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a b s t r a c t 

Gait recognition is an important yet challenging problem in computer vision. The changing view of gait is 

one of the most challenging factors, which could greatly affect the accuracy of cross-view gait recognition. 

In this paper, we propose a Two-Stream Generative Adversarial Network (TS-GAN) for cross-view gait 

recognition. For any view of gait representations, GAN can restore it to the corresponding standard view, 

to learn view invariant gait features. To achieve this goal, TS-GAN has two streams : (1) the global-stream 

can learn global contexts, and (2) the part-stream can learn local details. We combine the two streams to 

learn final identities. Moreover, we add a pixel-wise loss along with the generators of GAN to restore the 

gait details in pixel-level. We evaluate the proposed method on two widely used gait databases: CASIA- 

B and OU-ISIR. Experiment results show that our approach outperforms the compared state-of-the-art 

approaches. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Gait refers to the posture of people walking, which consists of

he relative movement of body parts. Gait recognition is to identify

eople by their unique gait. Early medical researches have proved

hat human gait has 24 consistent components [1,2] , thus gait is

elatively stable. In addition, gait is a biometric feature that can

e extracted from a long distance. Whereas other biometric fea-

ures, such as human faces, fingerprints and irises, usually need to

e captured from a near distance, which could be limited to some

ractical applications. Gait recognition has a wide range of appli-

ations such as intelligent monitoring, access control, medical di-

gnosis and human-computer interactions. 

In the past few years, many datasets have been established

y some organization, such as CASIA-B [3] , OU-ISIR [4] , OUMVLP

5] and so on. At the same time, many approaches [6–10] have

een proposed to address the problem of gait recognition. Among

arious factors that greatly affect the accuracy of gait recognition

n practical applications, the change of view is the most difficult

ne. When the view changes, the profiles of a person captured
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y the camera can vary dramatically. The view transform models

10] and the view invariant features [7,8] have been proposed to

olve the cross-view gait recognition in feature level. Recently, Yu

t al. [9] tried to use the Generative Adversarial Networks (GAN) as

he view transform model to learn view invariant gait features in

nput level. Their method could learn global features well, but they

o not model the local area that lead to the absence of detail in-

ormation. Local features have undergone major changes when the

iew changes, making the gait features fuzzy. 

In this paper, we propose a Two-Stream Generative Adversarial

etwork (TS-GAN) to learn both part-aware and global-aware view

nvariant gait features in a pixel-level manner within a unified

odel, as shown in Fig. 1 . Firstly, TS-GAN can transfer gait images

ith different views to the gait images with the standard view,

.e., 90 °. Since the views of gait vary from 0 °to 180 °, we choose

0 ° as the standard view, and it is easier to restore the image from

ther views to 90 °. Moreover, 90 ° is one of the best views to show

iscriminative information in gait. Secondly, considering that typ-

cal GAN used in [9] can not restore the details in pixel-level, to

ddress this problem, we adopt a pixel-wise loss on the genera-

or, aiming at learning accurate view transformation in pixel-level.

aking into account that the absence of local modeling may lead

o ambiguous gait representation, we add the part-stream in our

S-GAN. In addition, we design an identity discriminator following

he TS-GAN to learn final view invariant gait features. 

https://doi.org/10.1016/j.neucom.2019.02.025
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Fig. 1. The pipeline of the proposed Two-Stream GAN. TS-GAN can transfer the input gait image with any view to an image that has a standard view. The two streams can 

learn view invariant gait features from the global and part streams, separately. The global-stream can learn global features and the part-stream can learn detail information. 

Therefore, fusion of the two streams can learn better gait features. 
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We summarize this paper’s contributions as follows. 

• We present a Two-Stream GAN (TS-GAN) to learn view in-

variant gait features via combining the features from both the

global and part streams. It can simultaneously transfer the gait

images from the global and part streams, maintaining both of

the identical and local features. 

• We add a pixel-wise loss along with TS-GAN to restore the gait

details in pixel-level. The loss is very helpful for accurate gait

image transformation and making the generator more stable in

the training phase. 

• We introduce the multi-scale context-aware unit in the gener-

ator, to learn a closer image distribution. Experimental results

have shown the effectiveness. 

The rest of this paper is organized as follows. The next section

presents related work of cross-view gait recognition. Section 3 de-

tails the proposed method. Section 4 describes experiment results,

and Section 5 concludes this paper. 

2. Related work 

In this section, we first review recent research progress of gait

recognition methods, which include traditional methods and deep

learning methods. Then summarize the GAN based approaches and

global and local aware feature learning approaches related with

this work. 

2.1. Traditional gait recognition methods 

There are numbers of methods proposed for gait recognition.

According to different methods of feature extraction, the meth-

ods of gait recognition can be roughly divided into two categories:

model-based methods and non-model methods. 

The model-based approaches usually model the movement of

a person or the structure of a human body to extract the fea-

tures. There are some typical model-based methods [11–14] . Those

approaches have great advantages for solving the occlusion prob-

lem. Due to the fact that the model-based methods are completely

based on the motion which could help to correlate the state vari-

ations from the past movements to current one, it can contribute

for resolving the occlusion problem. 

The non-model approaches establish the relationships between

adjacent frames by estimating the relative features of position, ve-

locity, shape, color, etc., many of which are based on human con-

tours. The typical non-model methods [15–20] have been proposed

to address gait recognition task. Recently, several methods based

VTM had been proposed [10,21,22] to implement view transfor-

mation. Xing et al. [23] proposed the canonical correlation anal-

ysis (C3A) algorithm to overcome the computational complexity
f multi-view gait recognition. Hu et al. [24] proposed a view-

nvariant discriminative projection (ViDP) method to improve the

iscriminative ability of multi-view gait features. The advantage of

his method is that the gait features can directly be matched with-

ut knowing the view. Muramatsu et al. [25] calculated multiple

cores that measured the consistency of the multiple transformed

eatures and original features whether the target subjects are same.

.2. Deep learning based gait recognition methods 

However, the above methods have limitations in accuracy, espe-

ially in large scale datasets. With the breakthrough of deep learn-

ng in many areas, more and more researchers begin to introduce

his technique into gait recognition, and some advanced methods

re proposed, such as [26–28] . One of the pioneer methods pro-

osed by Wu et al. [8] tried to learn the similarity of gait pairs

ith the deep Convolutional Neural Networks (CNNs). Yu et al.

29] proposed an auto-encoder model for invariant gait extraction.

he feature extracted by the method is robust to view, clothing and

arrying condition variation. Whereas Shiraga et al. [7] proposed to

irectly learn gait features from the Gait Energy Image (GEI) with

 CNN based classifier. Although this method has high accuracy in

U-ISIR database, its accuracy is slightly lower in other datasets. 

.3. GAN based methods 

Since Goodfellow et al. [30] proposed the concept of Generative

dversarial Network, GAN has become a hot topic. Some improved

ariants of GAN are proposed, such as [31] . Inspired by the suc-

ess of GAN, there are some GAN based applications. Huang et al.

32] proposed a two-pathway GAN to learn both the global and lo-

al textures for face recognition. Yu et al. [9] adopted a GAN based

odel to learn view invariant features for gait recognition. The

ontribution of this method is to introduce GAN into the field of

ait recognition. 

.4. Global and local feature learning 

Global and local feature learning have been implemented in

any areas, such as person re-identification, face recognition and

oft-biometrics [33–35] . Samaria and Fallside [33] proposed to use

idden markov models to solve face identification problem. In or-

er to improve the attribute recognition for small-size training

ata with poor quality images, Wang et al. [34] proposed a Joint

ecurrent Learning (JRL) model for exploring attribute context and

orrelation. Zhao et al. [35] proposed an end-to-end Grouping Re-

urrent Learning (GRL) model to detect precise body region via

ody region proposal followed by the feature extraction unit from

etected regions. 
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Fig. 2. The framework of TS-GAN. It takes the GEIs with any view as its inputs, and transforms them into GEIs with a standard view, e.g., 90 °. The TS-GAN has two streams, 

i.e., the global stream and the part stream. It should be noted that the generator of global stream has multiple MSCAN stages, details refer to the text. The part stream is 

composed with three parts, i.e., the upper part (containing head and shoulders), the middle part (containing the chest and stomach) and the lower part (containing the legs 

and feet). Each stream has its own discriminator and identity classifier to jointly learn the view-invariant and identical features. In addition, we combine the two streams so 

as to learn better gait features. 
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Fig. 3. Example GEIs of two subjects. These GEIs come from the CASIA-B dataset, 

with 11 views. 
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. Proposed method 

The proposed Two-Stream GAN (TS-GAN) takes the GEIs with

ny view as its inputs, and transforms them into GEIs with stan-

ard view. As shown in Fig. 2 , the TS-GAN has two streams, i.e., the

lobal stream and the part stream. Each stream has its own dis-

riminator and identity classifier to jointly learn the view-invariant

nd identical features. In addition, we fuse the features at the top

ayers of the two streams for obtaining better performance. We

ill describe the details of each component as follows. 

.1. Generative adversarial networks 

In general, the basic idea of GAN [30] can be regarded as a two-

layer game. GAN can learn the mapping from the input variable

o the output. If the input variable follows a normal distribution,

hen a generating network G ( z ; θ g ) can be obtained. A discrimina-

or D ( x ; θd ) is connected to the backend of the generator. It ran-

omly selectes the real samples and the generated data as its in-

ut. The discriminator is a two-way classification network, which

an distinguish whether the input sample is real data or gener-

ted data by the generator. In the adversarial phase, the genera-

or tries to generate samples more like the real samples, so that

he discriminator can not distinguish if it is not real. Then the dis-

riminator is enhanced to distinguish the fake data. In practice, the

enerator and discriminator are usually implemented with Convo-

utional Neural Networks (CNNs). 

.2. Two-Stream GAN 

We propose a Two-Stream GAN (TS-GAN) to jointly learn view-

nvariant features from both global and part streams. In our model,

e take the Gait Energy Image (GEI) [36] as the default input. In

eneral, GEI can be computed via averaging all the images in the

ait sequence, which contains both the shape and motion informa-

ion. Examples are shown in Fig. 3 . GEI has been widely used be-

ause of its simplicity, effectiveness and robustness over the other

ait templets, e.g., the Gait Entropy Image (GEnI) [37] , Gait Flow

mage (GFI) [38] , and Chrono Gait Image (CGI) [39] . The main pur-

ose of the proposed method is to convert GEI images of different

iews into standard view GEI images and then identify them. 

Different from the previous GAN based method [9] , a two-

tream model is adopted to recover both the global and local de-

ails. In addition, we introduce the pixel-wise loss at the end of
he generators for pixel-level constraints. The whole framework is

hown in Fig. 2 . 

.3. Global stream 

The global stream is designed based on DC-GAN [31] , which

onsists of a convolutional generator and a discriminator. For

etter performance, we introduce the Multi-Scale Context-Aware

etwork (MSCAN) to the generator. MSCAN is first proposed

n [40] and has been proved to be effective for person re-

dentification. Different from basic convolution layer with only one

cale filter, MSCAN has multiple filters with different scales. Thus,

t each convolutional stage, the features with various scales can

e extracted and combined, as shown in Fig. 4 . In this paper, three

onvolutional scales are implemented at each stage. In this way,

he generator can catch the gait features with different scales at

ach stage. Detailed structure of the global stream GAN is listed in

able 1 . 

.4. Part stream 

Although the global stream can learn to convert the full gait

mages, it may ignore some parts, e.g., the part of foot in gait im-

ge may be difficult to convert, due to the fast moving of the sub-

ect. One possible solution for this is to convert each part sepa-

ately. Following the work of [41] in person ReID, we adopt rigid

ody parts to learn part-based feature. To this end, we evenly split

he original gait image into three parts: the upper part (containing

ead and shoulders), middle part (containing the chest and stom-

ch) and the lower part (containing the legs and feet), as shown

n Fig. 2 . We hope to restore the details of the three parts in local

tream. Therefore, each part can be well learned by a separate GAN
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Fig. 4. Illustration of the multi-scale context-aware network. At each convolutional stage, there are three scaled filters. Though these filters are with the same kernel size, 

they have different dilations which can make different filter scales. Details of each MSCAN stage can refer to Table 2 . 

Table 1 

Model architecture of the global-stream GAN and part-stream GAN. K: Kernel size, S: Stride, P: 

Padding, Rate: Dilated rate of dilated convolution, Output: - ∗- ∗- is the each convolution channel num- 

ber(each layer have three convolution with different dilated rate besides the first layer and last layer, 

and the three convolution have the same channel number), width, height, respectively. 

Global-stream GAN Part-stream GAN 

Layer K S P Rate Output Layer K S w/h P w/h Output 

image – – – – 1 ∗126 ∗126 Image – – – 1 ∗42 ∗126 

conv1 5 2 2 1 48 ∗63 ∗63 conv1 5 2 2 48 ∗19 ∗63 

conv2 3 2 1 1/2/3 32 ∗32 ∗32 conv2 3 2 1 64 ∗10 ∗32 

conv3 3 2 1 1/2/3 32 ∗16 ∗16 conv3 3 2/1 1 64 ∗10 ∗16 

conv4 3 2 1 1/2/3 32 ∗8 ∗8 conv4 3 2 1/2 64 ∗6 ∗8 

conv5 3 2 1 1/2/3 32 ∗4 ∗4 conv5 3 2 1/2 64 ∗4 ∗4 

deconv1 3 2 0 1/2/3 32 ∗9 ∗9 deconv1 3 2 0 64 ∗9 ∗9 

deconv2 3 2 1 1/2/3 32 ∗17 ∗17 deconv2 3 2 1/3 64 ∗13 ∗17 

deconv3 3 2 1 1/2/3 32 ∗33 ∗33 deconv3 3 2/1 1 64 ∗13 ∗33 

deconv4 3 2 2 1/2/3 32 ∗63 ∗63 deconv4 3 2 2/3 64 ∗21 ∗63 

deconv5 4 2 1 1 1 ∗126 ∗126 deconv5 4 2 1 1 ∗42 ∗126 

Table 2 

Experimental results of each probe views on CASIA-B. For each probe view, we 

compare it with the samples in gallery and average the 10 cross-view results as 

its result. 

Probe PCA Pixel-wise Global-stream Part-stream Two-stream 

0 ° 17.6 41.7 40.8 36.5 47.7 

18 ° 21.5 61.5 57.9 49.0 65.6 

36 ° 20.1 66.5 63.3 51.5 70.4 

54 ° 22.5 67.0 66.0 53.3 71.6 

72 ° 26.7 61.6 59.3 48.7 68.3 

90 ° 25.7 54.5 55.1 41.7 57.1 

108 ° 27.9 65.3 62.1 51.7 67.6 

126 ° 25.7 67.7 64.0 55.6 70.9 

144 ° 22.0 69.4 64.0 50.9 69.5 

162 ° 21.8 60.4 57.0 49.5 66.3 

180 ° 16.8 47.5 42.9 37.8 50.0 

Mean 22.6 60.3 57.5 47.8 64.1 
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stream. Detailed structure of the part stream GAN is also listed in

Table 1 . 

3.5. GAN Loss 

The entropy loss is added to the discriminator to determine

whether the input of the discriminator is a real or generated gait

image. This loss can facilitate the generator to generate an image

close to the real gait image with a standard view. The loss function

of the real-or-fake discriminator is as follows: 

L R/F 
D 

= −((1 − y ) log (1 − D R/F (G (I))) + y log D R/F (x )) (1)

Where x is the real data, and y is the label for the discrimina-

tor to recognize the real or fake input, i.e., y equals to 1 for the

real input and 0 for the generated input. Following the same train-
ng strategy with [9,31] , we train the generators and discriminators

teratively. 

.6. Pixel-wise constraint 

We add the pixel-wise loss to restrain the generators of both

he global and three part streams. This loss is very similar with the

CN [42] model, which can accurately constrain the image gener-

ted by the generator at the pixel level. Although this constraint

ay have a slight side effect on the distribution learned by the

enerator, it is helpful for accurate gait image transformation and

aking the generator more stable in training phase. The pixel-wise

oss of one image can be denoted as follows: 

 pixel = 

w ∑ 

i =1 

h ∑ 

j=1 

∣∣x ′ − x 
∣∣ (2)

Where w and h are the width and height of the image, respec-

ively, and x ′ is the generated image. 

.7. Identity discriminator 

Besides the discriminators of TS-GAN, we add the identity dis-

riminator to recognize the pedestrian’s identity. We combine the

lobal and local streams to train a total identity discriminator,

hich can learn better features than the two separated features.

or the fusion of global and local stream, we proposed two differ-

nt network architectures. 

Early-fusion. The first one is early fusion, we extract global fea-

ures and part features from the last layer of generators of global

tream and part stream to concat in channel, then send them to a

otal identity discriminator. 

Late-fusion. The second one is late fusion, two identity dis-

riminators are respectively connected to the generators of global
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Fig. 5. Comparison of baseline PCA, early-fusion and late-fusion under the probe views 54 °, 90 ° and 126 °. 
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tream and part stream, as shown in Fig. 2 . At the top of each

iscriminator is a soft-max classifier. We first extract features

eparately from the penultimate layer of the global-stream iden-

ity discriminator and part-stream identity discriminator, then we

oncatenate the global-stream and the part-stream features from

hannel direction. Finally we send the fusion feature to the to-

al soft-max classifier to learn identity. In our experiments, we

rst train the two separate classifiers, then train the fusion one.

n the testing phase, we extract the features from the last layer of

he classifiers and compare the similarities between the probe and

allery samples to recognize human identities. 

We select the popular and mostly used gait recognition ap-

roach proposed in [6] which applies Principal Component Anal-

sis (PCA) to GEI as the baseline method. The performance of the

wo fusion methods and baseline are described in Fig. 5 . We can

ee that late fusion is better than early fusion and baseline. There-

ore, in the subsequent experiments, we use the method of late

usion to fuse global stream and part stream. 

.8. Objective function 

The above three kinds of losses can be corporated jointly. The

bjective function used in this paper is the weighted sum of these

hree losses, and the weights of them are varying at each training

hase. The formulation of total loss is as follows: 

 all = ∂ 1 L GAN + ∂ 2 L pixel + ∂ 3 L ID (3)

here L GAN , L pixel and L ID are the losses of the Two-Stream GAN,

ixel-wise constraint and the identity discriminator, ∂ # is the

yper-parameter. In the pre-training phase, we train the genera-

or to learn general view transformation, regardless of identity, so

e set ∂ 1 = 0 , ∂ 2 = 1 , ∂ 3 = 0 . We alternately and iteratively train

he generator and discriminator when training GAN. We first set

 1 = 1 , ∂ 2 = 0 . 01 , ∂ 3 = 0 to train the generator of GAN model. We

hen set ∂ 1 = 1 , ∂ 2 = 0 , ∂ 3 = 0 to train the discriminator of GAN

odel. Note that above training is to learn a general view trans-

orm model which has none identity related information. Thus
Fig. 6. Examples of the CASIA-
hen training the identity discriminator, we set ∂ 1 = 0 , ∂ 2 = 0 . 1 ,

 3 = 1 . 

. Experiments 

We evaluate the proposed method and compare it with several

tate-of-the-art methods on two large-scale currently available gait

atabases: CASIA-B [3] and OU-ISIR [4] . 

.1. Datasets 

.1.1. CASIA-B [3] 

This gait database was established by the Institute of Automa-

ion, Chinese Academy of Sciences(CASIA). It provides the gait

ideos, silhouette squences and GEI images. There are 124 sub-

ects in this dataset, and each of them has 10 gait sequences. For

ach subject, 6 sequences were taken under natural walking con-

itions (NM#1-6), 2 sequences were taken when walking with a

ag (BG#1-2), and 2 sequences were taken when walking with a

oat (CL#1-2). There are 11 views for each condition and viewing

ngles range from 0 ° to 180 ° with an adjacent interval view of 18 °.
he examples are shown in Fig. 6 . 

.1.2. OU-ISIR [4] 

The OU-ISIR gait database was created by the Institute of Sci-

ntific and Industrial Research (ISIR), Osaka University (OU). The

xamples are shown in Fig. 6 . There are 2,135 male subjects and

,872 female subjects (in total 4,007) in this database. It should be

oted that the age of subjects ranges from 1 to 94 years. Each sub-

ect has 2 gait sequences as gallery and probe, both of which were

aken under normal walking conditions. There are 4 views in each

equence, i.e., 55 °, 65 °, 75 °, and 85 °. Following the experiment in

7] , we select a subset with 1,912 subjects for evaluation. The first

56 subjects are in the training set and the left 956 are for testing.

.2. Implementation details 

a) Model parameters: The detailed network structures of the

global-stream and part-stream generators are shown in
B and OU-ISIR datasets. 
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Fig. 7. Comparison of different part divisions. We evaluate our method with three or nine parts. 
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Table 1 and, respectively. The global stream takes a gait im-

age with a size of 126 × 126 as input, whereas the part stream

takes cropped parts with a size of 42 × 126. 

b) Training: Our experiments are conducted on the Caffe frame-

work. The batch gradient descent method is adopted to min-

imize the objective loss. We set the size of each batch to 32,

the momentum to 0.9, and a weight decay of 0.0 0 05. When

training the generator, the initial learning rate is 10 −5 , whereas

tuning it to 0.001 when training the discriminators and 0.01 for

training the identity discriminator. As described in Section 3.10 ,

we train each phase roughly 2 × 10 4 iterations. 

4.3. Effectiveness of Two-Stream GAN 

We first evaluate the effectiveness of our method on the CASIA-

B dataset. As this work focuses on cross-view gait recognition, we

implement the experiments on the NM sequences with all the

views. The first 74 subjects under normal walking conditions, i.e.,

NM#1-6 are in the training set, the left 50 subjects are in the

testing set. In the testing phase, we set the NM#1-4 as gallery,

NM#5-6 as probe. In detail, we use a total of 4884 training sam-

ples in CASIA-B dataset. In order to find a suitable way to divide

the body GEI into parts, we exploit two different manners. One
Fig. 8. Comparison of the models with or without the multi-scale context-aw
s to divide the GEI evenly into three parts from top to bottom

nd the other one is to further divide the GEI into nine parts from

eft to right. We perform this evaluation on CASIA-B dataset. The

xperimental results are listed in Fig. 7 . The experimental results

how that the division of GEI (part-stream) into more parts can

ot increase the performance greatly. Because the gait energy im-

ge is different from other images, the division of images from

ther fields into more parts may focus on more local information,

uch as colors, textures, and so on, while gait energy image do

ot contains such information. Therefore, dividing the gait energy

mage into 3 parts can maintain enough local details. In order to

erify the effectiveness of multi-scale context-aware unit, we im-

lement experiments to evaluate the performance of the global-

tream model with or without the multi-scale unit. The experi-

ental results are listed in Fig. 8 . It can be concluded that the per-

ormance of GAN with multi-scale context-aware unit has been ob-

iously improved. Because the multi-scale context-aware network

an learn gait features form context with different scales, these

eatures contain more scale-aware information, which may be crit-

cal for improving recognition accuracy. We use the two-stream

enerators with pixel-wise loss to generate the gait images with

he standard view, and report the result in Table 2 . The experiment

esult means Two-Stream GAN is more effective than two-stream
are unit. This experiment is implemented with the global-stream GAN. 
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Fig. 9. The cross-view gait recognition results of global-stream, part-stream, and two-stream. The models are trained on the first 74 subjects on CASIA-B, and the models 

are tested on the left subjects. 

Fig. 10. Visualization of the generated images by TS-GAN. The first and the last rows are the input images and labels, respectively. It can be seen that the generated images 

by TS-GAN look satisfying. 

g  

c  

e  

i  

a  

w

 

t  

t  

f  

t  

T  

b  

t  

f  

f  

v  

s  

T  

c  

w  

t  

s  

t

 

F  

T  

i  

d  

r  

t  

v  

T  

G  

f  

s

4

 

i  

a

4

 

o  

G  

G  

t  

T  

m  

a  

p

enerators with pixel-wise loss. Because GAN is very powerful, it

an learn the distribution of the real data through alternating it-

rative training between generator and discriminator. Therefore,

t is reasonable that our TS-GAN model with pixel-wise loss can

chieve better performance than the two-stream generators model

ith pixel-wise loss. 

To test the cross-view performance of each stream, we train

he two streams separately, and report the results of them. Fur-

hermore, we jointly train the two streams via fusing the features

rom both the global and part streams, the result becomes better

han that of single stream. The experimental results are listed in

able 2 . It is obvious that our proposed methods achieve much

etter performance than the baseline method. Although the fea-

ure of the part stream is a slight weaker than the global one, the

usion feature of the two streams outperforms the single-stream

eature. This result shows that it is effective to use GAN to learn

iew-invariant gait features, and fusing the any global and the part

treams can further boost the performance. The performance of

wo-Stream GAN is better than that of the single-stream GAN, be-

ause the global stream could learn to transform the view of the

hole image, while the part-stream GAN could learn the local de-

ails which are difficult to transform. It also indicates that the fu-

ion of two streams can make full use of both global and local fea-

ures to achieve better performance. 

The view-to-view results of three feature models are shown in

ig. 9 . We can draw three main conclusions from these results: (a)

hough a powerful GAN is adopted to learn to transfer the gait
mage, e.g., GEI, the accuracies will become better when the view

ifference becomes smaller. It shows that the cross-view gait

ecognition is still challenging. (b) Fusing features can intergrate

he advantages from each stream, especially for the case of large

iew differences. We also visualize the generated gait images of

S-GAN for intuitive understanding. As shown in Fig. 10 , the TS-

AN can transform GEIs of any views to a standard view. It can be

ound that the images generated by the TS-GAN are clear and look

atisfying. 

.4. Comparison with state-of-the-art methods 

We further verify the performance of our method via compar-

ng with the state-of-the-art cross-view gait methods on CASIA-B

nd OU-ISIR. 

.5. Comparison on CASIA-B 

We compare the TS-GAN with several recently proposed state-

f-the-art methods, including C3A [23] , ViDP [24] , SPAE [29] and

aitGAN [9] . We follow the same experimental setting with Gait-

AN [9] , which trains the model with the first 62 subjects and

ests on the left subjects. The experimental results are listed in

able 3 . It proves that our method outperforms the compared

ethods and is 3.4 percentage points higher than GaitGAN [9] on

verage, because of the introduction of pixel-wise loss and the

art-stream which could learn detail informations. 
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Fig. 11. The comparison of our method with GEINet [7] on the CASIA database. 

Table 3 

Comparison with the state-of-the-art methods on 

CASIA-B. All the models are trained on the first 62 

subjects, and tested on the left subjects. 

Method Probe angle Mean 

54 ° 90 ° 126 °

C3A [23] 56.6 54.7 58.3 56.6 

ViDP [24] 64.2 60.4 65.0 63.2 

SPAE [29] 63.3 62.1 66.3 63.9 

GaitGAN [9] 64.5 58.2 65.7 62.8 

Our method 67.3 63.1 68.2 66.2 

Table 4 

Comparison with the state-of-the-art methods on OU-ISIR. All the mod- 

els are trained on the first 956 subjects, and tested on the left subjects. 

Gallery view Method Probe view 

55 ° 65 ° 75 ° 85 °

55 ° wQVTM [10] – 78.3 64 48.6 

TCM + [25] – 79.9 70.8 54.5 

GEINet [7] (94.7) 93.2 89.1 79.9 

Our method (91.2) 88.7 84.7 76.5 

65 ° wQVTM 81.5 – 79.2 67.5 

TCM + 81.7 – 79.5 70.2 

GEINet 93.7 (95.1) 93.8 90.6 

Our method 90.2 (93.7) 91.7 87.4 

75 ° wQVTM 70.2 80.0 – 78.2 

TCM + 71.9 80.0 – 79.0 

GEINet 90.1 94.1 (95.2) 93.8 

Our method 85.9 91.9 (92.2) 91.1 

85 ° wQVTM 51.1 68.5 79.0 –

TCM + 53.7 73.0 79.4 –

GEINet 81.4 91.2 94.6 (94.7) 

Our method 78.6 87.7 90.1 (93.1) 
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4.6. Comparison on OU-ISIR 

As this dataset contains only 4 views, it is easier to achieve

high accuracies. The experiment settings are the same as GEINet

[7] , and we considered 7648 training sample in OU-ISIR dataset.

We compare with the famous methods of the view transforma-

tion model [10] and transformation consistency measures [25] on

this dataset. VTM, TCM and GEINet are the well-known and classic

methods. The view-to-view results are listed in Table 4 . The pro-

posed TS-GAN performs better than VTM [10] and TCM [25] in

almost all cross-view conditions, while TS-GAN performs slightly
orse than the pioneer method GEINet [7] . It demonstrates the

ffectiveness of the proposed Two-Stream GAN for cross-view

ait recognition. For more comparison with GEINet, we also re-

mplement the GEINet method on CASIA-B dataset. The experimen-

al setup is the same as described in Section 4.3 . We compare the

erformance of GEINet and our TS-GAN in Fig. 11 . It shows that the

erformance of TS-GAN is better than GEINet on CASIA-B. By ana-

yzing the results of the two experiments on OU-ISIR and CASIA-B,

e can conclude that TS-GAN is more stable on the database with

arge view conversion difference, while GEINet has a good perfor-

ance on the dataset with large number of ID. 

.7. Discussion 

The comparison experiments of TS-GAN with and without

ixel-wise loss have proven the effectiveness of GAN based view

ransformation. As a powerful generation model, the learnt dis-

ribution by GAN is more close to the distribution of the true

ait data, thus GAN is a suitable selection for gait view conver-

ion. However, our method also has some limitations. We will dis-

uss those challenges from two main aspects. Firstly, compare with

he GEINet method, our method performs well on the recognitions

ith large view difference, while performs worse on the dataset

ith large amount IDs such as OU-ISIR. We need to increase the

eneralization ability of our method for such large-scale dataset.

econdly, the recognition accuracy of cross-view conditions are

till not satisfying which need further improvement for the GAN

nit. We will explore to address those challenges in our future

orks. 

. Conclusion and future work 

In this paper, we have proposed a two-stream generative adver-

arial network (TS-GAN) for cross-view gait recognition. The pro-

osed TS-GAN can learn view invariant gait features from both of

he global and part streams, indicating both the identical and local

etails. We also have added a pixel-wise loss along with TS-GAN

o restore the gait details in pixel-level. In addition, we have intro-

uced the multi-scale context-aware unit in the identity discrimi-

ator to learn better gait features. We have evaluated the proposed

ethod on two large gait databases: CASIA-B and OU-ISIR. Experi-

ental results have shown that our approach is effective and out-

erforms the compared state-of-the-art methods. 

In the future, we will use this model to deal with more chal-

enging problems in gait recognition field, such as gait recognition
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ith varying speeds, different clothing conditions and carrying

ags. At present, there are few large gait databases related to speed

arying. Therefore, we will consider establishing such a speed-

elated gait database, and further improve our methods. In addi-

ion, we will try to explore the more sophisticated fusion manner

f TS-GAN to further improvement the performance. 
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