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A monocular vision–based perception
approach for unmanned aerial vehicle
close proximity transmission tower
inspection

Jiang Bian , Xiaolong Hui , Xiaoguang Zhao and Min Tan

Abstract
Employing unmanned aerial vehicles to conduct close proximity inspection of transmission tower is becoming increasingly
common. This article aims to solve the two key problems of close proximity navigation—localizing tower and simulta-
neously estimating the unmanned aerial vehicle positions. To this end, we propose a novel monocular vision–based
environmental perception approach and implement it in a hierarchical embedded unmanned aerial vehicle system. The
proposed framework comprises tower localization and an improved point–line-based simultaneous localization and
mapping framework consisting of feature matching, frame tracking, local mapping, loop closure, and nonlinear optimi-
zation. To enhance frame association, the prominent line feature of tower is heuristically extracted and matched followed
by the intersections of lines are processed as the point feature. Then, the bundle adjustment optimization leverages the
intersections of lines and the point-to-line distance to improve the accuracy of unmanned aerial vehicle localization. For
tower localization, a transmission tower data set is created and a concise deep learning-based neural network is designed
to perform real-time and accurate tower detection. Then, it is in combination with a keyframe-based semi-dense mapping
to locate the tower with a clear line-shaped structure in 3-D space. Additionally, two reasonable paths are planned for the
refined inspection. In experiments, the whole unmanned aerial vehicle system developed on Robot Operating System
framework is evaluated along the paths both in a synthetic scene and in a real-world inspection environment. The final
results show that the accuracy of unmanned aerial vehicle localization is improved, and the tower reconstruction is fast
and clear. Based on our approach, the safe and autonomous unmanned aerial vehicle close proximity inspection of
transmission tower can be realized.
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Introduction

The power transmission tower (PTT) provides a crucial

foundation for economic development. The electrical

devices for power delivery are mainly concentrated on the

PTT. Both the equipments and PTT are exposed to the

complex and diverse natural environment and lack the reg-

ular maintenance, which may encounter multiple types of
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damages and makes power delivery a hidden danger.

Autonomous transmission tower inspection has always

been a hot issue in the field of robotics. In the last decades,

related researches are mainly conducted based on the fol-

lowing two popular platforms1,2: unmanned aerial vehicles

(UAVs)3–5 and rolling on wires robots (RWR).6–8

In RWR inspection, the inspection is conducted by a

robot climbing along transmission lines suspended by a

pole tower. The main advantage is the inspection accuracy,

because the equipped sensors are close to the PTT and its

related components. However, passing across various

obstacles on the lines has always been a major weakness

for RWR.1,2 LineScout,9 a successful wire-climbing robot

in recent years, was specifically designed with a LineArm

to grasp on both sides of the obstacle and flipped its wheel

frame to overcome obstacles. But it loses efficiency when

encountering complicated conductor connection on pylon.

In UAV inspection, the inspection platforms mainly

contain fixed-wing UAVs10 and vertical takeoff and land-

ing (VTOL) UAVs which comprise large helicopter11 and

multi-rotor aircraft. However, the first two are either too

fast or too far to acquire detail information12 of the PTT and

always with a high inspection cost.1,2 They are more suit-

able for a relatively long distance monitoring of power

transmission lines (PTLs) along PTLs corridor. Only the

multi-rotor UAVs are maneuverable enough to fly and

hover quite close to the PTT and keep a high inspection

accuracy.13 Besides, it always has a low operation cost and

is capable of accessing different locations for multi-type

refined PTT inspection tasks.

Nowadays, based on the requirements of UAV refined

PTT inspection, the faults that need to be inspected mainly

include the tower deformation and inclination,14,15 the

insulator string broken and contamination,16,17 and all other

kinds of small component faults like damage or missing of

shock hammers and wire clips. It requires the UAV to fly in

close proximity to the tower and realize fixed-location

hovering while maintaining a safe stand-off distance from

the pole to take high-quality pictures. So, the UAV should

be able to fly safely to avoid the pole and be capable of

accurate self-positioning relative to the tower.

At present, the navigation for close proximity tower

monitoring can be conducted in three ways consisting of

manual operation, GPS-fixed-location navigation, and

assisted-control semi-autonomous navigation. The profes-

sional manual operation requires that a highly skilled pilot

controls the UAV to approach the tower and a co-pilot

operates the equipped camera to take pictures. Pilots are

required to be highly focused to control the UAV. It loses

efficiency because of high operator workload and it has a

risk of collision due to improper manipulation. As for the

GPS-fixed-location navigation, the UAV is required to

carry a camera that hovers at fixed-locations and follows

a flight path, which are all preprogrammed by GPS-based

geo-locator. Luque et al.18 achieved navigation around

PTTs by ground control station (GCS). The GCS transmits

control inputs to UAV and obtains information from the

payload. However, the ability of self-positioning and

tower-localizing cannot work under the condition of

unstable GPS and this method lacks the consideration of

surroundings. With regard to the semiautonomous naviga-

tion, its aim is to reduce the operator’s cognitive load and

level of skill. The methods mainly include using external

force feedback through a haptic control device,19,20 altering

the magnitude and direction of the operator’s input,21 and

reducing the degree of freedom (DoF) that the operator

controls.22 In essence, these assistances above are based

on the UAV perception of the relationship between its own

positions and surroundings. Mcfadyen et al.21 presented a

theoretical analysis of sensor performance to constrain the

platform behavior by maintaining a safety buffer zone to

the electrical pole. Moore et al.23 developed a UAV system

uitilizing a lidar to percept polyhedron obstacle and con-

duct inspection of electrical transmission infrastructure. Sa

et al.22 developed an onboard flight controller using visual

features for visual servoing to inspect pole-like structures.

In conclusion, autonomous navigation of UAV-refined

inspection around the tower is really challenging and it has

not been fully implemented. The key problem of safety and

autonomy is to give UAV the ability to determine the posi-

tion of the tower and simultaneously be well aware of its

own locations.

In the robotic navigation and infrastructure inspection

literature of last decade, the Simultaneous Localization and

Mapping (SLAM) is studied extensively and shows great

prospect, since it can successfully perform simultaneous

estimation of the state of a robot and the construction of

a model (map) of the environment. Recently, visual SLAM

systems have demonstrated that drift errors of trajectory

estimation can be below 1% in real-world outdoor

scenes.24–26 Thus, lately, vision-based navigation is popu-

lar for robots like UAV. In addition, images collected by

cameras are also ideal data for UAV navigation, because

they provide rich information quickly and are easy to be

obtained and analyzed. Voigt et al.27 implemented an

embedded egomotion estimation system based on stereo

cameras for the inspection of boilers and common indoor

scenarios. Burri et al.28 and Nikolic et al.29 used a stereo-

visual-based quad-rotor platform to realize Visual Odome-

try (VO) to inspect a thermal power plant boiler system.

Teng et al.30 proposed a power line inspection system solu-

tion based on mini-UAV-borne LIDAR system which can

extract pole point cloud and detect pole deformation. Cerón

et al.31 implemented a Visual SLAM process in an AR-

DRone 2.0 platform and used SLAM for drone navigation

in power line surrounding. The detailed studies of visual

SLAM system are promising to realize UAV self-

positioning and tower-localization for close proximity

inspection of high-voltage electric tower.

Before 2010, filter-based visual SLAM was common.

Subsequently, the keyframe-based visual solutions in com-

bination with sparse nonlinear optimization were
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demonstrated more efficient and more accurate than the

filtering approaches.32 Recent successful keyframe-based

real-time SLAM algorithms can be divided into Dense–

Direct-based SLAM and Sparse–Feature-based SLAM.

The former is capable of reconstructing the environment

with a dense or semi-dense map. Meanwhile, the camera

motion is estimated by employing photometric errors

derived from image pixel intensities. Literatures include

LSD-SLAM,33 DTAM,34 and REMODE.35 By compari-

son, the latter takes advantage of salient image features like

keypoints to localize camera and performs a sparse point–

based reconstruction of the environment. Examples contain

monoSLAM,36 PTAM,37 and Oriented FAST and Rotated

BRIEF (ORB)-SLAM.38,39 Among them, the ORB-SLAM

seems to be the state-of-the-art in public datasets, yielding

better accuracy than direct methods. Currently, the existing

wide variety of SLAM frameworks has not been analyzed

and tested for refined high-voltage tower inspection.

Line features are very prominent in the PTT inspection

environment. It provides abundant and useful visual struc-

tural information for UAV odometry especially in the

poorly textured and illumination-changing scenes where

feature points lose efficacy. In the recent literatures, the

combination of point and line features has been employed

for SLAM system. Lu et al.40 presented a Red-Green-Blue-

Depth (RGBD) visual odometry utilizing point and line

features extracted from RGB-D data. Ruben41 proposed a

probabilistic approach to fuse points and line segments to

form a stereo visual odometry. Zhang et al.42 designed a

graph-based visual SLAM system using straight lines with

orthonormal representation and achieved better reconstruc-

tion performance. However, these studies cannot be

directly applied to the transmission tower environments

outdoors. The modifications of the SLAM details and the

improvements based on the appearance characteristics of

the tower are still necessary.

With regard to transmission tower localization, tower is

expected to be extracted from the constructed environment

map. Whereas, there are many noises in the sparse map and

the key points reflect little information of a PTT. Besides,

the dense or semi-dense map is too slow to be directly

processed on the compact UAV platform with limited com-

puting resources. To locate the PTT fast and accurately,

suitable PTT detection algorithm in 2-D image can be fused

into the SLAM framework. Martinez et al.43 developed a

machine learning–based approach combined with a

tracking-by-registration strategy. But, traditional methods

have to be faced with the complicated design of features

and the choice of classifier. In recent years, deep learning

(DL) technology has achieved great breakthroughs and

reached the state-of-the-art in the field of 2-D object detec-

tion.44 However, they quite consume the resources of gra-

phic processing units (GPUs) and cannot yet achieve the

real-time performance in the embedded system.

In this article, we propose an effective monocular

vision–based environmental perception approach to realize

PTT localization and estimate the UAV self-positions for

close proximity PTT inspection. We tackle these issues

utilizing a point–line-based SLAM and tower detection

method (PL-TD). It is implemented in a hierarchically

developed embedded UAV system. PTT has the prominent

line feature. Thus, an improved extraction and matching

method of the line features is presented to enhance frame

association. Building upon the ORB-SLAM, a suitable

SLAM system leveraging both point and line features is

designed followed by a semi-dense mapping which can

reflect the contour and line-shaped structure of the PTT.

In particular, the bundle adjustment (BA) optimization

component is incorporated with the point-to-line distance

and the intersections of lines to improve the accuracy of

UAV localization. For PTT localization, we create a trans-

mission tower data set (https://drive.google.com/open?

id¼1UyP0fBNUqFeoW5nmPVGzyFG5IQZcqlc5) and

customize a fast neural network (Tower Region Convo-

lutional Neural Network (R-CNN)) for PTT detection to

address the real-time problem and improve the detection

accuracy. The detection can be well fused into the SLAM

framework to provide an accurate position of PTT in 3-D

space. In addition, we designed two paths that allow the

UAV’s field of vision to cover most part of the PTT to

realize safe close proximity inspection. Then, along the two

paths, the whole UAV system built on the Robotic Operat-

ing System (ROS) framework is evaluated both in a syn-

thetic scene and a real-world PTT inspection environment

and achieves satisfactory results (https://youtu.be/tF3

hrZsBw7w).

The remainder of this article is organized as follows.

The second section gives an overview of the UAV hard-

ware, system architecture, and the two paths planned for

refined inspection. The third section explains the DL-based

TD and the reason to choose semi-dense mapping. Details

of our improved PL-based visual SLAM system, compris-

ing of the heuristic extraction and matching of the lines, the

improvement of BA optimization, are described in the

fourth section. The experimental results and analyses are

shown in the fifth section. Finally, the conclusions are

summarized in the sixth section.

System description and inspection paths

Hardware platform

We employ a refitted DJI Matrice 100 quad-rotor plat-

form, as shown in Figure 1(a). For the sake of portability

and endurance, we leave most of the UAV space for two

intelligent flight batteries and concisely equip the UAV

with a Pan/Tilt camera (PTC), two advanced low power

consumption-embedded processors NVIDIA TK1 and

NVIDIA TX2 and a light wireless router. The rewards

of adopting a single PTC are great, since it is of low

weight, is cheap, consumes low power, and occupies a

small mounting space. Besides, the PTC can rotate to
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provide flexible tower observation perspectives. The main

specifications and related performances of the inspection

UAV are listed in Table 1.

System architecture

Taking the system stability and ease of operation into

account, the inspection UAV adopts a three hierarchical

system architecture based on ROS network, as shown in

Figure 1(b). TK1, as an underlying controller, communicates

with the PTC and a flight controller. Meanwhile, TX2, with

more computing power, is used as an onboard central pro-

cessor and is primarily responsible for running algorithms.

The laptop, for supervising and remote control, works in the

upper level. These three scattered subsystems are connected

by the wireless router and an image transmission module.

Paths for inspection

We created a synthetic scene which contains a PTT model.

As illustrated in Figure 2, it has the same size as the actual

tower and the units are in meters. Then, according to the

characteristics of close proximity PTT inspection, two

paths are proposed, named “circumvolant path” (CIRP) and

“takeoff and land vertically path” (TOLP). As shown in

Figure 2, they are denoted by the red and green lines in

four different viewpoints, respectively. It can be seen that

the two routes can effectively avoid the collision with thin

PTLs and make it easy for a UAV’s field of vision to cover

most of the electric devices.

Transmission tower localization

The current DL-based object detection algorithms, which

have an outstanding precision rate, can be trained in advance

by a large number of tower samples. Faster R-CNN45 frame-

work is an algorithm that achieves rare false detections in our

transmission tower data set among all tested algorithms and

can be faster if we limit the number of region proposals. So,

we customize the Tower R-CNN based on the tower charac-

teristics and the Faster R-CNN structure to meet the detection

requirements of speed and accuracy. As illustrated in Figure

3, the special designs of Tower R-CNN are set as follows: (1)

Transmission tower is an structural object that is abundant in

low-level edge features and doesn’t need to be described by

deeper abstract features. Therefore, Tower R-CNN has fewer

convolutional layers, which are capable of shallow feature

extraction, to realize detection. Simultaneously, the detection

speed is significantly increased. (2) According to the prior

information of tower appearance, the anchor boxes45 only

with aspect ratio 2:1 are selected as proposals. It improves

region proposal quality and obtains higher detection

Figure 1. (a) The prototype of the refitted DJI Matrice 100 inspection UAV. (b) The hierarchical system architecture of the inspection
UAV. UAV: unmanned aerial vehicle.

Table 1. Specifications and performance of the inspection UAV.

UAV performance Concrete parameters

UAV (including TB48D battery) 2431 g
TB48D battery 676 g
Pan/tilt camera 247 g
Wireless router 100 g
Symmetrical motor wheelbase 650 mm
Propeller length 345 mm
UAV height 310 mm
Max. speed 17 m/s
Max. pitch angle 35�

Max. angular velocity Yaw: 150�/s
Max. speed of ascent 4 m/s
Max. speed of descent 5 m/s
Max. wind resistance 10 m/s
Vertical hovering accuracy 0.5 m
Horizontal hovering accuracy 2.5 m
Hovering time (TB48D*1) 28 min
Hovering time (TB48D*2) 40 min
CE certificate standard 3.5 km
FCC certificate standard 5 km

UAV: unmanned aerial vehicle; CE: Conformité Européenne; FCC: Federal
Communications Commission.
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accuracy. (3) The number of region proposals is usually large

and their feature maps all need to be classified by the fully

connected layers, which accounts for the amount of time. Due

to the more distinguishable tower edge features, it is possible

to reduce the parameters and simplify the structure of fully

connected layers to improve detection efficiency. Addition-

ally, to avoid overfitting problem and weight contamination,

the layer-by-layer training is adopted.

Semi-dense method recovers object contours and tex-

tured surfaces. It exploits the information from every

pixel at which the gradient of image intensity is signif-

icant. This exactly accords with the line structure of

tower appearance. Moreover, it is more useful than

sparse point map in navigation due to much more point

cloud information. Dense reconstructions34,35 need GPU

acceleration because of the high computational cost

involved. While semi-dense only needs multi-threading

optimization. The mapping algorithm is implemented

according to Raul’s work46 and is built upon our PL-

based visual SLAM.

Figure 2. Synthetic PTT environment and two safe close proximity navigation paths in four views. PTT: power transmission tower.

Figure 3. Schematic diagram of the Tower R-CNN.
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PL-based visual SLAM

Heuristic extraction and matching of lines

PTT inspection environment is full of line structures. We

compared commonly used line detection methods in the

real-world environment and finally chose line segment

detector (LSD)47 due to its good performance in SLAM

system. This is demonstrated in the experiment section.

LSD, an OðnÞ line dectector, is able to adapt to a certain

degree of environmental change without parameter tun-

ing and provides sub-pixel accuracy. However, lines

detected by LSD on the PTT usually have unstable end

points. Besides, LSD often divides a line into several

segments. This intrinsic problem becomes more serious

especially in the wild due to illumination variation. It

causes failures for line extraction, matching, and track-

ing. Considering the fact that line structures of PTT are

intersected at different corners brings abundant and

remarkable intersections in the images. So we take

advantages of the intersections to improve the perfor-

mance of line detection in a heuristic way shown as

follows:

1) The segments which should belong to one straight

line are merged based on their differences in direc-

tion and distance. Let d1 indicates the distance

between the two midpoints and d2 represents the

minimum distance between the end points. If d1

and d2 are smaller than the given threshold that is

experientially determined by the minimum length

value between the shortest line and a tenth of the

bounding box longitudinal edge of TD, and the

direction difference is smaller than 5�, then the two

segments are fused since they are probably the two

candidates of one line.

2) For further fusing, the Euclidean distance between

Line Band descriptors (LBDs) of two segments can

be used. For each segment lx, it has the smallest

distance e1 with segment l1 and the second smallest

distance e2 with segment l2. If e1=e2 < 0:2, then

the lx and l1 can be fused. Additionally, the lines,

that are close to but do not meet the fusion condi-

tions, are adjusted to be parallel, since most of them

are two sides of the same PTT linear structure.

3) For stable end points, the intersection points of two

line segments are determined. The intersection can

be on the extension line. It must be inside the tower

area and the distances from the intersection point to

the nearest end points of the two line segments must

be less than the minimum length of the two seg-

ments. So that the extension line doesn’t exceed the

original lines. Besides, to reduce noise, the lengths

of the two segments need to be empirically greater

than one-fifth of the transverse edge of the TD

bounding box.

LBD is an effective and robust local appearance-based

method to find correspondences between lines. However,

the appearance of the PTT has some similarity that leads to

wrong matching. Therefore, we introduce a geometric

matching criterion (GMC) of adjacent frames to effectively

improve accuracy of LBD-based line matching. The GMC

retains line matches which satisfy the following conditions:

1) The segments should have similar length.

2) The angle between two lines is less than a threshold.

3) The distance between the end points shouldn’t

exceed a certain threshold. In distance measure-

ment, the two end points should be distinguished

into different points according to the line direction

that is determined by which side of the line segment

is thicker.

PL-based BA optimization

The keyframe-based SLAM architecture relies heavily on

sparse nonlinear optimization (BA), since it is of vital

importance to precision of motion and structure. After

heuristic extraction and matching of PTT lines, we obtain

accurate line matches and stable line end points. To inte-

grate line features within the BA to further improve opti-

mization accuracy in the PTT environment, we next

describe the line parameterization, utilization of intersec-

tions, and the proposed error function.

Unlike the reprojection errors used in ORB point fea-

tures, the distance between the projected end point and

detected end point cannot be directly used since the 3-D

lines may not be fully detected in the image or they are

partially occluded. These situations possibly occur in a harsh

wild inspection environment. So we use the point-to-line

distance which can be divided into projected-point-to-

detected-line distance and detected-point-to-projected-line

distance. In the first case, the line measurement error Elik

for the k th line in the i th keyframe is represented by

expðxiwÞ ¼ expðxi;i�1Þ � expðxi�1;wÞ

xiw ¼
riw

�iw

" #
; r 2 R3; � 2 soð3Þ

Elik ¼ ½l0ik � K expðx̂iwÞP0wk l0ik � K expðx̂iwÞQ0wk �T

x̂iw ¼
½�iw�� riw

0T 1

" #

½�iw�� ¼
0 � �3 � 2

�3 0 � � 1

�� 2 � 1 0

2
664

3
775

ð1Þ

where �iw ¼ ½� 1; �2; �3� represents the seð3Þ rotation of

the i th PTC pose in the world frame, r represents the

seð3Þ translation of the i th PTC pose in the world frame,

K is the PTC intrinsic matrix, l0ik denotes the homogeneous
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representation of the k th infinite line in the i th keyframe,

xiw refers to the seð3Þ pose of i th keyframe, and xi;i�1 refers

to the seð3Þ pose transformation from i� 1 to i. P0wk and

Q0wk are the homogeneous coordinates of the 3-D end

points of k th 3-D line in the world coordinate system.

However, using the two end points to represent a line is a

non-minimal line parametrization, which doesn’t have

good performance in terms of optimization accuracy and

convergence.42 Therefore, we define the Elik as the dis-

tance from the 2-D detected end points to the projected

line, in which case the line in 3-D space is treated as an

infinite line with four DoFs, and it can be parameterized by

the four-parameter-based orthonormal form48 compactly.

The Elik is shown as equation (2)

expðxiwÞ ¼ expðxi;i�1Þ � expðxi�1;wÞ ¼
Riw tiw

0 1

" #

Lck ¼
Riw ½tiw��Riw

0 Riw

" #
Lwk

Lck ¼
nck

dck

" #

½tiw�� ¼
0 � t3 t 2

t3 0 � t 1

�t 2 t 1 0

2
664

3
775

l0ik ¼

f y 0 0

0 f x 0

�f ycx � f ycx f xf y

2
664

3
775nck

K ¼
f x 0 cx

0 f y cy

0 0 1

2
664

3
775

Elik ¼ ½p0ik � l0ik q0ik � l0ik �T

ð2Þ

where tiw ¼ ½t1; t2; t3� represents the translation of the i th

PTC pose in the world frame, Riw represents the rotation of

the i th PTC pose in the world frame, K is the PTC intrinsic

matrix, nck and dck separately denote the normal and orien-

tation vectors of the k th 3-D line in the camera frame, p0ik
and q0ik denote the homogeneous coordinates of the end

points of the k th line segments in the i th keyframe, and

Lwk and Lck are the k th 3-D line in the world and camera

coordinate frames, respectively. The state xiw and orthonor-

mal parameters of the 3-D line can be optimized by mini-

mizing the Elik . For derivation details, readers can refer to

He’s work.49 However, the BA optimization doesn’t take

effect on the end points of 3-D lines, because lines are

regarded infinitely long. So the 2-D end points matched

in different keyframes are back-projected and fused to trim

the corresponding 3-D line. The fusion strategy of Zhang’s

work,42 which can further alleviate the occlusion problem

and improve map accuracy, is applied in our approach.

There are a good deal of corner points in the PTT struc-

ture. Most of them are picked out by the heuristic line

extraction method so as to stabilize the end points. The

corner points are PTT salient features and can be quickly

extracted based on the line detection results. These advan-

tages make the corner an excellent feature for our frame-

work. Therefore, we try to add them within our SLAM

system as if they were ORB features. So that the corners

can adapt to most of the SLAM architectures and the num-

ber of feature points can increase a lot to improve algorithm

robustness without losing runtime efficiency. ORB feature

is designed by adding orientation and multi-scale informa-

tion on the basis of FAST50 corners and it has a 256-bit

rotated BRIEF51 descriptor according to its direction. How-

ever, the BRIEF descriptor of corner point can’t be directly

computed since the extraction process of the corner is dif-

ferent from that of the ORB. Therefore, we design a simple

and efficient method leveraging local image patch of the

corner point to provide the necessary orientation and pyr-

amid scale information for corner BRIEF construction. In

our approach, the acute angular bisector of the corner point

is adopted to represent the direction information. Different

sizes of rectangular blocks, which take the corner as the

center, are used to describe the multi-scale information.

This is able to simplify the complex scale operations. After

that, there is no distinction between the ORB features and

the corner features. The point measurement error Epij for

both features can be uniformly expressed as equation (2)

Epij ¼ xij � K expðx̂iwÞX wj ð3Þ

where X wj is the j th 3-D point in world coordinates and xij

represents the j th 2-D point observation in the i th key-

frame. Then, the final optimization cost function C in

combination with points and lines can be obtained as

equation (4)

C ¼
X

i;j

lpðEpij
TSp�1

ij EpijÞ þ
X
i;k

llðElik
TSl�1

ik ElikÞ ð4Þ

where lp and ll denote the Huber loss functions, and Ep�1
ij

and El�1
ik represent the inverse covariance matrices, which

account for uncertainties of points and lines, respectively.

They are computed by the Jacobians of the error functions

(Epij and Elik) with respect to the observations which

include points pij and line segments lik in the i th key-

frame. The computation process is shown in equations

(5) and (6)

Spij �
@Epij

pij

So

@Epij

pij

T

ð5Þ

Slik �
@Elik

lik

So

@Elik

lik

T

ð6Þ

In the image, the uncertainties So are assumed to obey

2-D Gaussian distribution with standard deviations
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sx ¼ sy ¼ 1 pixel for both the points and the line

segments.

Overview of PL-TD

In this part, we briefly summarize our proposed PL-TD

framework. As shown in Figure 4, PL-TD is composed of

transmission tower localization and PL-based visual SLAM

which is an extension of the ORB-SLAM. The framework

contains five main threads: tracking thread, local mapping

thread, loop closing thread, semi-dense mapping thread,

and TD thread.

The tracking thread. The tracking thread is the visual odo-

metry which estimates the poses of PTC. Besides, it deter-

mines when to add new keyframes. Firstly, a constant

motion model and a window search strategy are used to

guess the current PTC pose and initialize a coarse match-

ing, respectively. Based on the matching, a reference key-

frame which shares most features with the current frame is

selected followed by a covisibility map of the keyframe is

retrieved. Then, lines and points in the local map are pro-

jected to current frame to build more feature associations.

Finally, the PTC poses are optimized by the proposed PL-

based motion-only BA. For close proximity inspection,

the policy of keyframe insertion is designed very gener-

ously so that the tracking is more robust. Redundant key-

frames can be discarded subsequently in the local

mapping thread. In addition, the relocalization module

of ORB-SLAM is abandoned and once the tracking is lost,

the UAV will hover for safety.

The local mapping thread. The local mapping thread per-

forms PL-based local BA to optimize the local map that

is related to the newly added keyframe. If a keyframe is

determined, the local mapping thread triangulates map

points and lines according to the matching information

collected in the tracking thread. Then, the points and lines,

seen from less than three keyframes or in less than 25% of

the frames from which they are expected to be seen, are

discarded. Additionally, based on the number of co-visible

points and lines, the local mapping is also responsible for

removing redundant keyframes.

The loop closing thread. The loop closing thread checks

whether the loops are detected and is in charge of correct-

ing the drift errors. Based on the ORB and LBD features

extracted from a large set of inspection pictures, the visual

vocabulary of points and lines is trained off-line by

Distributed Bag-of-Words (DBOW),52 respectively. An

online database-reserving bag of words vector of key-

frames is established for loop candidates detection. For

each detected loop candidate, based on the corresponding

points, a RANSAC53 scheme is performed to find a relative

Sim(3) transformation54 S using the method of Horn.55 If S

is found, the S will be optimized by minimizing the repro-

jection errors in both keyframes to find more correspon-

dences. If there are enough correspondences, the loop can

be accepted. Then, both sides of the loop are aligned and

duplicated points and lines are fused. Finally, a PL-based

pose graph optimization is performed globally.

The semi-dense mapping thread. The semi-dense mapping

thread searches correspondences of pixels in high-

gradient areas of keyframes. Due to a wide baseline

between keyframes, the search of pixel correspondences

is improved by an intra-keyframe inverse depth fusion and

an inter-keyframe outlier removing method, which finally

bring an accurate reconstruction with few outliers. For

more details, readers can refer to Raul’s work.46

Figure 4. Schematic diagram of proposed PL-TD framework. PL: point–line; TD: tower detection.
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The TD thread. The TD thread detects the PTT or part of the

PTT fast and accurately by the proposed Tower R-CNN. In

combination with the correspondences between the 2-D

pixels and the 3-D semi-dense points, the PTT can be loca-

lized well and represented by enough point clouds in 3-D

space for refined inspection.

Experiments and analyses

Transmission TD experiment

Experiment setup. For this experiment, 1300 sheets of trans-

mission tower pictures were collected from refined inspec-

tion videos and annotated manually. The data set considers

different backgrounds, illumination, image resolutions,

observation viewpoints, and occlusion conditions. To ver-

ify the validity of our algorithm, we conducted compari-

sons of TD between the proposed Tower R-CNN and the

three state-of-the-art DL-based detection frameworks:

Faster R-CNN,45 single multibox detector (SSD),56 and

YOLOv2.57 We adopted 10-fold cross-validation58 to find

the best models. Following this scheme, the data set is

randomly partitioned into 10 subsets with equal size, then

the training and validation are conducted for 10 times. Each

time, a different subset is taken out for validation while the

remaining union of nine folds is used for training. We used

the Caffe framework59 to implement the training process on

a GTX TitanX GPU and the validation process on TX2.

Quantitative evaluation methodology. For quantitative evalua-

tion of the detection task, we adopted the intersection over

union, which is the evaluation standard of the PASCAL

Visual Object Classes challenge.60 A detection is to be

considered correct when the bounding box overlap ratio r

between the ground truth Bgt and the predicted Bp exceeds

50%, in which r is defined by the following formula

r ¼ areaðBgt \ BpÞ
areaðBgt [ BpÞ

ð7Þ

where areaðBgt [ BpÞ represents the union of the ground

truth bounding box, and the predicted bounding box and

areaðBgt \ BpÞ denotes their intersection. Therefore,

according to r, detections can be divided into three types:

true positive (TP) (tower is correctly detected), false

positive (FP) (background is mistaken as tower), and false

negative (FN) (tower is not detected). The three different

cases are illustrated in Figure 5.

Further, the precision and recall are employed as follows

precision ¼ TP

TPþ FP
ð8Þ

recall ¼ TP

TPþ FN
ð9Þ

Each predicted bounding box has a confidence value

between 0 and 1 to describe the degree of certainty. If the

detection confidence is higher than a given threshold, it can

be classified as TP. Otherwise, it is FP. So based on the

different confidence thresholds, we can obtain many value

pairs of the precision and recall. Subsequently, the preci-

sion–recall curve can be plotted. The average precision

(AP), summarizing the shape of the precision–recall curve,

is defined as the mean of 11 equally spaced recall levels

[0, 0.1, . . . , 1]

AP ¼ 1

11

X
r2f0;0:1; ::: ;1g

f ðrÞ ð10Þ

Figure 5. Success and error judgement for detection. The green bounding boxes represent ground truth. (a) The blue bounding box
represents TP, (b) the red bounding boxes represent FP, and (c) no detection bounding box (missed detection) represents FN. TP: true
positive; FP: false positive.
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where f ðrÞ represents the precision at recall r, and AP is

approximately equal to the area size under the precision–

recall curve.

Experimental results. The comparison was made from the

following three aspects: runtime, AP, and the false detec-

tion rate (precision–recall curve). All results are from the

best models after 10-fold cross-validation. As shown at

Table 2, SSD300 has the fastest runtime and YOLOv2 has

a speed of 5.6 frames per second (FPS), but their AP is

relatively low. Thus, they may have a low overlap ratio r

and unstable bounding boxes due to environmental

interference.

With respect to the precision–recall curve, as illustrated

in Figure 6, Tower R-CNN denoted by the green line

maintains a 100% precision over a fairly wide range of

recall, which clearly surpasses Faster R-CNN, SSD, and

YOLOv2. At this point, Faster R-CNN, SSD, and

YOLOv2 encounter different degrees of false detection,

even at a low level of recall. The high precision, namely

no false detection, brings significant safety to close prox-

imity navigation around PTT. Therefore, the proposed

Tower R-CNN can provide reliable and real-time TD

results for inspection task.

Line extraction and matching experiment

For line extraction, we evaluated four effective line detec-

tion methods which are commonly used in the literatures:

Progressive Probabilistic Hough Transformation (PPHT),61

LSD,47 EDLine,62 and fast line detector (FLD).63 To

evaluate the detection performance, we tested 100 images

with 640 � 480 resolutions in real-world close proximity

PTT inspection environments and statistically analyzed the

results in detail.

The evaluation of line detection is usually based on the

extraction speed and line quality which consists of quantity,

length, and repetition. All four line detection algorithms are

written in the Cþþ language and run on the Nvidia TX2.

As can be seen from Figure 7, it is difficult to detect the

complete linear structure of a tower by applying PPHT. The

straight lines are often contaminated by line-like noise.

Besides, to some extent, FLD and EDLine are more sus-

ceptible to the environmental influences than LSD, and

LSD has more obvious line detection results. As illustrated

in Table 3, EDLine detects the largest number of lines.

However, the lines detected have many repeated results that

influence the line matching. LSD has few repeated results

and detects more line segments than FLD but is slower than

FLD and EDLine. Whereas, the accurate straight line

detection of LSD can provide great safety, which is most

important for close proximity navigation. Furthermore, the

UAV will not fly too fast during close proximity PTT

inspection, the frame rate of the camera doesn’t have to

be very high. Summing up the above, we choose LSD as

the line detection method.

Based on the proposed heuristic line extraction method,

the accuracy of tower line detection is further improved

after LSD. Figure 8(b) and (d) are the heuristic line detec-

tion results of Figure 8(a) and (c), respectively. Compared

with Figure 8(a) and (c), the red circles in Figure 8(b) and

(d) show more stable end points, reflecting the intersections

of the tower. Moreover, the lines circled in green are more

discriminative and parallel. It is consistent with the actual

appearance of the tower. In further, the lines circled in blue

are elongated, overcoming the disadvantages that LSD

often divides a line into several segments. The heuristic

method reduces the risk of failure for line feature matching

and tracking and provides stable observations for optimization.

Figure 9 shows several line matching examples in local

maps. The same numbers marked on lines in different key-

frames indicate that they are matched. The matching results

are completed by the GMC of adjacent frames and the LBD

descriptors. In further, the matching criterion can be accel-

erated by a guided search (GS) which is based on a pre-

dicted velocity motion model. A quantitative evaluation of

adding the GMC and GS for matching was carried out in a

video sequence. The image resolution is 640 � 480. As

illustrated in Table 4, the proposed matching approach

makes data association significantly robust with few wrong

matches and a little time increase.

Experiments in synthetic scene for UAV and PTT
localization

This experiment was conducted to verify the accuracy of

UAV self-localization which takes advantage of the

Table 2. Performance of the inspection UAV.

Detection method AP (%) FPS

Faster R-CNN (VGG16) 89.8 0.8
Faster R-CNN (ZF) 88.6 2
SSD300 87.5 6
SSD512 88.1 2
YOLOv2 86.8 5.6
Tower R-CNN 89.8 5

FPS: frames per second; AP: average precision.

Figure 6. Precision–recall curve for TD. TD: tower detection.
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proposed point-to-line distance and the intersections of

lines. Two-hundred camera positions were sampled at a

fixed time interval from the proposed two paths. At each

position, the camera can see part of the PTT according to

the camera projection model. The observation of the line

segment on the image plane can be obtained by projecting

the PTT line structure to the camera plane. Besides more

3-D points are added around the tower corners and pro-

jected as the ORB point features. Then, we added Gaussian

Figure 7. Results of different line detection in typical close proximity inspection situations.

Table 3. The results of line detection algorithms.

LSD FLD EDLine PPHT

Average run time (ms/image) 18.6 13.5 15.5 16.4
Average line numbers 206.5 111.6 255.2 235.7
Average line length (pixels) 56.3 86.4 92.6 108.3
Repeat lines few few many many

LSD: line segment detector; PPHT: Progressive Probabilistic Hough
Transformation.

Figure 8. Results of heuristic line extraction of PTT. PTT: power transmission tower.
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white noise with a variance of 10 pixels to the point and end

points of lines in the image. In addition, two other Gaussian

white noise models with a variance of 3 m and 5� are

separately imposed on the translation and rotation of cam-

era poses. The collection process of simulation data is

shown in Figure 10. Actually, we conduct the pose graph

optimization, and the 3-D corner points of PTT are fixed in

this experiment.

In the experiment, we adopted Levenberg–Marquardt

algorithm in the Ceres optimization library,64 which is

developed by Google, as an optimization solution tool. For

a fair comparison, the optimizer iterates the same number

of steps. The optimized positions of 200 cameras are shown

in Figure 11. In the synthetic scene, our approach based on

fusion of points and lines makes the UAV self-positioning

more robust to noises. It outperforms than the method based

on ORB point feature only and the method based on line

and intersection features only. The point-to-line distance

and the intersections of lines provide extra useful con-

strains for UAV odometry.

With respect to the quantitative evaluation metric, we

employ the Root Mean Square Error (RMSE) of Relative

Pose Error (RPE) to evaluate the performance of our

approach. The RPE measures the trajectory accuracy over

a constant time interval D and reflects the drift of the

trajectory. It is defined as equation (11) at time step i

Ei ¼ ðQ�1
i QiþDÞ�1ðP�1

i PiþDÞ ð11Þ

where P1; :::;Pn is a pose sequence from the estimated

trajectory and Q1 ; :::;Qn is another pose sequence from the

ground truth trajectory. Assume we have n camera poses,

then m ¼ n�D individual RPE can be obtained. From

these errors, the RMSE over all time indices is defined as

equations (12) and (13) for translational and rotational

components, respectively

RMSE translation ¼
1

m

Xm

i¼1

jj transðEiÞjj2
 !1=2

ð12Þ

RMSE rotation ¼
1

m

Xm

i¼1

jj rotaðEiÞjj2
 !1=2

ð13Þ

where transðEiÞ and rotaðEiÞ denote the displacement and

rotation angle decomposed from the attitude matrix Ei.

The first two rows of Table 5 show the average error

statistics of 20 simulation experiments. From the experi-

mental results, it can be seen that the translational and

rotational errors of point-based optimization are reduced

after adding constraints of the lines and their intersections

to the cost function. Our method improves the UAV loca-

lization precision. After 20 simulation experiments, the

third row of Table 5 shows the average run time of

the motion-only BA for 200 camera positions. The run

time increases 5 ms after adding optimization for lines

and corners.

In the close proximity navigation around PTT, the pre-

cision of each reconstructed 3-D feature point of the tower

is not needed. The accuracy is mainly determined by the

2-D TD in the first experiment. Based on the experimental

setup above, we added different levels of noises to the 3-D

tower corners and tested the robustness of tower

Figure 9. Results of line matching in local maps. (b), (d), (f), (h) are the pictures with different viewpoints in the covisibility graph38 of
(a), (c), (e), (g), respectively. The matched lines are denoted with same numbers.

Table 4. The results of line matching approaches.

LBD
Adding
GMC

Adding GMC
and GS

Average run time (ms/image) 21.2 24.7 22.4
Average wrong matching 5.3 1.6 1.2

LBD: line band descriptor; GMC: geometric matching criterion; GS:
guided search.
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Figure 10. (a), (b), (c), (d) and (e), (f), (g), (h) show the generation of simulation data with Gaussian white noises along the CIRP and the
TOLP, respectively. A PTT corner point is in the camera’s field of view if there is a color line connecting it and the camera. PTT: power
transmission tower; CIRP: circumvolant path; and TOLP: takeoff and land vertically path.

Figure 11. The results of motion-only BA. (a) and (d) The optimization results of using ORB point feature only. (b) and (e) The results
of using point-to-line distance and the intersections of lines. (c) and (f) The results of using ORB points, lines, and intersections of lines.
The green points denote the camera positions. The white points represent the PTT corner points. The white points make up the basic
shape of the tower. BA: bundle adjustment; PTT: power transmission tower.
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reconstruction. The tower corner points are restored by

global BA. We define that the optimization converges if

the average distance between optimized PTT corners and

the ground truth corners is less than 0.1 m and the gradient

variation is smaller than a threshold. The last row of Table

5 records the maximum variance of Gaussian white noise

that the three methods can tolerate for successful conver-

gence. It can be seen that our proposed method performs

best in terms of reconstruction robustness.

Experiments in real-world scenes

We conducted several experiments in the field to validate

our proposed monocular vision–based environmental per-

ception approach. A transmission tower which has a typical

220-kV double circuit lattice steel structure is selected as an

inspection target. It has a height of 35 m and a base width of

6 m and can be approximately enveloped by a 8� 8� 35 m3

(length, width, and height) cuboid. We operated the UAV to

fly along our proposed CIRP and TOLP. Besides, we delib-

erately operated the camera to make the tower appear in the

field of camera view and have a random position in image.

In further, the trajectory of UAV can be recorded based on

an accurate differential GPS system of the UAV. The GPS

data of transmission tower is provided by a power company

and based on WGS84 (World Geodetic Coordinate System

1984). It is in principle possible to evaluate the accuracy of

the experimental trajectory. However, the accurate time

alignment between the ground truth and the estimation is

difficult to obtain in the field environment. The time devia-

tion mainly comes from the out-of-sync transmission of GPS

data and image data in the system. Considering the fact that

the speed of UAV is slow during refined inspection, the

deviation of time caused by system is still within the accep-

table range in this large inspection scenario.

Table 5. The first two rows are the RMSE of RPE after minimizing
different losses and the last row records the maximum variances
of Gaussian white noise that the optimization can tolerate.

BA with
points

BA with lines
and corners

BA with points,
lines, and corners

Translational RMSE
(m)

0.092 0.083 0.070

Rotational RMSE
(rad)

0.047 0.055 0.034

Average run time
(ms)

21.7 23.1 26.8

Maximum tolerable
noise variance (m)

6.5 7.1 8.8

RMSE: root mean square error; RPE: relative pose error.

Figure 12. Sample images in real-world refined PTT inspection. (a) and (b) are pictures captured along the CIRP path; (c) and (d) are
pictures captured along the TOLP path. The green points denote the detected keypoint and the black lines denote the detected line
feature. PTT: power transmission tower; CIRP: circumvolant path; and TOLP: takeoff and land vertically path.
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Figure 12 shows the results of image processing of the

SLAM framework during navigation. As illustrated in Figure

12 (d), when the number of detected ORB keypoints is small,

the number of detected PTT lines is prominent. To further

demonstrate the effects of PTT lines for UAV self-

localization, the UAV was operated to fly around the PTT

and we recorded this planned trajectory by the differential

GPS system. The ORB keypoint-based trajectory and our

PL-based trajectory are calculated from the collected video.

The three trajectories are aligned by correcting the scales and

they are compared in Figure 13. It can be seen that our

approach combining line features are closer to the ground

truth. After 10 experiments, Table 6 shows the average RMSE

errors of the two vision-based trajectories with respect to the

planned trajectory, respectively.

In terms of the reconstruction results of the PTT and

environment, we compare the typical semi-dense recon-

struction algorithms of LSD-SLAM and the keyframe-

based semi-dense mapping.46 LSD-SLAM is open source

but the other is not. We implemented the semi-dense algo-

rithm in Cþþ language and integrated it into our frame-

work. As shown in Figure 14 (a), the map built by

Figure 13. Comparison of the planned trajectory (recorded by the differential GPS system), the ORB keypoint-based trajectory and
our PL-based trajectory. The three trajectories are around the tower and contain the viewpoint of Figure 12(d) which has fewer ORB
keypoints. GPS: global positioning system. PL: point–line.

Table 6. Comparison of RMSE errors of the RPE.

ORB keypoint-based
trajectory

PL-based
trajectory

Translational RMSE of RPE (m) 0.938 0.514
Rotational RMSE of RPE (rad) 0.213 0.152

RMSE: root mean square error; RPE: relative pose error; PL: point–line.

Figure 14. The comparison of reconstruction algorithm. (a) The result of LSD-SLAM; (b) the result of keyframe-based semi-dense
mapping. The blue rectangles represent the camera poses. The green line represents the camera’s trajectory. LSD: line segment
detector.

Bian et al. 15



LSD-SLAM contains a lot of noises and there are large

deviation and jitter in UAV position estimation. LSD-

SLAM is based on the photometric consistency hypothesis

and localize the camera by optimizing directly over image

pixel intensities. Therefore, LSD-SLAM is sensitive to illu-

mination changes and the reconstruction accuracy is greatly

degraded in the real-world inspection scene. In contrast,

feature-based methods are able to match features with a

wide baseline due to their good invariance to viewpoint

and illumination changes. Camera poses are well optimized

by BA over features. This allows to further obtain high

quality and accurate reconstructions. As shown in Figure

14 (b), the keyframe-based semi-dense method recovers the

PTT contours and reconstructs high-gradient areas which

can reflect the line structures of PTT. This rich PTT repre-

sentation is useful for UAV fixed-location inspection. The

map requires no GPU and we implemented it only by add-

ing a new thread.

Figure 15 shows the several complete UAV trajectories

and PTT reconstructions in the real-world experiments. It

can be seen that the triangulated 3-D lines and the semi-

dense point cloud can accord with the PTT structures. To a

certain extent, the accuracy of reconstructions of the envi-

ronment is determined by the accuracy of estimation of

camera poses. So, our approach can successfully estimate

the UAV camera poses. Furthermore, we compared the

ORB-SLAM scheme and our PL-based approach on a

recorded video. The video completely covers the two

paths of CIRP and TOLP. For a fair comparison, the para-

meters for point feature extraction were kept same. At

each 640 � 480 image, 2000 point features at 8 scale

levels with a scale factor of 1.2 were extracted. Figure

15(i) shows the ground truth of PTT location and camera

poses. Figure 15(j) shows the environment reconstruction

and estimation of camera poses of our methods along the

same path in Figure 15(i). We enlarged or reduced the

camera positions by multiplying a suitable scale to mini-

mize the mean square error between the sampled camera

positions and the ground truth values. Figure 16 shows the

comparison between the ORB-SLAM scheme and our PL-

based approach along the CIRP and TOLP. It can be seen

that our approach has a smaller error in more positions

with respect to the GPS ground truth. Table 7 shows the

average errors of 10 experiments. The translational RMSE

of RPE of our approach is 0.393 m and meets the require-

ments of actual inspection. The PTT center is estimated by

3-D point clustering. The distance between the ground

truth of PTT center and the detected center is 0.72 m. In

terms of runtime, since the line features are extracted in

parallel threads, the execution time on TX2 will not

increase much. The UAV requires 105.1 ms per image,

which satisfies the inspection requirements.

Figure 15. (a) and (b) The 3-D line feature and semi-dense
mapping result; (c) the semi-dense mapping result when the UAV
hovers near the top of the pole tower; (d) the 3-D line feature
and the inspection paths around the tower; (e) a map in com-
bination with the 3-D sparse keypoints, 3-D lines, and 3-D semi-
dense points; (f) an octomap65 which is built from the 3-D
semi-dense point clouds; (g) the pose estimation of the UAV
cameras along CIRP, the blue rectangles denote the camera
positions and orientations; (h) the pose estimation of the UAV
cameras along TOLP; (i) the camera trajectory and tower loca-
tion recorded by GPS system; (j) the experimental results gen-
erated from our method on the images recorded from (i). UAV:
unmanned aerial vehicle; CIRP: circumvolant path; and TOLP:
takeoff and land vertically path.
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Conclusion and future work

In this article, a perception approach combining PL-based

visual SLAM and TD is proposed for safe and autonomous

close proximity PTT inspection. The UAV takes advantage

of enough perspective information provided by a monocu-

lar PTC to realize the reliable self-positioning and tower

localization. All schemes are well implemented in an hier-

archical embedded system. To make full use of the abun-

dant line information in the PTT inspection environment,

line extraction and matching are improved by a heuristic

method, making them more suitable for tower linear struc-

tures. Besides, the intersections of lines are processed as

ORB feature to increase algorithm robustness. To further

improve accuracy of SLAM system, the cost function of

BA optimization is proposed to combine ORB point feature

with point-to-line distance and the intersections of lines.

The loss function has more stable point-to-line distance

Figure 16. The three trajectories cover the two paths of CIRP and TOLP. The trajectory denoted by the dashed line is recorded by the
differential GPS system. The blue trajectory is calculated from the ORB keypoint-based scheme. The red trajectory is computed from our
PL-based approach. CIRP: circumvolant path; and TOLP: takeoff and land vertically path; GPS: global positioning system; PL: point–line.

Table 7. Comparison of drift errors and runtime along the CIRP
and TOLP.

ORB-SLAM Our approach

Translational RMSE of RPE (m) 0.485 0.393
Rotational RMSE of RPE (rad) 0.276 0.194
Distance error of PTT center (m) 0.96 0.72
Average run time (ms/image) 98.8 105.1

CIRP: circumvolant path; TOLP: takeoff and land vertically path; SLAM:
simultaneaous localization and mapping; PTT: power transmission tower.
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constraints and more point feature reprojection errors, mak-

ing the framework more robust. To construct a useful map

for navigation and simultaneously consider the real-time

performance, the keyframe-based semi-dense mapping

algorithm is implemented. To localize tower fast and accu-

rately in 3-D space, a DL-based neural network is custo-

mized (Tower R-CNN) to detect part of or complete

transmission tower in different viewpoints. Then, the con-

tour and line-shaped structure of PTT can be reflected in

map forming a rich representation. In addition, two safe

paths, which can avoid collision with transmission lines

and allow the UAV’s PTC to observe the PTT, and elec-

trical equipments, comprehensively, are proposed for

refined inspection. Along the two paths, the whole percep-

tion strategy is validated in a synthetic scene. Finally, the

designed inspection platform is tested in a real-world field

environment, which achieves a satisfactory result.

In the future, we will investigate how to integrate a high

precision inertial sensor with point and line features into the

UAV system. In addition, our algorithm can be easily

migrated into stereo vision inspection system to get the

absolute distance information. Based on the above works,

an online fault diagnose system will come true.
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