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Abstract—The acoustic model trained using the knowledge from
the shared hidden layer (SHL) model outperforms the model
trained only by using the target language, especially under low re-
source conditions. However, the shared features may contain some
unnecessary language dependent information. It will degrade the
performance of the target model. Therefore, this paper proposes
language-adversarial transfer learning to alleviate this problem.
Adversarial learning is used to ensure that the shared layers of the
SHL-model can learn more language invariant features. Experi-
ments are conducted on IARPA Babel datasets. The results show
that the target model trained using the knowledge transferred from
the adversarial SHL-model achieves up to 10.1% relative word er-
ror rate reduction when compared with the target model trained
using the knowledge transferred from the SHL-model.

Index Terms—Adversarial training, transfer learning, cross-
lingual, low-resource, speech recognition.

I. INTRODUCTION

D EEP neural networks (DNN) based acoustic models have
obtained significant improvement for automatic speech

recognition (ASR) systems [1]–[4]. However it is still challeng-
ing to rapidly build an ASR system for a novel language with
significantly less labeled training data [5]–[7]. This was also
the goal of IARPA Babel program. Without any question, data
collection and annotation are very time-consuming and expen-
sive. Therefore, how to effectively use an available larger set of
languages to improve the performance of the novel language is
very important.

It is easy for human beings to transfer knowledge from other
languages when learning a new language [8]. Human beings not
only share the same vocal tract architecture, but also use the
universal phonetic systems of different languages. Similarly,
acoustic models are able to share language invariant low-level
components across various languages [9]–[11]. An acoustic
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model trained using other source languages is referred to as
a source model. An acoustic model trained using a novel target
language is called a target model. Multilingual training is an
effective technique to train the source model [14]–[17]. This ap-
proach benefits from multi-task learning [18]. The source model
is trained jointly on several languages [19], [20]. In addition, lan-
guage identification based multilingual training is proposed to
extract multilingual bottleneck features for low resource speech
recognition [21], [22]. The knowledge from the source model
can be transferred to the target model via transfer learning. The
goal of transfer learning [12], [13] is to improve the performance
of the target model via using knowledge from the source model.
The transfer learning methods can be roughly classified into
two categories: transferring bottleneck features [17], [23]–[26]
and transferring model parameters [10], [11], [27]. This paper
focuses on the latter.

The basic idea of transferring model parameters is that the
source model is trained on the source languages, and the trained
parameters are used to initialize the target model for the novel
language. Previously, shared feature representations for low-
resource languages have been studied by Thomas [28]. Scanzio
et al. [29] present a front-end consisting of an artificial neural
network architecture trained with multilingual data. The pro-
posed network is called a shared hidden layer model (SHL-
Model). Huang et al. propose to use DNN based SHL-Model
[30] to transfer model parameters for unseen languages. All
the hidden layers of the SHL-Model are shared across multiple
languages. The softmax layers of the SHL-Model are language
dependent. Recently, Xu et al. [31] combine this method and
semi-supervised learning to transfer cross-lingual knowledge to
a target model. More recently in [6], Karafiat et al. use bi-
directional long-short term memory (BLSTM) based source
model to transfer shared parameters. The above-mentioned
SHL-Models only use softmax layers to learn language specific
features. However, a lot of variants of SHL-Models are pro-
posed to use hidden layers and softmax layers to learn language
dependent information [23], [32]. These models have language
specific hidden layers prior to softmax layers.

The results show that the target model trained using the
knowledge transferred from the SHL-Model as shown in Fig. 1
performs better than the model trained only using the target
training data, especially when the amount of labeled data of the
target language is limited. However, the shared hidden layers
may learn some unnecessary language specific information. It
will degrade the performance of the target model.

2329-9290 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2422-4618
https://orcid.org/0000-0002-9437-7188
mailto:jiangyan.yi@nlpr.ia.ac.cn
mailto:jhtao@nlpr.ia.ac.cn
mailto:zqwen@nlpr.ia.ac.cn
mailto:baiye2016@ia.ac.cn


622 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 27, NO. 3, MARCH 2019

Fig. 1. The architecture of the conventional cross-lingual knowledge transfer
learning method. The left model is the shared hidden layer model (SHL-Model),
which is referred to as the source model. The right model is the target model.
The shared parameters of the SHL-Model are transferred to the target model.
Each language has its own hidden layers and softmax layer. The labels of the
softmax layer are language specific senones (tied triphone states).

Fig. 2. The architecture of the proposed language-adversarial transfer learning
method. The left model is the adversarial SHL-Model, which is referred to as
the source model. The right model is the target model. The adversarial SHL-
Model denotes that the SHL-Model having an additional language discriminator.
FC denotes the fully connected layer. The gradient reversal layer (GRL) is
introduced to ensure the feature distributions over all the languages are as
indistinguishable as possible for the language discriminator. The output labels
of the language discriminator are language labels.

Therefore, this paper proposes language-adversarial transfer
learning to alleviate this problem. Inspired by the success of ad-
versarial learning on domain adaptation [33], adversarial learn-
ing [34] is used to ensure that the shared layers of the source
model can learn more language invariant features as shown in
Fig. 2.

Recently, adversarial learning of various neural networks has
attracted attention in many tasks. Ganin et al. [33] and Tzeng
et al. [35] use adversarial strategy for domain adaptation in im-
age classification tasks. More recently, Chen et al. [36] utilize
adversarial learning for Chinese word segmentation on various
heterogeneous annotation data. Zhang et al. [37] use adversarial
strategy to obtain bilingual lexicon without cross-lingual knowl-
edge. Shinohara [38] utilizes adversarial training to perform en-
vironment adaptation for robust speech recognition. Saon et al.
[3] use adversarial learning for speaker adaptation in speech
recognition systems. The results show that all these methods
achieve state-of-the-art performance. However, this paper uses
adversarial learning to train multilingual acoustic models which

are treated as source models. The shared parameters of the
source model are used to initialize the target model. There has
been no work, to the best of our knowledge, that uses adversar-
ial strategy and transfer learning to improve the performance of
low-resource speech recognition systems.

The main contribution of this paper is that language adversar-
ial training is used to force the shared layers of the SHL-Model to
learn language invariant features. Experiments are conducted on
IARPA Babel datasets. The results show that the target model
trained using the knowledge transferred from the adversarial
SHL-Model obtains improvement by up to 10.1% relative word
error rate (WER) reduction over the target model trained using
the knowledge transferred from the SHL-Model.

The rest of this paper is organized as follows. Section II briefly
reviews conventional cross-lingual knowledge transfer learning
method. The proposed language-adversarial transfer learning
method is described in Section III. Experiments are presented
in Section IV. Section V discusses the results. This paper is
concluded in Section VI.

II. REVIEW OF CONVENTIONAL CROSS-LINGUAL KNOWLEDGE

TRANSFER LEARNING METHOD

This section briefly introduces the conventional shared hidden
layer model (SHL-Model) and the transfer learning method.

A. Shared Hidden Layer Model

The SHL-Model is widely used for multilingual tasks
[29]–[31]. A lot of variants of SHL-Models are proposed to
train multilingual models [10], [23], [27], [32]. The SHL-Model
is composed of shared hidden layers and language dependent
layers. The shared hidden layers and the language dependent
layers are jointly optimized using a multilingual training set.
The shared layers can be treated as a universal feature transfor-
mation that works well for other novel languages. One kind of
the SHL-Models only uses the softmax layer to learn language
specific features [30]. The other kind of SHL-Models is pro-
posed to use hidden layers to learn more language dependent
information [23], [32]. These models have language specific
hidden layers prior to softmax layers. The latter SHL-Model is
used to train multilingual models in this paper. The architec-
ture of the SHL-Model is depicted in the left of Fig. 1. The
SHL-Model consists of 2 shared BLSTM hidden layers and 2
language specific BLSTM hidden layers prior to softmax layers.
The labels of the softmax layer are language specific senones
(tied triphone states).

B. Multilingual Training

Multilingual training is an instance of multi-task learning
[18]. The source model is trained simultaneously on the training
data of multiple languages. Each language has its own softmax
layer to estimate the posterior probabilities of language specific
senones.

For the m-th language, given a dataset with Nm training
samples {x(m )

i , y
(m )
i }Nm

i=1 , where {x(m )
i , y

(m )
i } is the i-th train-

ing sample (frame-level), x
(m )
i ∈ Rd is a feature vector, e.g.,
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filterbank coefficients, d is the dimension of the feature vector,
y

(m )
i ∈ {1, . . . , C

(m )
y } is the corresponding label (senone) for

the feature vector x
(m )
i , C

(m )
y is the total number of senones.

The multilingual model is trained to minimize the cross-entropy
for all the languages. So the loss function of the SHL-Model is
defined as:

LM ul(θm , θs) = −
M∑

m=1

Nm∑

i=1

logP (y(m )
i |x(m )

i ; θm , θs) (1)

where m denotes the index of the m-th language, θm denotes
the parameters of the language specific layers for the m-th lan-
guage, θs denotes the parameters of the shared layers for all the
languages, M is the total number of the source languages.

P (y(m )
i |x(m )

i ; θm , θs) is computed with a parametric clas-
sifier, such as a BLSTM based model with a set of trainable
weights and biases. Stochastic gradient descent (SGD) is com-
monly used to optimize the parameters. Specifically, its gradi-
ent w.r.t the parameters are calculated using back-propagation
through time (BPTT) and the parameters are updated as:

θm ← θm − α
∂LM ul

∂θm
(2)

θs ← θs − α
∂LM ul

∂θs
(3)

where α ∈ R is the learning rate. The update procedure is re-
peated util convergence.

C. Transferring Model Parameters

The shared layers of the SHL-Model are transferable to an
unseen target language [30]. An acoustic model trained for the
unseen target language is called a target model as shown in the
right of Fig. 1. The target model consists of shared layers of
the SHL-Model and target language specific layers.

III. PROPOSED LANGUAGE-ADVERSARIAL TRANSFER

LEARNING METHOD

The SHL-Model divides the feature space into shared and
private spaces. However, the shared spaces may contain some
unnecessary language dependent features. A good representa-
tion for cross-lingual knowledge transfer is one for which an
algorithm can not learn to identify the language origin of the in-
put observation [30], [33]. Thus, we jointly optimize the shared
layers of the SHL-Model model via adversarial training. An ad-
versarial loss is used to prevent the shared space from contain-
ing language specific features. This training strategy is called
language-adversarial training. It is to find a representation of
the samples where all the languages are as indistinguishable as
possible. Therefore, the adversarial SHL-Model is proposed to
realize this idea.

A. Adversarial Shared Hidden Layer Model

The adversarial SHL-Model is the SHL-Model which has an
additional adversarial language discriminator with the gradient
reversal layer (GRL) [33], [39]. The adversarial SHL-Model is
depicted in the left of Fig. 2.

The language discriminator is used to recognize the language
label of each frame using the shared features. The outputs of
the shared layers are the inputs of the language discriminator
through GRL. The language discriminator is implemented as a
fully connected (FC) neural network with a single hidden layer.
The activation function of the hidden layer is rectified linear
units (ReLU) [40].

The GRL is introduced to ensure that the feature distributions
over all the languages are as indistinguishable as possible for
the language discriminator. So the adversarial SHL-Model is to
learn a representation that can generalize well from one lan-
guage to another. They ensure that the internal representation of
the shared layers contains no discriminative information about
the origin of the input. Thus the shared layers can learn more
language invariant features. The language invariant features will
be helpful for the target language.

B. Adversarial Training

In adversarial training procedure, a language discriminator is
used to recognize the language label. Since the GRL is below
the language classifier, the gradients minimizing language clas-
sification errors are passed back with an opposite sign to the
shared hidden layers. Thus, it ensures the feature distributions
over all the languages are as indistinguishable as possible for
the language discriminator.

Given an additional language label for each training sample
{x(m )

i , y
(m )
i ,m}, where m ∈ {1, . . . , M} denotes the language

label for each frame, and M is the total number of language
labels. The loss function of the language discriminator is for-
mulated as:

LAdv (θa , θs) = −
M∑

m=1

Nm∑

i=1

logP (m|x(m )
i ; θa , θs) (4)

where θa denotes the parameters of the FC and softmax layer
of the language discriminator, θs denotes the parameters of the
shared layers.

Although the language classifier is optimized to minimize
the language classification error, the gradient of the language
classifier is negative so that the bottom shared layers are trained
to be language independent. Therefore, the parameters of the
language classifier are updated as:

θa ← θa − α
∂LAdv

∂θa
(5)

θs ← θs + α
∂LAdv

∂θs
(6)

where α ∈ R is the learning rate.

C. Language-Adversarial Training

The language-adversarial training is to jointly optimize the
two loss functions LM ul(θm , θs) and LAdv (θa , θs). Unlike the
standard multilingual training where the shared representation is
trained to maximize the classification accuracies of the primary
and other languages, the parameters of the shared layers are
optimized in order to minimize the loss of the senone classifiers
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and maximize the loss of the language discriminator. However,
the latter works adversarially to the language discriminator by
GRL. Thus it encourages language invariant features to emerge
in the course of the optimization. So the shared features become
senone discriminative and language invariant. The improved
language invariance leads to the improved performance of the
target language. So the loss function of the adversarial SHL-
Model is defined as:

L(θm , θa , θs) = LM ul(θm , θs) + λLAdv (θa , θs) (7)

where λ ∈ R is the loss weight.
The GRL has no parameters associated with it. At the feed-

forward stage, the GRL acts as an identity transformation. Dur-
ing the back-propagation, however, the GRL takes the gradient
from the subsequent level and changes its sign, i.e., multiply-
ing by −1, before passing it to the preceding layer. In other
words, the GRL reverses the gradient (multiplies −λ). So the
parameters are updated as:

θm ← θm − α
∂LM ul

∂θm
(8)

θa ← θa − αλ
∂LAdv

∂θa
(9)

θs ← θs − α

(
∂LM ul

∂θs
− λ

∂LAdv

∂θs

)
(10)

where λ is gradually increased from 0 to 1 as epoch increases
so that the model is stably trained [33].

D. Cross-Lingual Knowledge Transfer Learning

Cross-lingual knowledge transfer learning is a special case of
transfer learning. The knowledge is referred to as shared model
parameters in this paper. With the help of adversarial learning,
the shared layers can learn language invariant features easily.
The language invariant parameters can be viewed as off-the-
shelf knowledge used for the unseen new languages.

There are several methods proposed to transfer shared layers
to the target model. One kind of the methods is widely used in
previous work [10], [27], [30]. This method is to initialize all the
hidden layers of the target model using the shared layers.
The softmax layer of the target model is randomly initialized.
The other kind of methods is to initialize part of the hidden lay-
ers of the target model using the shared layers. Another part of
the hidden layers and softmax layer are target language depen-
dent. The share hidden layers can be sequence or parallel with
target language specific hidden layers [41], [47]. In this paper,
the target model consists of share hidden layers and target lan-
guage specific hidden layers as shown in the right of Fig. 2. The
output of the shared layers is the input of the target language
specific hidden layers. The target model is fine-tuned using the
standard BPTT algorithm.

IV. EXPERIMENTS

A series of experiments are conducted on IARPA Babel
datasets to evaluate the effectiveness of our proposed method.

A. Datasets

Our experiments are conducted on the datasets of IARPA
Babel program. The IARPA Babel datasets consist of conver-
sational telephone speech for 28 languages collected across a
variety of environments. The speech is collected in real-life sce-
narios and recorded under different conditions, such as mobile
phone conversation made on the street. Most of the languages
contain a small amount of data collected using a distant mi-
crophone. The total amount of transcribed audio data varies
depending on the language and condition.

Only 15 languages from the Babel datasets are available for
us. Therefore, we select 12 languages as the source languages.
All the source languages are the full language pack (FLP), which
are only used to train the source models. We also select 3 lan-
guages as the target languages: Pashto, Turkish, Vietnamese.
The FLP and the limited language pack (LLP) of the target
language are both used to train the target models, respectively.
Table I describes experimental data statistics.

Each language has a training set and dev set. The training
sets of in-languages are available for the target language. The
parameters of all the models are updated on the training set. The
dev set is used to adjust hyper-parameters and select models. All
the results of the target models are reported in terms of WER on
10-hours dev set, respectively.

B. Experimental Setup

Our experiments are conducted using the Kaldi speech recog-
nition toolkit [32] and the open source deep learning frame-
work called TensorFlow [42]. The Gaussian mixture model hid-
den Markov models (GMM-HMM) are trained using the Kaldi
toolkit. The decoding of the ASR systems is also performed us-
ing Kaldi toolkit. The BLSTM based models are trained using
TensorFlow.

The features are extracted with a 25-ms sliding window with
a 10-ms shift. Input features for the GMM-HMM based mod-
els consist of 3-dimensional pitch features and 13-dimensional
MFCC and their delta and delta-delta. We follow the officially
released Kaldi recipe to build GMM-HMM based models for
each language. The GMM-HMM based models are used to gen-
erate frame-level state alignments for BLSTM based models.
The tied triphone states are called senones. The last column of
Table I reports the number of senones for each language.

Language classification usually requires long-term context
compared to the ASR task. Various ASR efforts in the last cou-
ple of years have shown improved performance with i-vector
features in addition to the acoustic features in the ASR model-
ing [3], [6]. The i-vector approach is also successfully applied
to language recognition [43]. The approach provides an ele-
gant way of reducing high-dimensional sequential input data
to a low-dimensional fixed-length feature vector while retain-
ing most of the relevant information. Given that the i-vector
features carry language information, we use i-vector features
to capture long-term context for language identification tasks.
There are 15 languages used to train i-vector extractors. We use
19-dimensional MFCC coefficients with energy and their delta
and double delta coefficients which results in 60-dimensional
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TABLE I
OVERALL EXPERIMENTAL DATA DISTRIBUTIONS. THERE ARE 12 SOURCE LANGUAGES AND 3 TARGET LANGUAGES

feature vectors. More details on i-vector extraction can be found
in [43]. The results are reported with 100-dimensional i-vectors
in this paper.

All the BLSTM models use a single frame as the input, with
no frame stacking. The BLSTM acoustic models are based on
the work in [44], where each BLSTM layer consists of peep-
hole connections and a recurrent projection layer. Each BLSTM
layer has two directions: the forward direction and the backward
direction. Each direction is a regular LSTM layer. The LSTM
layer has 320 memory cells and the recurrent projection layer
would project the output to 160 dimensions.

The BLSTM layers are initialized to the range (−0.02, 0.02)
with a uniform distribution. We use the BPTT learning algo-
rithm to compute parameter gradients. Each update is based
on 20 time-steps of recurrent forward-propagations and back-
propagations. Apart from clipping the activations of memory
cells to range [−50, 50], we do not limit the activations of other
units, the weights or the estimated gradients. The training ter-
minates, if only a little improvement between two epochs has
been observed.

The 3-gram language models are trained using the transcrip-
tions of the training data for each language. The vocabulary of
the language model is the officially released vocabulary from
IARPA Babel datasets as listed in Table I. At the test stage,
decoding is performed using fully composed 3-gram weighted
finite state transducers.

C. Target Models Trained Only Using One Target Language

In this section, the target model is trained only using the
training data of the target language. The cross-lingual knowl-
edge transferred from the source model is not used to train the
target model.

The target model is BLSTM based monolingual model. The
BLSTM model consists of 4 hidden layers, which is called
BLSM-4L model. Each BLSTM layer consists of peephole con-
nections and a recurrent projection layer. Each direction has 320
memory cells and the recurrent projection layer would project
the output to 160 dimensions. The output labels are language

specific senones. The number of the senones for each language
is listed in Table I. The BLSTM models are trained using SGD
with a momentum term to minimize the cross-entropy criterion.
The initial learning rate and momentum are set to 0.003 and 0.9,
respectively. The learning rate is exponentially decayed during
training. The dropout method is applied to regularize the tar-
get model. The dropout rate is fixed at 0.5. All the models are
trained on the LLP and FLP datasets, respectively.

In the first group of experiments, we only use 3-dimensional
pitch and 40-dimensional log mel-filter bank (Fbank) features
plus their delta and delta-delta parameters as input features to
train the BLSTM models. The results of the three target mono-
lingual models on the dev data set are listed in Table II.

In the second group of experiments, we use 100-dimensional
i-vectors features in addition to the above-mentioned acoustic
features to train the three target models. The results of the target
models on the dev data set are listed in Table IV.

D. Target Models Trained With Knowledge From SHL-Model

In this section, we conduct a series of experiments to evaluate
the performance of the target models trained with cross-lingual
knowledge from the SHL-Model. We select 4 languages from
the Babel datasets as the source languages, which are composed
of Assamese, Bengali, Kurmanji and Lithuanian. The source
languages belong to the same language family (Indo-European).
All the source languages are the FLP datasets, which are only
used to train the source models.

The architecture of the SHL-Model is shown in the left of
Fig. 1. It has language specific hidden layers. It consists of 2
shared BLSTM hidden layers and 2 language specific BLSTM
hidden layers prior to softmax layers. Each BLSTM layer con-
sists of peephole connections and a recurrent projection layer.
Each direction has 320 memory cells and the recurrent pro-
jection layer would project the output to 160 dimensions. The
output labels are language specific senones. The number of the
senones for each source languages is listed in Table I.

The SHL-Model is trained using SGD with a momentum term
to minimize the cross-entropy criterion. The initial learning rate
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TABLE II
WERS (%) OF THE TARGET MODELS TRAINED USING SHARED PARAMETERS FROM VARIOUS SOURCE MODELS TRAINED USING 4 SOURCE LANGUAGES

(ASSAMESE, BENGALI, KURMANJI AND LITHUANIAN)

and momentum are set to 0.002 and 0.9, respectively. The learn-
ing rate is exponentially decayed during training. The dropout
rate is fixed at 0.1. We use the BPTT learning algorithm to com-
pute parameter gradients. The training terminates, if only a little
improvement between two epochs has been observed.

The shared hidden layers of SHL-Model are transferred to the
target models. The target model consists of 2 transferred layers
and 2 language specific BLSTM hidden layers. The configura-
tion of each BLSTM layer is identical to the BLSTM layer of
monolingual BLSTM-4L model. The output units of the softmax
layer are listed in Table I. There are two fine-tuning methods for
the target model: Private and Overall.

Private: At first, the BLSTM layers are initialized to the range
(−0.02, 0.02) with a uniform distribution. The softmax layers
are randomly initialized. The parameters of the transferred lay-
ers are fixed. Then, only the parameters of the private layers are
fine-tuned using the training data of the target language. The
private layers consist of the language specific BLSTM layers
and one softmax layer.

Overall: At first, the BLSTM layers are initialized to the range
(−0.02, 0.02) with a uniform distribution. The softmax layers
are randomly initialized.Then, all the layers are fine-tuned using
the training data of the target language.

The target model is fine-tuned using the standard BPTT al-
gorithm on target training data. The dropout rate is fixed at 0.5.
When the target model is trained using the LLP dataset, the ini-
tial learning rate is set to 0.0005. The initial learning rate is set
to 0.001 when the target model is trained using the FLP dataset.
The learning rate is exponentially decayed during training.

Experimental results show that the performance of the target
model trained using the Private fine-tuning method outperforms
the target model trained using the Overall fine-tuning method
on both LLP and FLP datasets. Therefore, we only report the
results using Private fine-tuning method. The results of the target
models are reported in Table II. The results show that all the
target models trained with the knowledge transferred from the
SHL-Model outperform the monolingual BLSTM-4L models.

E. Target Models Trained With Knowledge From Adversarial
SHL-Model

In this section, a series of experiments are performed to
evaluate the performance of the target models trained with
cross-lingual knowledge from the adversarial SHL-Model. We
also select 4 languages from the Babel datasets as the source
languages, which are composed of Assamese, Bengali, Kur-
manji and Lithuanian. The source languages belong to the same

language family (Indo-European). All the source languages are
the FLP datasets, which are only used to train the source models.

The architecture of the adversarial SHL-Models is shown in
the left of Fig. 2. The network configuration of the adversarial
SHL-Model is similar to the SHL-Model. The only difference is
that the adversarial model has an additional language discrimi-
nator with GRL.

We also train another source model to compare with the ad-
versarial SHL-Model. This source model is the SHL-Model hav-
ing an additional language identification without GRL, which
is called the LID-SHL-Model. The LID-SHL-Model is trained
using the conventional SGD without adversarial loss.

The language discriminator has one FC layer and a softmax
layer. The activation function of the FC layer is ReLU. The FC
layer has 2048 nodes. The softmax layer has 4 language labels.
The GRL has no parameters.

The loss weight λ is initiated at 0 and is gradually changed to
1 using the following formula [33]:

λ =
2

1 + exp(−γ · p)
− 1 (11)

where p is the training progress linearly changing from 0 to 1,
γ is set to 10 in all experiments.

This strategy allows the language classifier to be less sensitive
to noisy signal at the early stages of the training procedure.
Note that the λ is used only for updating the shared layers of the
source model. However, for updating the language classification
component, we use a fixed λ = 1, to ensure that the latter trains
as fast as the senone classifiers [33].

The results of the source languages on dev data sets are re-
ported in Table III. The results show that the WERs of the source
languages on the LID-SHL-Model are lower than the source lan-
guages on the SHL-Model. However, the source languages on
the adversarial SHL-Model obtains the best performance.

For the LID-SHL-Model and the adversarial SHL-Model, the
configurations of the target models are shown in the right of
Fig. 2, which are identical to the target model for the SHL-
Model. The target models are trained using the shared param-
eters transferred from the LID-SHL-Model and the adversarial
SHL-Model, respectively. The results of the target models are
reported in Table II.

In Table II, the results show that the target models trained
using shared parameters from the adversarial SHL-Model
outperform the target models trained using shared parameters
from the SHL-Model. The results also show that the target
models trained using shared parameters from the adversarial
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TABLE III
WERS (%) OF SOURCE LANGUAGES ON SOURCE MODELS TRAINED USING 4 SOURCE LANGUAGES (ASSAMESE, BENGALI, KURMANJI AND LITHUANIAN)

TABLE IV
WERS (%) OF THE TARGET MODELS TRAINED USING SHARED PARAMETERS FROM VARIOUS SOURCE MODELS TRAINED USING 4 SOURCE LANGUAGES

(ASSAMESE, BENGALI, KURMANJI AND LITHUANIAN). NOTE: INPUT FEATURES HAS I-VECTORS

TABLE V
WERS (%) OF SOURCE LANGUAGES ON SOURCE MODELS TRAINED USING 4 SOURCE LANGUAGES (ASSAMESE, BENGALI, KURMANJI AND LITHUANIAN).

NOTE: INPUT FEATURES HAS I-VECTORS

SHL-Model outperform the target models trained using shared
parameters from the LID-SHL-Model without adversarial loss.

The equal error rates (EERs) of the language classifier in
source models are listed in the third column of Table VI. The
results show that the performance of the adversarial language
classifier is worse than the language classifier significantly.

F. Target Models Trained With Knowledge From Source
Models Using I-Vector Features

In this group of experiments, we use i-vector features with
the above acoustic features to train source models and target
models. We also select 4 languages from the Babel datasets
as the source languages, which are composed of Assamese,
Bengali, Kurmanji and Lithuanian.

Language classification usually requires long-term context
compared to the ASR task. The i-vector features carry language
information. So we use i-vector features to capture this context.

There are 15 languages used to train i-vector extractors.
The dimension of i-vectors is 100. Therefore, we use 100-
dimensional i-vectors in addition to 3-dimensional pitch and
40-dimensional Fbank features plus their delta and delta-delta
parameters as input features to train source models and tar-
get models. The configurations of the source models and target
models are similar to the above-mentioned source models and
target models, respectively. We only change the input features.

The EERs of the language classifier in source models with
i-vector features are listed in the fourth column of Table VI. The
results show that the performance of the adversarial language
classifier is worse than the language classifier significantly.

The results of the source languages on source models are
reported in Table V. The results show that the WERs of the

TABLE VI
EER (%) OF LANGUAGE IDENTIFICATION (LID) IN SOURCE MODELS TRAINED

WITHOUT OR WITH I-VECTOR FEATURES. NOTE: SOURCE MODELS ARE

TRAINED USING 4 SOURCE LANGUAGES (ASSAMESE, BENGALI, KURMANJI

AND LITHUANIAN)

source languages on LID-SHL-Model are lower than the source
languages on SHL-Model. However, the source languages on
adversarial SHL-Model outperform the source languages on
LID-SHL-Model. From Table V and III, we can find that all
source models trained using i-vector features obtain more per-
formance gains compared to the source models trained without
i-vector features.

The results of the target models are listed in Table IV. The
results in Table IV show that the target models trained using
shared parameters from the adversarial SHL-Model outperform
the target models trained using shared parameters from the SHL-
Model and the LID-SHL-Model without adversarial loss. From
Table IV and II, we can find that all target models trained using
i-vector features obtain more performance gains compared to
the target models trained without i-vector features.

Pashto target model trained using knowledge from the SHL-
Model achieves up to 10.0% relative WER reduction over mono-
lingual target model with i-vector features. Pashto target model
trained using knowledge from the adversarial SHL-Model also
achieves up to 19.1% relative WER reduction over monolin-
gual target model with i-vector features. However, Vietnamese
target model trained using knowledge from the SHL-Model
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TABLE VII
WERS (%) OF THE TARGET MODELS TRAINED USING SHARED PARAMETERS FROM VARIOUS SOURCE MODELS TRAINED USING DIFFERENT

NUMBER OF SOURCE LANGUAGES

achieves up to 2.1% relative WER reduction over monolingual
target model with i-vector features. Vietnamese target model
trained using knowledge from the adversarial SHL-Model also
achieves up to 5.3% relative WER reduction over monolin-
gual target model with i-vector features. The possible reason is
that the 4 source languages belong to Indo-European language
family. Meanwhile, Pashto is also Indo-European language. So
the cross-lingual knowledge transferred from the source model
trained on the 4 source languages can be more helpful for Pashto.
However, Vietnamese is Austroasiatic languages which is differ-
ent from Indo-European languages. So the Vietnamese language
gets less benefit from the source model trained on the 4 source
languages.

G. The Effect of Different Number of Source Languages

In this section, our main concern is to evaluate the perfor-
mance of adversarial training when the source models are trained
on more languages. The number of the source languages in
multilingual training was one of the important factors in Babel
Project. Therefore, we try to use more source languages to train
source models.

Although previous studies show that the Babel datasets con-
sist of 28 languages, we can only obtain 15 languages from
the linguistic data consortium (LDC). So we use 12 languages
as source languages and 3 languages as target languages. The
source languages are divided into 3 sets. The first set of source
languages has 4 languages: Assamese, Bengali, Kurmanji and
Lithuanian. The second set of source languages has 8 lan-
guages: Assamese, Bengali, Kurmanji, Lithuanian, Tamil, Tel-
ugu, Haitian and Tok Pisin. The third set of source languages
has 12 languages, which are all the source languages in Table I.

The above-mentioned experiments show that all target models
trained using i-vector features obtain more improvements com-
pared to the target models without i-vector features. So the input
features of the source and target models are 100-dimensional i-
vectors in addition to 3-dimensional pitch and 40-dimensional
Fbank features plus their delta and delta-delta parameters in this
section.

The configurations of the source models and target models
are similar to the above-mentioned source and target models,
respectively. The only difference is that the source models are
trained using more source languages. The results of the target
models are reported in Table VII.

The results show that the target model trained using the shared
layers from the SHL-Model obtains WER reduction when the
number of source languages increases. The results also show
that the target model trained using the shared layers from the
adversarial SHL-Model achieves further performance improve-
ment when the number of source languages increases.

When the source models are trained using 4 source languages,
the target model trained using the knowledge transferred from
the adversarial SHL-Model achieves up to 10.1% relative WER
reduction compared to the target model trained using the knowl-
edge transferred from the SHL-Model.

When the source models are trained using 8 source languages,
the target model trained using the knowledge transferred from
the adversarial SHL-Model achieves up to 9.1% relative WER
reduction compared to the target model trained using the knowl-
edge transferred from the SHL-Model.

When the source models are trained using 12 source lan-
guages, the target model trained using the knowledge transferred
from the adversarial SHL-Model achieves up to 8.8% relative
WER reduction compared to the target model trained using the
knowledge transferred from the SHL-Model.

Previous work [24] on Pashto FLP condition using the Babel
data reported WER as low as 45.7%. But many competitive
teams [46], [47] in NIST OpenKWS 2013 reported WER of
47.1% or higher. In addition, lots of competitive systems [46],
[47] in NIST OpenKWS 2013 reported WER of 48.1% or higher
on Turkish FLP condition. Past work [45], [46] on Vietnamese
FLP condition using the Babel data reported WER as low as 45%
on combined systems. But many promising systems in NIST
OpenKWS 2013 reported WER of 50% or higher, among them
the Babel team SWORDFISH (led by ICSI) reported 55.9% on
a single system.

In our experiments, the best model achieves up to 41.3%,
41.2%, 45.7% WER on Pashto, Turkish and Vietnamese FLP
condition, respectively. Our best model also achieves up to
44.4%, 45.8%, 52.8% WER on Pashto, Turkish and Vietnamese
LLP condition, respectively.

V. DISCUSSIONS

The above experimental results show that the proposed
language-adversarial transfer learning is effective. Some inter-
esting observations are made as follows.
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All the target models benefit from both better feature coverage
and better initialization via cross-lingual knowledge transfer
learning. Cross-lingual knowledge transfer learning is a special
case of transfer learning. The parameters of the shared layers
transferred from the source model are used to initialize the target
model. This is helpful for at least two reasons. One reason is that
the target model will have parameters for feature types observed
in the source languages as well as the target language. Thus it
has better feature coverage. The other reason is that the training
objective is non-convex. So this initialization can be helpful in
avoiding bad local optima.

The target model trained utilizing the shared knowledge trans-
ferred from the adversarial SHL-Model outperforms the target
models trained using the shared parameters transferred from
the SHL-Model. Moreover, the target model trained utilizing
the shared knowledge transferred from the adversarial SHL-
Model also outperforms the target models trained using the
shared parameters transferred from the LID-SHL-Model with-
out adversarial loss. This is because the shared hidden layers of
the SHL-Model and LID-SHL-Model learn some unnecessary
language specific features. The adversarial training makes the
shared layers to prevent from learning the language dependent
features. So the shared layers of the the adversarial SHL-Model
can learn more language invariant features. The language in-
variant features are helpful for improving the performance of
the target model.

The target model trained using the shared parameters from
the SHL-Model obtains WER reduction when the number of
source languages increases. Moreover, the target model trained
using the shared parameters from the adversarial SHL-Model
achieves further performance improvement when the number of
source languages increases.

In summary, all the target models benefit from both better
feature coverage and better initialization via transfer learning.
Furthermore, the adversarial learning forces the shared hidden
layers of the shared-private model to learn more language in-
variant features. The target models trained using the shared pa-
rameters from the adversarial SHL-Model obtain performance
gains when the number of source languages increases. Finally,
the target model benefits from the language invariant features
by language-adversarial transfer learning.

VI. CONCLUSION

This paper proposes language-adversarial transfer learning
to improve the performance of low-resource speech recogni-
tion tasks. Adversarial learning is used to ensure that the shared
layers can learn language invariant features. Experiments are
conducted on IARPA Babel datasets. The results show that the
target model trained using the knowledge from the adversarial
SHL-Model obtains performance improvement by up to 10.1%
relative WER reduction over the target model trained using the
knowledge transferred from the SHL-Model. The results also
show that the target model trained using the shared parame-
ters from the adversarial SHL-Model achieves WER reduction
when the number of source languages increases. The current
study randomly chooses the source languages. Further work

will study how to select source languages effectively. More-
over, it is well known that adversarial learning is difficult to get
its best performance. More dedicated algorithm will be studied.
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