resolution, which would promote the efficiency of
ROI delineation and partial volume effect reduction. In a
future study we will enroll more sequences, such as T1WI,
double inversion recovery FLAIR, and susceptibility-weighted
imaging (SWI), to improve our radiomic nomogram. Fifth,
the cohorts did not cover the spectrum of MS and NMOSD,
since all patients were in the chronic stage of the disease and
MS patients were all of the relapsing-remitting type, which
may induce bias in implementing the results into practice.
Sixth, despite the long study period, the sample size was rela-
tively small.

In conclusion, we established and validated a radiomic
nomogram incorporating radiomic signature and clinical char-
acteristics which can be used to provide increased diagnostic
accuracy in distinguishing NMOSD from MS. Future studies
are required to validate the generalizability of our integrated
nomogram for individualized discrimination in patients with
NMOSD or MS.
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