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Background and purpose: Locally advanced rectal cancer (LARC) patients showing pathological good
response (pGR) of down-staging to ypT0-1N0 after neoadjuvant chemoradiotherapy (nCRT) may receive
organ-preserving treatment instead of total mesorectal excision (TME). In the current study, quantitative
analysis of diffusion weighted imaging (DWI) is conducted to predict pGR patients in order to provide
decision support for organ-preserving strategies.
Materials and methods: 222 LARC patients receiving nCRT and TME are enrolled from Beijing Cancer
Hospital and allocated into training (152) and validation (70) set. Three pGR prediction models are con-
structed in the training set, including DWI prediction model based on quantitative DWI features, clinical
prediction model based on clinical characteristics, and combined prediction model integrating DWI and
clinical predictors. Prediction performances are assessed by area under receiver operating characteristic
curve (AUC), classification accuracy (ACC), positive and negative predictive values (PPV and NPV).
Results: The DWI (AUC = 0.866, ACC = 91.43%) and combined (AUC = 0.890, ACC = 90%) prediction model
obtains good prediction performance in the independent validation set. Nevertheless, the clinical predic-
tion model performs worse than the other two models (AUC = 0.631, ACC = 75.71% in validation set).
Calibration analysis indicates that the pGR probability predicted by the combined prediction model is
close to perfect prediction. Decision curve analysis reveals that the LARC patients will acquire clinical
benefit if receiving organ-preserving strategy according to combined prediction model.
Conclusion: Combination of quantitative DWI analysis and clinical characteristics holds great potential in
identifying the pGR patients and providing decision support for organ-preserving strategies after nCRT
treatment.

� 2018 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 132 (2019) 100–108
Neoadjuvant chemoradiotherapy (nCRT) followed by total
mesorectal excision (TME) is the standard treatment procedure
for locally advanced rectal cancer (LARC) patients [1–4]. Neverthe-
less, the application of TME will cause considerable perioperative
morbidities and possible permanent stoma due to sphincter resec-
tion, which greatly affects the life quality of patients [5,6]. In recent
years, the organ-preserving strategies including local excision
[7–9] or ‘‘wait and see” policy [10,11] are proposed as alternatives
to TME for the patients showing pathological good response (pGR)
of down-staging to ypT0-1N0 after nCRT. However, the definite
diagnosis of pGR can only be obtained by postoperative
histopathological examination of surgically resected specimens. It
still remain a challenge to accurately predict the pGR patients
before surgery in order to decide whether organ-preserving
strategies should be indicated [9,12].

The clinical evaluation of LARC tumor response to nCRT treat-
ment mainly relies on visual interpretation of tumor size [8], mor-
phology [13], infiltration [14] or lymph node metastasis [15] from
medical images. Nevertheless, visual assessment of medical image
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can only provide limited information and is susceptible to inter-
observers discrepancy. With advanced feature extraction analysis,
high-dimensional quantitative features can be extracted from the
medical images, which will provide abundant radiographic infor-
mation on tumor heterogeneity or microenvironment, not limited
to only visual information [16–22]. Previous studies have shown
that diffusion weighted imaging (DWI) is promising in evaluating
the tumor response to nCRT treatment in LARC [23–25].
Nevertheless, most of the earlier DWI studies were relatively pri-
mary in predicting pGR, which merely investigated the prediction
performance of ADC values deprived from DWI data, and the
studies were absent of independent validation [26–29]. Recently,
there has been pioneer DWI studies extracting limited numbers
of quantitative features based on ADC maps to predict pGR
[30,31]. However, explorations of using high-dimensional
quantitative features to construct a pGR prediction model with
independent validation is still lacked, which might help to
accurately predict the pGR patients and aid the decision support
for organ-preserving strategies.

The pGR and non-pGR patients respond differently to nCRT
treatment and exhibit different visual changes in DWI images.
With advanced feature extraction analysis, the different tumor
response can be further explored by the quantitative DWI features.
The quantitative DWI features associated with the distinctive
tumor response of pGR should fit the pattern that the pre- and
post-nCRT feature changes in pGR group are significantly different
from that in non-pGR patients group, which can be implemented
by the Difference in Difference (DID) regression analysis [32,33].
The DID regression analysis is a statistical approach widely used
to assess the difference of the pre-post time period changes
between two particular groups [34,35]. In the current study, the
DID regression analysis is employed to estimate the pre-post nCRT
DWI features changes, and compare the changes of the pGR
patients with the changes of the non-pGR patients. The quantita-
tive DWI features identified as significant in DID analysis will serve
as potent predictors for pGR patients.

In the current study, based on the high-dimensional quantita-
tive features extracted from DWI data and subsequently selected
by DID regression analysis. Moreover, we also construct a clinical
Fig. 1. The work-flow of current study. DWI prediction model, clinical prediction model, a
performing prediction model is further evaluated by calibration and DCA to evaluate the
after nCRT treatment. The abbreviations are: DID, difference in difference; E-net, Elastic
prediction model based on clinical characteristics, and a combined
prediction model integrating DWI and clinical predictors in seeking
the model performs best in pGR prediction. The best performing
model is further assessed by calibration curve and decision curve
analysis (DCA) to evaluate its clinical value in providing decision
support for organ-preserving strategies after nCRT treatment. The
work-flow of current study is provided in Fig. 1.
Materials and methods

Patients

222 LARC patients treated at Beijing Cancer Hospital between
July 2010 and June 2015 are enrolled in current study. All the
patients follow the same therapeutic schedule, and go through
the same MRI and clinical characteristics acquisition. Inclusion cri-
teria consisted of primary rectal adenocarcinoma confirmed by
biopsy examination, LARC diagnosed according to pre-treatment
MRI, the whole therapeutic schedule of nCRT treatment and TME,
and MRI acquisition done twice, pre- and post-nCRT treatment.
The patients diagnosed as mucious adenocarcinoma by pathologi-
cal examination, lack of high quality MRI data or clinical character-
istics are excluded. The enrollment pathway of the patients is
provided in Supplementary Fig. 1. All the patients receive the
intensity-modulated radiation therapy regimen consisting of 22
fractions of 2.3 Gy (gross tumor volume) and 1.9 Gy (clinical target
volume) 5 times per week over a period of 30 days. Concurrently,
capecitabine treatment is administered at a dose of 825 mg/m2

orally twice per day. The TME surgery is recommended 8 weeks
after the nCRT treatment.

All patients are sorted in the chronological order of surgery
time, then the first 152 patients are allocated into training set,
and the following 70 patients are allocated into validation set
(approximately in the ratio of 2:1). The pGR patients of down-
staging to ypT0-1N0 as confirmed by the postoperative histopatho-
logical examination are labeled as 1; and the other non-pGR
patients are labeled as 0. The demographic and clinical information
of all enrolled patients is provided in Table 1.
nd combined prediction model are constructed to predict the pGR patients. The best
clinical value of providing decision support for organ-preserving strategies in LARC
net; DCA, Decision curve analysis; AIC, Akaike’s information criterion.



Table 1
Demographic and clinical information of all patients enrolled in the current study.

Characteristics Training Set Validation Set P-value

Tumor response (pGR/non-pGR) 31/121 16/54 0.676
Age, mean (SD), years 56.66 (9.695) 58.97 (10.460) 0.110
Gender (Male/Female) 88/64 50/20 0.053
Post-nCRT CEA (Normal/Abnormal) 134/18 63/7 0.687
Post-nCRT CA19-9 (Normal/Abnormal) 143/9 67/3 0.617
Histologic grade (I/II/III/IV/V) 0/135/12/5/0 2/56/6/5/1 0.073
Pre-nCRT T stage (cT0/cT1/cT2/cT3/cT4a/cT4b) 0/0/21/115/7/9 0/0/10/55/3/2 0.162
Pre-nCRT N stage (cN0/cN1a/cN1b/cN2a/cN2b) 11/7/33/38/63 3/7/6/13/41 0.022*

Post-surgery T stage (ypT0/ypT1/ypT2/ypT3/ypT4a/ypT4b) 31/7/54/58/1/1 13/4/23/30/0/0 0.915
Post-surgery N stage (ypN0/ypN1a/ypN1b/ypN2a/ypN2b) 112/23/11/3/3 49/7/8/5/1 0.228
Post-nCRT TL: mean (SD) 29.47 (10.167) 26.46 (9.015) 0.035*

Post-nCRT TTOA: mean (SD) 9.51 (3.220) 9.20 (3.215) 0.510
Post-nCRT IDBMP: mean (SD) 2.11 (3.042) 2.53 (3.602) 0.372
Post-nCRT SDBMT: mean (SD) 5.74 (4.828) 6.96 (6.263) 0.114
Post-nCRT NLN: mean (SD) 7.61 (3.893) 6.93 (3.338) 0.206
Post-nCRT MALLLN: mean (SD) 4.25 (2.994) 4.03 (2.377) 0.582
Pre-nCRT TL: mean (SD) 45.16 (14.075) 44.90 (13.307) 0.895
Pre-nCRT TTOA: mean (SD) 15.51 (4.986) 16.97 (5.313) 0.049
Pre-nCRT IDBMP: mean (SD) 4.82 (4.233) 5.91 (6.471) 0.135
Pre-nCRT SDBMT: mean (SD) 4.35 (4.308) 4.50 (5.447) 0.824
Pre-nCRT NLN: mean (SD) 12.44 (5.779) 12.10 (4.993) 0.671
Pre-nCRT MALLLN: mean (SD) 6.47 (3.400) 6.76 (3.437) 0.557

The threshold values for CEA level and CA 19-9 level are respectively 5 ng/mL and 39 U/mL according to the normal range used in clinics, where above threshold is
represented by 1 (abnormal) and below threshold is represented by 0 (normal). Chi-Squared tests are used to compare the differences in categorical variables (Gender, Post-
nCRT CEA, Post-nCRT CA19-9, Histologic grade, Pre- and Post-nCRT T stage, and Pre- and Post-nCRT N stage), while two-sample t-tests are used to compare the differences in
age, Pre-and Post-nCRT TL, TTOA, IDBMP, SDBMT, NLN and MALLLN. * indicates P < 0.05. The unit for TL, TTOA, IDBMP and MALLLN is mm. The abbreviations are: pGR,
pathological good response; nCRT, neoadjuvant chemoradiotherapy; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; SD, standard deviation; TL, Tumor’s
length; TTOA, Tumor’s thickness obtained from oblique axial T2WI; IDBMP, The invasion distance beyond the muscularis propria; SDBMT, The shortest distance between the
mesorectal fascia and the outer edge of the tumor extension; NLN, Total number of the lymph nodes detected by diffusion weight images; MALLLN, The minor axis length of
the largest lymph node.
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MRI acquisitions and tumor masking

Twice MRI scans are obtained respectively one week before
nCRT and within one week before TME surgery on 3.0T MR scanner
(Discovery 750; GE Healthcare) using an 8-channel phased array
body coil. To reduce colonic motility, 20 mg of scopolamine butyl-
bromide is injected intramuscularly 30 min prior to MRI acquisi-
tion. DWI images are acquired by Single Shot Echo Planar
Imaging sequence with b values of 0 and 1000 s/mm2. The param-
eters are: repetition time (TR) = 2800 ms, echo time (TE) = 70 ms,
field of view (FOV) = 340 * 340 mm, Matrix = 256 * 256, Thick-
ness = 4.0 mm, and Gap = 1.0 mm. The T2 images are acquired by
the fast recovery fast spin-echo sequence with the parameters:
TR = 5694 ms, TE = 110 ms, FOV = 180 * 180 mm, ETL = 24,
Matrix = 288 * 256, Thickness = 3.0 mm and Gap = 0.3 mm.

The regions of interest (ROIs) of rectal tumors pre- and post-
nCRT treatment are delineated manually with itk-SNAP (www.itk-
snap.org) by two experienced radiologists blind to histopathology
results, following the procedures in previous studies [36–38].
Tumor regions are firstly drawn on T2WI images where there is
slightly high signal, then used as references for ROIs delineation
on b-1000 s/mm2. Inter- and intra-observer reproducibility are
conducted to evaluate ROI delineation; details are presented in
Supplementary Text 1.

Quantitative DWI features extraction

Quantitative DWI features are extracted respectively on pre-
and post-nCRT DWI data. Firstly, the apparent diffusion coefficient
(ADC) images are calculated by including the b0 and b1000 s/mm2

DWI images in monoexponential decay model. Then, 563
quantitative DWI features including 4 statistical features, 43
voxel-intensity computational features and 516 wavelet features
are calculated based on the ADC images with the tumor masks
copied from b-1000 s/mm2 DWI images. The features extraction
is implemented in Matlab 2015R; detailed definitions of 563
quantitative DWI features are provided in Supplementary Text 2.
DWI prediction model

DWI prediction model is implemented by two procedures of
feature selection and model construction. The DID regression
analysis is employed to select the DWI features related to the
tumor response of pGR patients. The DID statistical significance
for each of the 563 quantitative DWI feature is estimated by
DID regression analysis on training set. The quantitative DWI fea-
tures with P-value <0.001 (including pre- and post-nCRT features)
are selected and fed into the next step. The relatively strict signif-
icance threshold is chosen to screen out irrelevant features and
lower the possibility of overfitting in subsequent model construc-
tion. The DID regression analysis is implemented using the statis-
tical software package of Stata 12 (https://www.stata.com/).
Based on the quantitative DWI features selected by DID analysis,
the Elastic net (E-net) [39] penalized Logistic regression model
implemented within the Glmnet tool (http://statweb.stanford.
edu/~tibs/lasso.html) is employed to achieve further feature
selection and model construction. The parameters are set to
acquire the best prediction performance, in the similar proce-
dures of previous studies [40,41]. Details of fitting the DID regres-
sion analysis and the E-net penalized Logistic regression model
are provided in Supplementary Text 3.

The DWI prediction model is assessed in training and validation
set with the classification evaluation metrics including area under
receiver operating characteristic curve (AUC), classification
accuracy (ACC), positive predict values (PPV), and negative predict
values (NPV). The output of DWI prediction model (linear combi-
nation of the selected quantitative DWI features) is normalized
by a sigmoid function and used as DWI signature in the following
part. The DWI signature represents a quantitative predictor for pGR
probability.

Statistical analysis of selected quantitative DWI features

To further explore the selected quantitative DWI features, two-
sample T test is conducted in all 222 LARC patients to assess the
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difference of selected quantitative DWI features between pGR and
non-pGR group. For the quantitative DWI features with both pre-
and post-nCRT features selected, paired T test analysis is employed
to investigate the pre- and post-nCRT difference of these DWI fea-
tures respectively within pGR and non-pGR groups. Two-sample T
test and paired T test are conducted with SPSS18 (http://www-01.
ibm.com/software/analytics/spss/). The significance levels for the
statistical analysis of selected quantitative DWI features are two-
sided and set at P < 0.05.
Clinical and combined prediction model

The clinical prediction model is constructed based on the clini-
cal characteristics including post-nCRT serum carcinoembryonic
antigen (CEA) levels, post-nCRT serum carbohydrate antigen 19-9
(CA19-9) levels, pre- and post-nCRT tumor length (TL), pre- and
post-nCRT tumor thickness obtained from oblique axial T2WI
(TTOA), pre- and post-nCRT invasion distance beyond the muscu-
laris propria (IDBMP), pre- and post-nCRT shortest distance
between the mesorectal fascia and the outer edge of the tumor
extension (SDBMT), pre- and post-nCRT total number of the lymph
nodes detected by DWI (NLN), pre- and post-nCRT minor axis
length of the largest lymph node (MALLLN). These clinical charac-
teristics are firstly selected with Akaike’s information criterion
(AIC) [42,43], and then entered into a multivariate logistic regres-
sion model to predict pGR patients.

The combined prediction model is constructed by integrating
the DWI signature and the selected clinical characteristics into a
multivariate logistic regression model. The performances of both
clinical and combined prediction model are assessed by the evalu-
ation metrics of AUC, ACC, PPV and NPV in training and validation
set.
Performance comparison of the three prediction models

Net reclassification improvement (NRI) [44] and Integrated dis-
crimination improvement (IDI) [45] are used to compare perfor-
mance of the combined prediction model to the DWI and clinical
prediction model. The NRI represents the improvement of reclassi-
fication, and the IDI demonstrates the improvement in discrimina-
tion slopes between the prediction model with added features and
the prediction model without added features [44,45].

Calibration curve and the DCA are employed to further evaluate
the best performing model. The calibration curve manifests the
deviation between actual pGR probability and predicted pGR prob-
ability, and significance of this deviation is tested by the Hosmer–
Lemeshow (H-L) test. The DCA curve illustrates the net benefit
obtained by receiving organ-preserving treatment according to
the prediction model, and compares with the decision scheme that
no patients or all patients receive organ-preserving treatment
[46,47].
Results

Selected quantitative DWI features

46 out of 563 quantitative DWI features achieve P < 0.001 in
DID regression analysis, and the corresponding pre- and post-
nCRT features (a total of 92 features) are fed into E-net
penalized-Logistic regression model. Subsequently, 23 out of the
92 features are further selected by E-net penalty and employed
to predict pGR patients. As indicated by two sample T test, 22
out of the 23 selected quantitative DWI features are significantly
different between pGR and non-pGR patients. The mean values of
the 23 features across all the patients are normalized to 0–1 and
illustrated in Fig. 2A. Details of the 23 selected quantitative DWI
features and the corresponding two sample T test results are pro-
vided in Supplementary Table 1. Extra analysis results of Spear-
man’s rank correlation between the selected DWI features and
pGR status are also provided in Supplementary Table 1.

There are 3 quantitative DWI features with both pre- and post-
nCRT features selected in DWI prediction model: the contrast of
Neighborhood Gray Tone Difference Matrix (NGTDM), coarseness
of NGTDM, and Small Zone High Gray-Level Emphasis (SZHGE) of
Gray Level Size Zone Matrix (GLSZM). The normalized mean values
of the 3 quantitative DWI features are illustrated in Fig. 2B. As indi-
cated by paired T test, it is found that the contrast of NGTDM sig-
nificantly increases in response to the nCRT treatment among the
pGR patients; while remains unchanged among the non-pGR
patients (Fig. 2B). Detailed paired T test results are provided in
Supplementary Table 2. We randomly choose one pGR patient
and one non-pGR patient and calculate the voxel-based contrast
of NGTDM maps to display this pattern. The voxel-based contrast
of NGTDM and original MR images of the pGR and non-pGR
patients are illustrated in Fig. 3.
Performance of the three prediction models

The DWI prediction model obtains AUC of 0.896, ACC of 87.50%,
PPV of 0.929, and NPV of 0.870 in training set; AUC of 0.866, ACC of
91.43%, PPV of 0.917, and NPV of 0.914 in validation set. It is
noticed that the DWI prediction model obtains high PPV values
in both training and validation sets. The clinical prediction model
is constructed based on the post-nCRT CEA level, the post-nCRT
IDBMP and the pre-nCRT SDBMT, however does not perform very
well in pGR prediction (AUC of 0.702, ACC of 80.26%, PPV of
0.667 and NPV of 0.805 in training set; AUC of 0.631, ACC of
75.71%, PPV of 0 and NPV of 0.768 in validation set). Based on
the DWI signature and selected clinical characteristics, the com-
bined prediction model achieves satisfying overall performance
in both training (AUC of 0.893, ACC of 90.79%, PPV of 0.905 and
NPV of 0.908) and validation (AUC of 0.890, ACC of 90%, PPV of
0.846 and NPV of 0.912) sets. Performance summarization of three
prediction models and the corresponding 95% confidence interval
(CI) of each evaluation metrics are provided in Supplementary
Table 3. The auc curves of the DWI and combined prediction model
are respectively illustrated in Fig. 4A and 4B.
The best performing prediction model

As indicated by NRI and IDI index, the combined prediction
model significantly outperforms the clinical prediction model in
both training (NRI of 0.540, P < 0.01; IDI of 0.240, P < 0.01) and val-
idation sets (NRI of 0.669, P < 0.01; IDI of 0.308, P < 0.01). As for the
DWI prediction model, significant improvements of combined pre-
diction model are observed in the training set (NRI of 0.185,
P < 0.01; IDI of 0.059, P < 0.01). In the validation set, significant
improvements of combined prediction model over the DWI model
were observed by IDI (0.052, P < 0.01), while not by NRI (-0.019,
P = 0.31). Although the classification performances of the twomod-
els are similar in the validation set, the combined prediction model
obtained significant improvement in discrimination slope than the
DWI prediction model in the validation set, indicating that the
combined prediction model is more discriminated in identifying
the pGR patients. NRI and IDI summarization and the correspond-
ing 95% CI are provided in Supplementary Table 4.

Calibration curves of the combine prediction model in training
and validation set are provided in Fig. 4C. P-values of 0.985 and
0.418 are respectively reported by H-L test in the training and val-
idation set, which indicates satisfying calibration performance of
the combined prediction model. DCA curves of the combined pre-
diction model in the validation set are illustrated in Fig. 4D. It can
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Fig. 2. Illustration of the selected quantitative DWI features. (A) The normalized mean values of 23 selected DWI features; (B) The normalized mean values of 3 DWI features
with both pre- and post- nCRT features selected. The bracket following the name of the features indicates how the ADC maps are filtered: the Gabor wavelet filter of 4
different Frequency scales (F1-F4) or 8 different Directions (D1-D8). * and ** respectively represent P < 0.05 and P < 0.01 in two sample T test or paired T test where applicable.
The abbreviations are: pGR, pathological good response; nCRT, neoadjuvant chemoradiotherapy; GLRLM, Gray Level Run Length Matrix; NGTDM, Neighborhood Gray Tone
Difference Matrix; GLSZM, Gray Level Size Zone Matrix; GLCM, Gray Level Co-occurrence Matrix; LGRE, Low Gray-Level Run Emphasis; SZHGE, Small Zone High Gray-Level
Emphasis; SZLGE, Small Zone Low Gray-Level Emphasis; ZSN, Zone-Size Nonuniformity; SZE, Small Zone Emphasis; IDM, Inverse difference moment; ZP, Zone Percentage;
LRHGE, Long Run High Gray-Level Emphasis; SRHGE, Short Run High Gray-Level Emphasis; HGRE, High Gray-Level Run Emphasis.

104 Quantitative analysis predict pathological good response in locally advanced rectal cancer
be seen that the combined prediction model provides more net
benefit than both decision schemes that all patients or no patients
receiving organ-preserving treatment. A nomogram based on the
combined prediction model is also built to provide as an easy-
using clinical tool in selecting the pGR LARC patients qualified for
organ-preserving treatment. The nomogram is provided in Fig. 5.

Discussion

In the current study, three models are constructed to predict the
pGR patients, which might provide decision support for organ-
preserving strategies after nCRT treatment. The DWI prediction
model obtains high PPV values in identifying the pGR patients,
nevertheless the clinical prediction model doesn’t perform very
well. The combined prediction model achieves satisfying overall
performance and outperforms the other two prediction model.

The evaluation of tumor response after nCRT treatment is cru-
cial for the decision support of organ-preserving strategies in LARC.
There has been previous studies employing DWI data to predict the
LARC patients showing pathological complete or good complete
response to nCRT treatment [30,48–50]. In comparison with previ-
ous studies [30,50–52], it is noteworthy that the DWI prediction



Fig. 3. The voxel-based contrast of NGTDM and original MR images of pGR and non-pGR patients. The voxel-based contrast of NGTDM, b0, b1000, and ADC images of pGR and
non-pGR patients is displayed in each row. The column a and c respectively represent the pre- and post-nCRT images of the pGR patient. The column b and d respectively
display the enlarged tumor regions in a and c. The column e and g respectively represent the pre- and post-nCRT images of the non-pGR patient. The column f and h
respectively display the enlarged tumor regions in e and g. For the contrast of NGTDMmaps, it can be observed that the tumor region of the pGR patient brightens after nCRT
treatment, while the tumor regions of the non-pGR patient remain unchanged. The abbreviations are: pGR, pathological good response; nCRT, neoadjuvant
chemoradiotherapy; NGTDM, Neighborhood Gray Tone Difference Matrix; ADC, apparent diffusion coefficient.

Fig. 4. Performance evaluation of the prediction models. (A) The ROC curves of DWI prediction model in training (AUC = 0.896; ACC = 87.50%) and validation set (AUC = 0.866;
ACC = 91.43%); (B) The ROC curves of combined prediction model in training (AUC = 0.893; ACC = 90.79%) and validation set (AUC = 0.890; ACC = 90%); (C) The calibration
curves of the combined prediction in training (P = 0.985) and validation set (P = 0.418); (D) The DCA curve of the combined prediction model in validation set. All and None in
(D) respectively represent the net benefit provided by the decision scheme that all patients or no patients receiving organ-preserving treatment. The abbreviations are: pGR,
pathological good response.
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Fig. 5. The nomogram based on combined prediction model. The Nomogram is built based on the DWI signature, the post-nCRT CEA, the post-nCRT IDBMP and the pre-nCRT
SDBMT. The threshold value for CEA level is 5 ng/mL according to the normal range used in clinics, where >5 ng/mL is represented by 1 (abnormal) and �5 ng/mL is
represented by 0 (normal). The abbreviations are: nCRT, neoadjuvant chemoradiotherapy, CEA, carcinoembryonic antigen; IDBMP, invasion distance beyond the muscularis
propria; SDBMT, The shortest distance between the mesorectal fascia and the outer edge of the tumor extension; pGR, pathological good response.
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model of the current study obtains high PPV in predicting pGR
patients. In a previous clinical study, the post-nCRT radiological
staging obtained PPV of 0.65 in diagnosing the tumor response of
231 LARC patients [52]. In a pioneer work employing MRI features
to predict pGR patients [30], the prediction model was developed
in a cohort of 85 subjects and validated in a cohort of 55 subject,
achieving PPV of 0.8. In another work, pGR prediction model com-
bining MRI and PET data were constructed based on 85 patients,
and obtained PPV of 0.8 with ten-fold stratified cross-validation
strategy [50]. As reported by a previous pooled analysis study,
the average PPV for employing DWI data to predict the tumor
response after nCRT was 0.54 [51]. The PPV is defined as the pro-
portion of patients who are correctly predicted as pGR among all
the patients predicted as pGR. The high PPV indicates that the
patients who are predicted as pGR have relatively high probability
of achieving true pGR. Our results indicate that the DWI prediction
model will lower the chance that the non-pGR patients are mis-
taken as pGR and incorrectly receive organ-preserving treatment,
which should be avoided at all possible in the personalized
decision-making of organ-preserving strategies.

Similar to previous studies, the clinical prediction model
doesn’t perform very well in predicting the pGR patients
[8,53,54]. Nevertheless, the combined prediction model outper-
forms the DWI prediction model after the inclusion of clinical char-
acteristics. It might be inferred that though the clinical
characteristics are not excellent predictors for pGR, they are com-
plementary to DWI signature in predicting the pGR patients. We
also found that the pGR probability estimated by the combined
prediction model presses close to the actual probability, and the
combined prediction model grants the patients more clinical ben-
efit than the treatment scheme that all the patients receiving or
forsaking organ-preserving treatment. In the previous study, it
was reported that the visual evaluation based on MRI images
achieved AUC of 0.8 [23] and ACC of 86.8% [55] in assessing the
LARC tumor response to nCRT treatment. There has been previous
studies employing the quantitative analysis of MRI data to investi-
gate the prediction of pGR patients [26,56–58], nevertheless
researches of implementing a prediction model with independent
validation are still limited. In the pioneer MRI study of Bulens P.
[30], validation of the model obtained AUC of 0.88 in pGR predic-
tion, which was considered as ‘‘good predictive performance”.
The combined prediction model of our current study achieves
AUC of 0.89, ACC of 90% in a larger independent validation set,
which further verifies the possibility of implementing surgical
strategies for LARC patients based on quantitative analysis DWI
data.

The good performances of the DWI and combined prediction
model are potentially attributed to the quantitative DWI features
selected by DID regression analysis and E-net penalty, which are
principally texture features. We find that most of the selected
DWI features are significantly different between pGR and non-
pGR patients, which indicates that the radiographic phenotype
quantized by the selected DWI quantitative features can reveal
the different tumor response to nCRT treatment. Consistent with
the findings of current study, the texture features based on Gray
Level Co-occurrence Matrix (GLCM) are also found to be predictive
of LARC tumor response including pGR or pathological complete
response (pCR) in previous studies [31,57,59]. Summarization of
the DWI features predictive for LARC tumor response in previous
studies is provided in Supplementary Table 5. The texture features
identify the repetitive or nonrepetitive patterns in the medical
image and provide as the quantitative measures for intratumoral
heterogeneity [60,61], which can potentially detect the histological
tumor changes to nCRT treatment. The common finding of the cur-
rent and previous studies indicates that the texture features calcu-
lated from ADC maps provide to be a reproducible and effective
tool to evaluate the LARC tumor response to nCRT treatment. As
indicated by the exiting clinical trials [62,63], the organ-
preserving strategies or wait and see policies can grant the LARC
patients better quality of life with strict selection criteria and up-
to-data follow-up schedule. We suppose that the reproducible
finding might encourage the employment of quantitative DWI
analysis models in the clinical selection of appropriate candidates
for organ-preserving after nCRT treatment.

In addition, we find that the quantitative DWI feature contrast
of NGTDM significantly increases in response to nCRT treatment
among the pGR patients, while remains unchanged among the
non-pGR patients, which might reveal the distinctive tumor
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response of pGR. The contrast of NGTDM is traditionally used to
quantify the contrast of image, which describes the intensity dif-
ference between the voxel and its neighbors [64,65]. It might be
inferred that the nCRT treatment brings about replacement of
tumor tissues into fibrosis and inflammatory cell infiltration in
the pGR patients, which is demonstrated as the significantly
increased contrast of NGTDM. Nevertheless, the non-pGR patients
fail in responding to the nCRT with mass of un-ablated tumor tis-
sues, which is demonstrated as the relatively unchanged contrast
of NGTDM.

There are several limitations in current study. Firstly, 222
patients of single center are employed to conduct pGR prediction
in the current study. It will be more consolidated to provide clinical
implication if the pGR prediction can be conducted on a multicen-
ter data set with larger sample size. Secondly, only MRI data are
employed in current study, absent of genetic data and multi-
modal medical images. In the future prospective study, pGR predic-
tion incorporating multi-modal medical images and genetic data
based on multicenter data set of larger sample size should be fur-
ther explored.
Conclusion

The combination of DWI analysis and clinical characteristics
held great potential in predicting pGR patients after nCRT treat-
ment and providing decision support for personalized organ-
preserving strategies application, which will help to improve the
life quality of LARC patients.
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