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A B S T R A C T

Real-time detection of apples in orchards is one of the most important methods for judging growth stages of
apples and estimating yield. The size, colour, cluster density, and other growth characteristics of apples change
as they grow. Traditional detection methods can only detect apples during a particular growth stage, but these
methods cannot be adapted to different growth stages using the same model. We propose an improved YOLO-V3
model for detecting apples during different growth stages in orchards with fluctuating illumination, complex
backgrounds, overlapping apples, and branches and leaves. Images of young apples, expanding apples, and ripe
apples are initially collected. These images are subsequently augmented using rotation transformation, colour
balance transformation, brightness transformation, and blur processing. The augmented images are used to
create training sets. The DenseNet method is used to process feature layers with low resolution in the YOLO-V3
network. This effectively enhances feature propagation, promotes feature reuse, and improves network perfor-
mance. After training the model, the performance of the trained model is tested on a test dataset. The test results
show that the proposed YOLOV3-dense model is superior to the original YOLO-V3 model and the Faster R-CNN
with VGG16 net model, which is the state-of-art fruit detection model. The average detection time of the model is
0.304 s per frame at 3000× 3000 resolution, which can provide real-time detection of apples in orchards.
Moreover, the YOLOV3-dense model can effectively provide apple detection under overlapping apples and oc-
clusion conditions, and can be applied in the actual environment of orchards.

1. Introduction and related works

Nowadays, labour in farms and orchards primarily relies on skilled
farmers. Manual work consumes time and increases production costs,
and workers that lack knowledge and experience make unnecessary
mistakes. With the developments in precision agriculture and in-
formation technology, crop imaging has become an important means of
gathering crop growth information (Zhao et al., 2016). Intelligent
agriculture has become a popular concept (Tyagi, 2016) and image
information can be used to accurately judge crop growth and estimate
crop yield (Wang et al., 2013). The automation of agricultural pro-
duction also makes it possible to continuously monitor crop growth and
nutrition status, in order to carry out independent agricultural man-
agement and control.
Fluctuating illumination, complex background, dense fruit dis-

tribution, overlapping fruit, branches and leaves, the camera’s viewing
angle, distance, and other factors in orchards can have certain impacts
on target detection. Many researchers have provided and improved

different algorithms for crop detection and localization. Hamuda et al.
(2018) used Kalman filtering and the Hungarian algorithm to detect
crops in the field. These experiments were conducted without over-
lapping crops. The background in the images was soil, which is rela-
tively simple, thus the method is not suitable for detecting densely
distributed fruit with occlusion. Lu and Sang (2015) proposed a method
for citrus fruit recognition under varying canopy illumination based on
colour and contour information. This method could adapt to the natural
environment with complex illumination and background, but the de-
tection performance is poor when the citrus is small in the image.
Linker et al. (2012) proposed a method for detecting apples in natural
lighting. This method uses colour and smoothness to detect a set of
pixels with high probability belonging to apples and form a “seed area”.
The method then determines whether the region contains an apple
according to the coincidence ratio between the “seed area” and an apple
model. This method can effectively detect a region that contains an
apple, but it will produce large error in the case of dense distribution
and large overlap of apples.
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With the development of machine learning, deep learning tech-
nology has been widely used in agriculture (Kamilaris and Prenafeta-
Boldú, 2018). Deep learning can be used for crop classification (Lee
et al., 2017; Tang et al., 2017; Zhang et al., 2016), crop image seg-
mentation (Arribas et al., 2011; Dias et al., 2018), crop target detection
(Bargoti and Underwood, 2016; Yamamoto et al., 2014), and other
tasks (Rahnemoonfar and Sheppard, 2017). Crop classification is the
basis of crop detection. Zhang et al. (2017) designed a 13-layer con-
volutional neural network (CNN) for fruit classification with accuracy
of 94.94%. This algorithm is the state-of-art method in fruit category
classification. Target detection refers to category classification and
target localization in an image. Image segmentation based on deep
learning is one of the target detection methods. The number of target
areas in the image can be calculated and their locations can be obtained
through target area segmentation. Chen et al. (2017) used blob detec-
tors based on fully connected CNNs to extract candidate regions in the
image, segment object areas, and calculate the number of fruits using a
subsequent CNN counting algorithm. Dyrmann et al. (2017) used a
fully-connected CNN to detect weeds automatically when many leaves
in the image were blocked. In order to segment the target area more
accurately in a complex natural environment, Dias et al. (2018) used
CNN and support vector machine (SVM) methods to extract the char-
acteristics of apple blossoms automatically against a complex back-
ground; the method produced relatively accurate apple blossom area
segmentation results. Image segmentation methods based on deep
learning have produced good results in crop area segmentation. How-
ever, these methods cannot accurately segment the regions of each
target in crops with serious overlap. Faster R-CNN (Ren et al., 2016)
uses the region proposal network (RPN) method to detect a region of
interest (RoI) in the image. Then a classifier is used to classify bounding
boxes, and fine tuning is used to process the bounding boxes. Finally,
the target can be detected accurately. It provides guiding significance
for crop detection, crop yield estimation, crop growth judgement and
agricultural management. Bargoti and Underwood (2016), Inkyu et al.
(2016) used the Faster R-CNN method to detect a variety of fruits and
produced good results. Faster R-CNN with VGG16 net (Simonyan and
Zisserman, 2014) is the state-of-art method in fruit detection (Kamilaris
and Prenafeta-Boldú, 2018). However, Faster R-CNN consists of two
parts: region proposal networks (RPN) and classification networks, thus
the detection speed is slow and cannot produce real-time results with
high image resolution.
The You Only Look Once (YOLO) method (Redmon et al., 2016;

Redmon and Farhadi, 2017, 2018) unifies target classification and lo-
calization into a regression problem. A YOLO network does not require
RPN, and it directly performs regression to detect targets in the image.
The network provides much faster detection. The state-of-art version
(YOLO-V3) not only has high detection accuracy and speed, but also
performs well with detecting small targets. However, the YOLO-V3
model has not been widely used for fruit detection.
Feature maps are gradually shrinking due to the use of convolution

and down-sampling operations in deep neural networks. The DenseNet
architecture (Huang et al., 2017) is proposed for using the input fea-
tures of neural networks more efficiently. In the DenseNet architecture,
each layer uses the feature maps from all preceding layers as inputs, and
its own feature map is used as the input of all subsequent layers. These
feature maps are connected by depth concatenation. The basic structure
of DenseNet primarily consists of two components: a dense block and a
transition layer. The dense block is a group of densely connected fea-
ture maps. The layer between two adjacent dense blocks is referred to
as the transition layer and change feature map sizes via convolution and
pooling. The application of DenseNet in neural network strengthens
feature propagation, which can effectively solve the vanishing gradient
problem and improve the classification accuracy of neural networks.
While viewing images of apples, the illumination conditions in

orchards are inconstant, the background is complex, the camera’s
viewing distance is not fixed, the apples are densely distributed and

overlap, and ubiquitous branches and leaves shelter fruit. All these
problems present great challenges to detecting apples in orchards. The
sizes, colours, and cluster densities of apples in various growth stages
are also different. Apples are small, green, and densely clustered when
they are still young. During the expansion period, the volume of an
apple becomes larger, its colour changes, and the cluster density de-
creases due to pruning and other agricultural activities. In the ripe
stage, apples are large, are usually red or reddish yellow, and are
sparsely distributed. Traditional methods are not suitable for detecting
apples during different growth stages in complex and changing en-
vironments. There is also a trade-off between the accuracy and real-
time performance of deep learning methods. In order to better solve
these problems, the state-of-art YOLO-V3 algorithm (Redmon and
Farhadi, 2018) is used for detecting apples in real-time in this study. In
order to improve the detection performance of the YOLO-V3 network,
DenseNet is used to optimize feature layers with low resolution. Images
of apples in the main growth stages, including the young, expanding,
and ripe stages, are collected and used as input data for training the
neural network. The trained neural network is used for detecting apples
and identify their growth stages.
The rest of the paper is organized as follows. Section 2 introduces

the methods for pre-processing the image dataset, including image ac-
quisition, image data augmentation, and the creation of image datasets.
Section 3 introduces the improved YOLO-V3 algorithm, which in-
corporates the DenseNet method. Section 4 introduces the relevant
experiments and a discussion of the experimental results. Finally, the
conclusions and prospects of this paper are described.

2. Image data pre-processing

2.1. Image data acquisition

In this study, image acquisition was conducted using a camera with
3000× 4000 pixel resolution during different growth stages. The
orchards are located in Lingbao, Henan, China.
The image data used in this paper were collected in apple orchards

during cloudy and sunny weather conditions. The collection periods
included 8 a.m., 1 p.m., and 5: 30 p.m. The illumination conditions
included front-lighting, backlighting, side-lighting, and scattered
lighting. During image acquisition, the camera’s viewing direction was
set parallel to the sunlight illumination direction in order to simulate
front-lighting. The camera was aimed antiparallel to the sunlight illu-
mination direction to simulate backlighting. The camera was aimed
perpendicular to the sunlight illumination direction to simulate side-
lighting. Images were also gathered in cloudy conditions to simulate
scattered lighting.
320 images of apples were collected from orchards during each of

the three growth stages. Half of the apple images during each growth
stage were randomly selected for use in the training set. Considering
that the camera’s viewing angles will affect the detection performance,
some images were collected from multiple viewing angles during image
acquisition. Among these selected 480 images, 94 images were col-
lected while changing the viewing angle, including images of 30 young
apples, 32 expanding apples, and 32 ripe apples.
These 480 images were then expanded to 4800 images using data

augmentation methods, yielding the training dataset. The training da-
taset is used to train the detection model. The remaining 480 images are
used as the test dataset to verify the detection performance of the
YOLOV3-dense model.

2.2. Image data augmentation

Apples in orchards were detected and the growth stages of apples
were judged. Since the angle and intensity of sunlight illumination
varies greatly during the day, whether the neural network can process
the images collected at different time of the day depends on the
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integrity of the training dataset. In order to enhance the richness of the
experimental dataset, the collected images were pre-processed in terms
of colour, brightness, rotation, and image definition, and the dataset
was augmented as shown in Fig. 1.

2.2.1. Data augmentation: image colour
The human visual system can determine colour invariance of the

surface of an object under changing light and imaging conditions, but
imaging devices do not have such colour invariance. Different lighting
conditions will lead to a certain deviation between the image colour
and real colour. The gray world algorithm (Lam, 2005) was used to
eliminate the influence of lighting on colour rendering. The gray world
algorithm is based on the gray-world hypothesis, which holds that the
average values of R, G, and B components tend to the same grey value
for an image exhibiting a large number of colour changes. Physically,
the gray world algorithm assumes that the average reflection of light
from natural objects is generally a fixed value, which is approximately
gray. The colour balance algorithm was used to apply this hypothesis to
the images in the training set. The influence of ambient light can be
eliminated from the image, yielding the original image.

2.2.2. Data augmentation: image brightness
The brightness of images in the training set was processed as fol-

lows. Three values were randomly selected from lmin to lmax and were
used to adjust the brightness of the original images, and the three new
results were added to the training set. If the image brightness is too high
or too low, bounding boxes will be difficult to draw during manual
annotation because the edge of the target is unclear. During training,
these training set images will have a detrimental influence on the
performance of the detection model. In order to avoid generating such
images, an appropriate range of image brightness transformations was
selected depending on whether the target edge can be accurately
identified during manual annotation, i.e., lmin= 0.6 and lmax =1.4. This
method can simulate the situation of orchards under different illumi-
nation intensities. These values compensate for shortcomings of the
neural network, which is not robust to various illumination intensities
caused by the concentrated time of image acquisition.

2.2.3. Data augmentation: image rotation
To further expand the image dataset, the original images were

rotated by ° °90 , 180 , and °270 and mirrored. The rotated images can
also improve the detection performance of the neural network.

2.2.4. Data augmentation: image definition
The acquired images may not be clear due to the camera’s long

viewing distance, incorrect focus, or camera movement. Indistinct
images can also affect the detection results of the neural network.
Therefore, in this paper, images augmented by colour, brightness, and
rotation were randomly blurred to simulate indistinct images. The ro-
bustness of the detection model will be further enhanced by using in-
distinct images as samples.

2.3. Images annotation and dataset production

In order to better compare the performance of different algorithms,
images in the training set were converted to PASCAL VOC format. The
lengths of the training set images were rescaled to 500 pixels and the
widths were adjusted accordingly to maintain the original aspect ratio
while creating the training set. Manual annotation was applied after the
images were numbered. Bounding boxes were drawn and the categories
were classified manually. Positive samples with insufficient or unclear
pixel area were not labelled to prevent over-fitting in the neural net-
work. In the case of occlusion, a target whose occlusion area was
greater than 85% and the target at the edge of the image with less than
15% area were not labelled. The completed dataset is shown in Table 1.

3. Methodologies

3.1. YOLO-V3

The YOLO-V3 (Redmon and Farhadi, 2018) network is evolved from
the YOLO (Redmon et al., 2016) and YOLO-V2 (Redmon and Farhadi,
2017) networks. Compared with the Faster R-CNN network, the YOLO
network transforms the detection problem into a regression problem. It
does not require a proposal region, and it generates bounding box co-
ordinates and probabilities of each class directly through regression.
This greatly increases the detection speed compared to Faster R-CNN.
The YOLO detection model is shown in Fig. 2. The network divides

each image in the training set into S× S ( =S 7) grids. If the center of
the target ground truth falls in a grid, then the grid is responsible for
detecting the target. Each grid predicts B bounding boxes and their
confidence scores, as well as C class conditional probabilities. Con-
fidence is defined as follows:= × ∈Confidence p Object IoU p Object( ) , ( ) {0, 1}r pred

truth
r (1)

When the target is in the grid, p Object( )r =1 and 0 otherwise. IoUpred
truth is

used to denote the coincidence between the reference and the predicted
bounding box. The confidence reflects whether the grid contains objects
and the accuracy of the predicted bounding box when it contains ob-
jects. When multiple bounding boxes detect the same target, YOLO uses
the non-maximum suppression (NMS) method to select the best
bounding box.
Although YOLO provides greater speed compared with Faster R-

CNN, it has a large detection error. In order to solve this problem,
YOLO-V2 introduces the idea of the “anchor box” in Faster R-CNN and
uses k-means clustering method to generate suitable priori bounding
boxes. Thus, the number of anchor boxes required to achieve the same

Fig. 1. Image augmentation methods: (a) original image, (b) °90 clockwise
rotation, (c) °180 clockwise rotation, (d) °270 clockwise rotation, (e) horizontal
mirror, (f) colour balance processing, (g-i) brightness transformation, and (j)
blur processing.

Table 1
The number of images generated by data augmentation methods.

Original data Color Brightness Rotation Definition Total

Number of young apple images 160 160 480 640 160 1600
Number of expanding apple images 160 160 480 640 160 1600
Number of ripe apple images 160 160 480 640 160 1600
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intersection over union (IoU) results decreases. YOLO-V2 improves the
network structure and uses a convolution layer to replace the fully
connected layer in the output layer of YOLO. YOLO-V2 also introduces
batch normalization, a high resolution classifier, dimension clusters,
direct location prediction, fine-grained features, multi-scale training,
and other methods that greatly improve the detection accuracy com-
pared with YOLO.
YOLO-V3 is an improved version of YOLO-V2. It uses multi-scale

prediction to detect the final target, and its network structure is more
complex than YOLO-V2. YOLO-V3 predicts bounding boxes on different
scales, and multi-scale prediction makes YOLO-V3 more effective for
detecting small targets than YOLO-V2.

3.2. Densely connected neural networks

The feature maps are reduced while training the neural network due
to convolution and down-sampling, and the feature information is lost
during transmission. DenseNet was proposed to make more effective
use of feature information (Huang et al., 2017). It connects each layer
to other layers in feedforward mode, thus layer l receives all the feature
maps of the preceding layers … −x x x, , , l0 1 1 as input.= … −x H x x x[ , , , ]l l l0 1 1 (2)

where … −x x x[ , , , ]l0 1 1 is a splice of the feature maps of layers… −x x x, , , l0 1 1, and Hl is a function used to process the spliced feature
maps. This allows DenseNet to mitigate gradient vanishing, enhance
feature propagation, facilitate feature reuse, and greatly reduce the
number of parameters.

3.3. The proposed algorithm

Fig. 3 shows how the Darknet-53 architecture of YOLO-V3 is used as
the basic network architecture, and DenseNet is used instead of the
original transfer layers with lower resolution to enhance feature pro-
pagation and facilitate feature reuse and fusion.
The specific network parameters of YOLOV3-dense are shown in

Fig. 4. In order to better process high resolution images, the input image
is first resized to 512× 512 pixels, replacing the original images with
256× 256 pixels. Then the 32× 32 and 16× 16 down-sampling layers
in the improved network are replaced by the DenseNet structure. In this
paper, the transfer function Hl uses the function BN-ReLU-Conv(1× 1)-
BN-ReLU-Conv(3× 3), which is a combination of batch normalization
(BN), rectified linear units (ReLU), and convolution (Conv). Hl provides
nonlinear transformation of … −x x x, , , l0 1 1 layers. xi consists of 64 fea-
ture layers, each with 32× 32 resolution. H1 applies BN-ReLU-Conv
(1× 1) nonlinear operation on x0, and then performs BN-ReLU-Conv
(3× 3) operation on the result. H2 applies the same operation on the

feature map formed by x x[ , ]0 1 . The result x2 and x x[ , ]0 1 are spliced into
x x x[ , , ]0 1 2 and used as the input to H3. The result x3 and x x x[ , , ]0 1 2 are
spliced into x x x x[ , , , ]0 1 2 3 , as the input of H4. Eventually, the feature
layer x x x x x[ , , , , ]0 1 2 3 4 continues to propagate forward. In the layers
with 16× 16 resolution, feature propagation and feature layer splicing
are also performed as mentioned above. Finally, the feature layer is
spliced into 16× 16× 1024 and is propagated forward.
During training, when the image features are transferred to the

lower resolution layers, the latter feature layer will receive the features
of all the feature layers in front of it in DenseNet, thus reducing feature
loss. In this way, features can be reused between convolution layers
with low resolution; the feature usage rate increases and the usage ef-
fect of features improves.
Finally, the YOLOV3-dense model proposed in this paper predicts

bounding boxes at three different scales: 64× 64, 32 × 32, and 16× 16.
It also classifies target categories to provide apple detection.

4. Experiments and discussion

The YOLOV3-dense detection model used in this study was modified
using the Darknet framework (Redmon and Farhadi, 2018). The de-
tection models were trained and tested on an NVIDIA Tesla V100
server. The network initialization parameters are shown in Table 2.
In order to improve the detection accuracy of the model and to

adapt the input required for the Darknet framework, the input images
were adjusted to 512× 512 pixels. Taking into account the memory
constraints of the server, the batch size was set to 8 in this paper.
70,000 training steps were used in order to better analyse the training
process. Parameters such as momentum, initial learning rate, weight
decay regularization, and other parameters referred to the original
parameters in the YOLO-V3 model. The model was trained after de-
fining the training parameters. The learning rate decreased to 0.0001
after 40, 000 steps and to 0.00001 after 50, 000 steps.
In this paper, a series of experiments with the trained YOLOV3-

dense model were conducted with the test images to verify the per-
formance of the algorithm. Images with 3000× 3000 resolution were
used for testing. The related indicators for evaluating the effectiveness
of the neural network models are as follows:
A. Precision, Recall, and F1 Score
For binary classification problems, samples can be divided into four

types: true positive (TP), false positive (FP), true negative (TN), and
false negative (FN), according to the combinations of the true class and
predicted class of the learner. The confusion matrix for the classifica-
tion results is shown in Table 3.
Precision(P) and recall(R) are defined as follows:

= +P TP
TP FP (3)

= +R TP
TP FN (4)

The precision-recall curve, called P-R curve for short, can be ob-
tained by using the precision ratio as vertical axis and the recall ratio as
the horizontal axis. The F1 score was also used to evaluate the perfor-
mance of the model. The definition of the F1 score is shown as follows:

= × ×+F P R
P R

2
1 (5)

B. Loss Function
Loss function is one criterion for evaluating the performance of a

model. The loss function in YOLO is defined as follows:

= + +Loss Error Error Errorcoord iou cls (6)

The coordinate prediction error Errorcoord is defined as follows:

Fig. 2. YOLO Detection.
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where λcoord is the weight of the coordinate error, S2 is the number of
grids in the input image, and B is the number of bounding boxes gen-
erated by each grid. Referring to the original parameters in the YOLO-
V3 model, = =λ S5, 7coord , and =B 9 were selected in this study.=1 1ij

obj denotes that the object falls into the jth bounding box in grid i,

otherwise =1 0ij
obj . ̂ ̂ ̂ ̂x y w h( , , , )i i i i are values of the center coordinate,

height, and width of the predicted bounding box. x y w h( , , , )i i i i are true
values.
The IoU error Erroriou is defined as follows:= − + −= = = =Error C C λ C C1 1Σ Σ ( ) Σ Σ ( )iou i

S
j
B

ij
obj

i i noobj i
S

j
B

ij
obj

i i1 1
2

1 1
22 2µ µ (8)

where the parameter λnoobj is the weight of the IoU error. Referring to
the original parameters of the YOLO-V3 model, =λ 0.5noobj was selected
in this paper. Ciµ is the predicted confidence, and Ci is the true

Fig. 3. YOLOV3-dense network structure diagram.

Fig. 4. Network parameters of YOLO-V3 and YOLOV3-dense.

Table 2
Initialization parameters of YOLOV3-dense network.

Size of input
images

Batch Momentum Initial
learning rate

Decay Training
steps

512× 512 8 0.9 0.001 0.0005 70,000

Table 3
Confusion matrix for the classification results.

Labeled Predicted Confusion matrix

Positive Positive TP
Positive Negative FN
Negative Positive FP
Negative Negative TN

Y. Tian et al.



confidence.
The classification error Errorcls is defined as follows:

̂= −= = ∈Error p c p c1Σ Σ Σ ( ( ) ( ))cls i
S

j
B

ij
obj

c classes i i1 1
22

(9)

where c refers to the class to which the detected target belongs. p c( )i
refers to the true probability that the object belonging to class c is in
grid i. ̂p c( )i is the predicted value. The Errorcls for grid i is the sum of
classification errors for all the objects in the grid.
C. IoU
IoU is a standard for defining the detection accuracy of target ob-

jects. IoU evaluates the performance of the model by calculating the
overlap ratio between the predicted bounding box and the true
bounding box as follows:

=IoU
S
S
overlap

union (10)

where Soverlap is the area of intersection of the predicted bounding box
and the true bounding box. Sunion is the area of the union of the two
bounding boxes.
Detection Time
The average detection times for several deep learning models were

compared in this paper, and the real-time performance of these models
was analysed.

4.1. Influence of data category

To compare the effect of data category on the detection results, the
YOLOV3-dense neural network was used to train images of young, ex-
panding, and ripe apples, respectively. The images of apples in these
three periods were also combined and used to train the model. The P-R
curves of the models after training are shown in Fig. 5. The F1 scores of
the corresponding models are shown in Table 4.
In order to observe the boundary boxes better, 1, 2, and 3 are used

to label young, expanding, and ripe apples, respectively. The results
from the corresponding models are shown in Fig. 6.
Based on the above detection results, the F1 score of the model

trained using apple images during one growth stage is higher than that
of the model trained by combining the images together. The model
trained using apple images during one growth stage can better detect
some apples under serious occlusion and overlap. This indicates that the
number of input classes will affect the detection ability of the model.
Because the young apple fruits are relatively small in volume and
densely overlap each other, the detection results for young apples are
worse than those for expanding and ripe apples. The model shows the

best detection performance for ripe apples due to the more obvious
colour characteristics, larger individual volume, and less overlap.

4.2. Comparison of different algorithms

In order to verify the performance of the model proposed in this
paper, images of apple in the three growth stages are used as the
training set. The proposed model is compared with YOLO-V2, YOLO-
V3, and Faster R-CNN with VGG16 net, which is the state-of-art fruit
detection model in order to illustrate the superiority of the YOLOV3-
dense model proposed in this paper.
The loss of YOLO-V2, YOLO-V3 and YOLOV3-dense during training

is shown in Fig. 7.
The P-R curves for several models during testing are shown in Fig. 8.

The F1 scores, IoU, and average detection time of the models are shown

Fig. 5. P-R curves of apple detection models in several categories.

Table 4
F1 scores of apple detection models in several cate-
gories.

Class F1 score

Young apple 0.832
Expanding apple 0.841
Ripe apple 0.864
All 0.817

Fig. 6. Detected apples in several growth stages: (a) images of young apples, (b)
images of expanding apples, (c) images of ripe apples, (d-f) images of apples in
three growth stages detected by the same model.

Fig. 7. Loss curves of the three YOLO models.

Y. Tian et al.



in Table 5.
The detection results for models in different growth stages are

shown in Fig. 9 and Table 6.
Based on the above results, one can see that YOLO-V3 has faster

convergence speed and better convergence results than YOLO-V2
during training. The final loss in YOLO-V2 is around 3.95, while the loss
in YOLO-V3 is around 1.53. The loss in YOLOV3-dense is about 0.54,
which is about 0.99 lower than the original YOLO-V3 model. This shows
that the performance of the proposed model is significantly improved.
The loss curve for YOLO-V3 began to saturate after 3000 training steps.
However, the loss for YOLOV3-dense continues to converge up to
45,000 steps, after which it no longer decreases. In terms of detection
performance, the proposed YOLO-V3 dense model is superior to the
Faster R-CNN with VGG16 net, YOLO-V3, and YOLO-V2 models. The F1
score of YOLOV3-dense is 0.817, which is higher than the other three
models. This indicates that the comprehensive recall performance and
precision of the YOLOV3-dense model is better than that of the other
three models. The IoU value of YOLOV3-dense is 0.896, which is higher
than that of the other three models. This result shows that the accuracy
of YOLOV3-dense in detecting bounding boxes is higher than that of the
other three models. The average detection time of YOLOV3-dense is

s2.116 less than Faster R-CNN with VGG16 net and is basically the same
as the YOLO-V3 model. It can provide real-time detection of apples in
high resolution images. During detection, the accuracy and confidence
provided by the YOLOV3-dense model is significantly higher than the
other three models, reflecting the superiority of the YOLOV3-dense
detection model.

4.3. Influence of the quantity of experimental data

In this section, the impact of the size of the image dataset on the
YOLOV3-dense model is analysed. 10, 50, 200, 400, 800, 1200, and 1600
apple images were randomly selected from each of the three growth
stages to form training sets of 30, 150, 600, 1200, 2400, 3600, and 4800
images. The P-R curves and F1 scores for the models corresponding to

training sets of different sizes are shown in Fig. 10 and Table 7.
From these experiments, one can draw the conclusion that the

performance of the YOLOV3-dense model improves as the size of the
training set increases. If the training set contains fewer than 1500
images, the performance enhances rapidly as the training set grows.
When the size of training set exceeds 1500, the enhancement speed
gradually reduces as the amount of images increases. When the amount
of images exceeds 3000, the size of the training set does not have a
further significant influence on the performance of the model.

4.4. Influence of data augmentation methods

Color, brightness, rotation transformation and blur processing were
used to augment the images. In order to verify the influence of the four
transformation methods on the training model, the control variable
method was used to remove one data augmentation method each time
and obtain the IoU value and F1 score. The influence of the multi-angle
viewing method during image acquisition on the detection performance
was also considered. After data augmentation, the number of images
obtained by multi-angle viewing method increases to 880. The results
are shown in Table 8.
Based on the experimental results, one can see that multi-angle

image acquisition is of great help to simulate multi-angle viewing
during detection. Removing this method, the F1 score of the detection
model decreases by 0.033 and the IoU decreases by 0.058, indicating that
the performance of the model decreases significantly. Therefore, the

Fig. 8. P-R curves for the detection models.

Table 5
F1 Scores, IoU and average detection time for several models.

Models YOLO-V2 YOLO-V3 Faster R-CNN with
VGG16 net

YOLOV3-
dense

F1 score 0.738 0.793 0.801 0.817
IoU 0.805 0.869 0.873 0.896
Average time
(s)

0.273 0.296 2.42 0.304

Fig. 9. Detection results of the four models: (a–c) YOLO-V2, (d–f) YOLO-V3,
(g–i) YOLOV3-dense, (j–l) Faster R-CNN with VGG16 net.
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multi-angle image viewing method is conducive to improving the per-
formance of the model.
The colour balance transformation is very helpful for improving

detection. Removing the colour balance transformation will reduce the
detection accuracy.
The brightness transformation is beneficial for the model to adapt to

the illumination situations throughout the day. The detection results of
the model trained by removing the brightness transformation is worse
than that of the model trained with the complete dataset.
The rotation transformation has limited effect on the training

model, and the performance of the training model after removing the
rotation transformation is slightly lower than that of the complete da-
taset.
Blur processing is quite favourable for improving the robustness of

the model. Compared with the dataset without blur processing, the
model trained with the complete dataset has much greater detection
accuracy.

4.5. Detection under occlusion and overlapping apples conditions

In orchards, partial occlusion of branches and leaves commonly
occur, as well as overlap between apples. This would have a certain
influence on apple detection. In this section, the IoU values and F1
scores from the YOLOV3-dense model with occluded and overlapping
apples are analysed. The results are shown in Table 9 and Fig. 11.
Based on the above experiments, one can see that occluded and

overlapped apples cause inaccurate detection. However, the model can
be used to detect most of the occluded and overlapped apples, which
illustrates the practical significance of the model proposed in this paper.

4.6. Detection in an environment without apples

In a real setting, the camera can also capture images that do not

contain apples. In this paper, 50 images that do not include apples were
collected to test the performance of the detection model in a real set-
ting. Among them, 10 images contain only the sky, 10 images contain
only the ground, 10 images contain only trees without apples, and 20
images contain these three possible backgrounds. These 50 images were
tested using the YOLOV3-dense model. The detection results showed
that no apples were detected in these 50 images.

Table 6
Detection results of different models for apples in different growth stages in Fig. 9.

Figure Number of apples detected Confidence

a 16 86%,85%,85%,85%,82%,82%,79%,70%, 69%,69%,66%,64%,64%,58%,52%,50%
b 5 84%,77%,73%,63%,50%
c 9 87%,87%,84%,84%,83%,83%,71%,70%, 69%
d 19 100%,100%,100%,100%,100%,100%,100%,99%, 99%,99%,99%,98%,98%,95%,92%,84%,83%,75%,54%
e 7 100%,100%,99%,90%,73%,81%,60%
f 9 100%,100%,100%,100%,100%,100%,100%,99%, 62%
g 19 100%,100%,100%,100%,100%,100%,100%,100%,100%,100%,100%,100%,98%,92%,82%,79%, 77%,66%,56%
h 9 100%,100%,99%,99%,99%,96%,91%,79%,70%
i 9 100%,100%,100%,100%,100%,100%,99%,99%, 75%
j 19 100%,100%,100%,100%,100%,100%,99%,99%, 95%,92%,92%,88%,83%,82%,82%,75%,63%,60%,52%
k 8 100%,97%,97%,95%,91%,72%,65%,62%
l 9 100%,100%,100%,100%,100%,98%,95%,90%, 75%

Fig. 10. P-R curves and F1 scores of the model trained with different numbers of images.

Table 7
F1 scores of models trained with different numbers of images.

Number of images 30 150 600 1200 2400 3600 4800

F1 score 0.476 0.642 0.714 0.755 0.786 0.808 0.817

Table 8
F1 scores and IoU values for models trained using the control variable method.

Data augmentation method F1 score IoU

Dataset after augmentation 0.817 0.896
Remove multi-angle viewing method 0.784 0.838
Remove color balance transformation 0.787 0.842
Remove brightness transformation 0.795 0.854
Remove rotation transformation 0.808 0.882
Remove blur processing 0.766 0.829

Table 9
IoU values and F1 scores in the YOLOV3-dense model with occluded and
overlapping apples.

Growth stage IoU F1 score

Young apple 0.874 0.783
Expanding apple 0.882 0.791
Ripe apple 0.889 0.809
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From the experimental results, one can see that the YOLOV3-dense
detection model can properly identify the backgrounds. In fact, during
training, the areas that were not framed during manual annotation will
be labelled as the background by default. Therefore, during training,
the actual input contains 4 categories, including the background and
the apples in the three growth stages. The results of this experiment
further demonstrate that the YOLOV3-dense detection model can pro-
vide high classification accuracy.

5. Conclusions

In this study, the state-of-art YOLO-V3 detection model was im-
proved by incorporating the DenseNet method for detecting apples in
the main growth stages in orchards. This model can be used to detect
young apples, expanding apples, and ripe apples. The YOLOV3-dense
model proposed in this paper uses DenseNet to optimize the feature
layers with low resolution in the YOLO-V3 model by enhancing feature
propagation, promoting feature reuse, and improving network perfor-
mance. The experimental results show that the YOLOV3-dense model

proposed in this paper has better performance compared to the YOLO-
V3 model and is superior to the Faster R-CNN with VGG16 net, which is
the state-of-art fruit detection model. The YOLOV3-dense model can
also be used to detect occluded and overlapping apples in real-time.
Future work will focus on applying existing models to detecting

apples in videos, yield estimation, and other practical tasks. The en-
vironmental characteristics and characteristics of apples in different
growth stages which were not involved in this paper will be analysed.
In addition, data augmentation methods and the detection model will
be optimized to further improve the detection accuracy.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the

Fig. 11. Detection results for occluded and overlapped apples: (a–c) young apples, where apples in yellow-green boxes are missed and mistaken apples; (d–f)
expanding apples, were apples in yellow-green boxes are missed and mistaken apples; (g–i) expanding apples, where apples in red boxes are missed and mistaken
apples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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online version, at https://doi.org/10.1016/j.compag.2019.01.012.
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