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a b s t r a c t 

Distance metric learning aims to learn a metric with the similarity of samples. However, the increasing 

scalability and complexity of dataset or complex application brings about inevitable label noise, which 

frustrates the distance metric learning. In this paper, we propose a resampling scheme robust to label 

noise, Re-KISSME, based on Keep It Simple and Straightforward Metric (KISSME) learning method. Specif- 

ically, we consider the data structure and the priors of labels as two resampling factors to correct the 

observed distribution. By introducing the true similarity as latent variable, these two factors are inte- 

grated into a maximum likelihood estimation model. As a result, Re-KISSME can reason the underlying 

similarity of each pair and reduce the influence of label noise to estimate the metric matrix. Our model 

is solved by iterative algorithm with low computational cost. With synthetic label noise, the experiments 

on UCI datasets and two application datasets of person re-identification confirm the effectiveness of our 

proposal. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Distance metric learning (DML) depicts the intrinsic structure

and the correlation between different dimensions of data. As a pre-

process step of data analysis, the learned metric can improve the

performance of metric-based algorithm, such as clustering, rank-

ing [1] and classification. Many typical DML methods are proposed

and successfully used in many applications, especially in image re-

trieval [2] , face recognition [3] , image annotation [4] , visual track-

ing [5] , and person re-identification [6,7] . For a comprehensive re-

view of distance metric learning, please refer to [8,9] . 

Usually guided by the constraints from the labels or similar-

ity of samples, a good metric aims to keep each group compact

and different groups apart. Integrating the constraints as loss terms

and the priors as regularization terms into the objective function,

most of algorithms transform the task into a complex optimization

problem of finding a positive semi-definite matrix. Common DML

methods assume that all labels or similarity of samples are correct,

which is impossible with the increasing scalability and complex-

ity of dataset or in complex application. As a result, the inevitable
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xistence of label noise affects the performance of DML methods.

s shown in Fig. 1 , the wrong constraints can mislead the learn-

ng process into pushing dissimilar pairs close together and pulling

imilar pairs far away, which may betray the goal of distance met-

ic learning and lead to poor generalization on testing data. 

Learning with noisy labels has been studied for several years.

ne kind of methods directly remove or relabel the suspected sam-

les according to some predefined criterion. Unfortunately, sev-

ral work has shown that relabeling the mislabeled samples pos-

ibly harms more than removing them [10] . Besides, methods of

emoving suspicious samples have risk of cleaning right samples

r conserving wrong samples, which would mislead the learn-

ng as well [11] . The other kind of methods design noise-tolerant

lassifiers, which usually consider a noise model in addition with

he classification model or design specific surrogate loss. However,

here is little attention on addressing the problem of label noise in

ML besides Robust Neighbourhood Components Analysis (RNCA)

12] and Generalized Maximum Entropy model for learning from

oisy side information (GMEns) [13] . 

One of the most effective and widely used methods in DML is

eep It Simple and Straightforward Metric (KISSME) [14] learning

ethod, which is a statistical proposal assuming that pair differ-

nces are sampled from two different Gaussian distributions. This

ethod does not rely on the complex optimization with respect

o the Mahalanobis matrix and has low computational cost. This
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(a) Without considering label noise (b) With considering label noise

Fig. 1. Without vs. With considering label noise. The red arrows indicate the wrong direction of learning, and the black arrows indicate the right direction of learning. 
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fficient method depends on the estimation of two covariance ma-

rices, which would be biased by the label noise. The major prob-

em of bias is that pairs of two Gaussian distributions are wrong

ampled due to label noise, which makes the final Mahalanobis

atrix less discriminative. Instead of removal of potential misla-

elled samples, which results in loss of information, making use of

amples as much as possible is a better choice. Motivated by the

ork of [15] , we introduce a resampling scheme for the sample

airs based on KISSME to optimize the estimation of metric ma-

rix. 

In this paper, we propose a robust resampling method based

n KISSME, to address the problem of label noise for DML meth-

ds with pairwise constraints. We assume that the Mahalanobis

atrix learned during the iteration can reflect the similarity of

ample pairs to some extent, and that label noise is random. Con-

idering the structure of samples and the priors of labels as two

esampling factors, the pair differences are resampled to estimate

he covariance matrices. By introducing the true similarity as a

atent variable, we model these two factors through a maximum

ikelihood estimation model, and estimate the Mahalanobis matrix

n each iteration till convergence. The learned metric and the la-

el flipping parameter can reflect the potential true similarity of

ach pair from feature space and label space respectively, so as to

eason the latent true similarity of each pair and reduce the ef-

ect of label noise. Also our algorithm has low computational cost.

he experiments are conducted on UCI datasets as well as two ap-

lication datasets of person re-identification with different level of

ynthetic label noise, and the results validate the effectiveness of

ur proposal. The main contributions of our work are as follows: 

(1) We propose a robust resampling scheme to correct the ob-

served distribution for DML in the presence of label noise,

given the observed features and labels of sample pairs; 

(2) By modeling the data structure and the prior of label

through a maximum likelihood estimation model, an itera-

tive algorithm is developed. Our algorithm Re-KISSME im-

proves the performance of KISSME with and without exis-

tence of label noise; 

(3) We conduct extensive experiments on general classification

task and application of person re-identification with differ-

ent levels of synthetic label noise. The results show the ef-

fectiveness and robustness of our proposal. 

The rest of this paper is organized as follows. We discuss re-

ated work about DML and learning with noisy labels in Section 2 .

eviewing KISSME algorithm is in Section 3 . Through introducing

he true equivalence of each pair as latent variable in a likelihood

stimation model, we propose our method Re-KISSME in Section 4 .

he experiments on performance are shown in Section 5 , and con-

lusion is in Section 6 . 
. Related work 

This section reviews some of the previous work on topics

losely related to this paper. We first briefly review DML in this

ection, and then the studies of learning with noisy labels are fol-

owed. 

.1. Distance metric leaning 

From the way of solver, one type of related work involves

onvex or nonconvex optimization, which is usually solved by it-

rative gradient-based methods. Mahalanobis metric for cluster-

ng (MMC) [16] formulates the problem as a convex optimization

earning from side-information, which arouses the later work of

ML. Neighborhood Component Analysis (NCA) [17] maximizes the

robability that each data sample selects the points of same label

s neighbours. Large Margin Nearest Neighbor (LMNN) [18] aims to

enalize large distances between anchor point to its target neigh-

ors and small distances between anchor point to its impostors for

-NN classification. Information Theoretic Metric Learning (ITML)

19] minimizes the relative entropy between two Gaussians un-

er pairwise constraints, which is solved by an iterative Breg-

an projection algorithm. Parametric Local Metric Learning (PLML)

20] learns local metrics consisting of basis metrics, based on an-

hor points from different regions of the instance space. Based on

he similar triplet constraints of LMNN, much work extends LMNN

rom different views, such as GB-LMNN [21] , χ2 -LMNN [21] . Sim-

larly, Unified Multi-Metric Learning (UM 

2 L) [22] is a framework

ombining multiple types of metrics from different perspectives

nder triplet constraints. These methods all optimize the objection

n positive direction for similar pairs while in negative direction for

issimilar pairs [14] . They assume that the labels or constraints are

orrect, whose objective function would be violated by the phe-

omenon of label noise. 

The other type of related work needs no complex optimiza-

ion procedure. Relevant Components Analysis (RCA) [23] learns a

lobal linear transformation matrix from the positive pairs, which

f solution is the inverse of the average chunklet covariance ma-

rix. Discriminative Component Analysis (DCA) [2] improves RCA

y considering negative pairs in addition, whose objective func-

ion is the ratio of determinants of two covariance matrices. Xi-

ng et al. [24] extends DCA by exploring the trace of two covari-

nce matrix based on both similar and dissimilar pairs, which is

olved by eigenvalue decomposition. Assuming the pair differences

re sampled from two Gaussian distributions, KISSME is an effi-

ient way to learn a metric matrix from pairwise constraints. The

olver of these methods relied on the estimation of covariance ma-

rices, which would still be biased in the presence of label noise.

here also has been study showing that the large noise in the pair-

ise constraints could seriously deceive the DML and lead to poor
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generalization on testing samples [25] , as well as in our empirical

study. 

2.2. Learning with noisy labels 

The methods designed for the existence of label noise can be

roughly categorized into two categories. One kind of them are

data-oriented methods, which add data preprocessing steps be-

fore classification. The other kind are model-based methods, which

construct the model without data preprocessing. Survey refers to

[26] . 

The first kind of methods delete or relabel the mislabeled sam-

ples, and the classifier of each method is learned on the remaining

training samples. The suspicious samples are selected according

to some criterion, such as gain criteria [27] , complexity measure

[28] , and geometrical structure [29] . There are researches show-

ing that removing suspicious samples is more efficient than rela-

beling them. But this category of methods may lead to removing

correct samples or remaining wrong samples, which would harm

the performance of classification more. Regression based Distance

Metric Learning (RDML) [25] , as a kind of DML method for crowd-

source, solves the problem via filtering noisy pairwise constraints

and recovering the similarity matrix through matrix completion al-

gorithm. Note that RDML differs from our work in that the crowd-

source offers multi-annotator for each sample, which could reason

the confidence of label directly. Our algorithm explores the prob-

lem of DML given one label for each sample, which gives no con-

fidence of each label directly. 

The model-based methods focus on designing specific surrogate

loss function robust to label noise, or considering a noise model

besides the classification model. Natarajan et al. [30] propose two

methods, an unbiased estimators of any loss and a weighted loss

function, to modify any given surrogate loss function for the class-

conditional situation. Liu and Tao [31] prove that using impor-

tance reweighting in any surrogate loss function is effective for

classification with noisy labels , which is like transfer learning.

The Labeled Instance Centroid Smoothing (LICS) [32] approach re-

duces the influence of noisy labels through incorporating labeled

instance centroid and considering the influence of variance. For

multiclass classification problem of deep Neural Networks, Ghosh

et al. [33] derive some sufficient conditions on a loss function,

which would be inherently tolerant to label noise. Some model-

based methods are solved by iterative algorithm, which consider a

noise model and a classification model simultaneously in the train-

ing. The probabilistic methods are widely used in modeling the

noise process, which reason the label flipping probability. Based on

EM algorithm, Lawrence and Schölkopf [34] assign a label flipping

rate of each sample and provide a data-generative process prob-

abilistically for kernel Fisher Discriminant in the presence of la-

bel noise. This method has inspired much related work, such as

probabilistic Kernel Fisher (PKF) [35] . The robust logistic regres-

sion (rLR) [36] model learns the label flipping probabilities and a

logistic regressor for classifier simultaneously. A new robust boost-

ing (rBoost) [37] algorithm is designed by employing a label-noise

robust base learner and modifying the exponential loss. Recently

Raykar et al. [15] estimate the true labels of subjects through an

EM approach for learning from crowds, which has inspired much

later work. However, these methods are not proposed for the prob-

lem of DML and most of them are designed for binary classifica-

tion. 

Although not yet a popular research direction in DML liter-

atures, there is some model-based work attempting to consider

learning a metric in the presence of label noise. GMEns [13] pro-

poses a framework for learning from noisy side information to rea-

son the similarity of each pair. RNCA [12] solves the problem of

label noise for NCA algorithm, and needs the given information of
abels, which is harder to get than side-information. Because the

radient with respect to the metric matrix is involved in iteration,

hese methods usually require high computational cost. 

. Premilinary 

Given the training dataset of n samples in original space: X =
 x 1 , . . . , x n ] ∈ R d×n , the side-information is reformulated as pair re-

ations: (x i , x j ) ∈ S or (x i , x j ) ∈ D, where S denotes the similar

airs and D denotes the dissimilar pairs. The Mahalanobis distance

s defined as: d M 

(i, j) = 

√ 

(x i − x j ) 
T M(x i − x j ) , where the metric

atrix M is required to be positive semi-definite. We introduce dif-

erence vector x i j = x i − x j and label y ij : y i j = 1 for (x i , x j ) ∈ S or

 i j = 0 for (x i , x j ) ∈ D . 

Assuming the similar and dissimilar pairs belong to two dif-

erent Gaussian distribution with zero mean, KISSME tests the hy-

othesis H 0 that a pair is dissimilar versus the alternative H 1 : 

f (x i j ) = log 
p(x i j | H 0 ) 

p(x i j | H 1 ) 
= log 

p(x i j | θ0 ) 

p(x i j | θ1 ) 
(1)

here p ( x ij | θm 

) is a probability of a Gaussian distribution for hy-

othesis H m 

parameterized by θm 

. The large value indicates that x i 
nd x j are dissimilar pair, vice-versa small value for a similar pair.

o a small value of f ( x ij ) implies that pair ( i, j ) is similar and H 0 is

ejected, a large value implies that H 0 is validated. From the prob-

bility of Gaussian distribution: 

p(x i j | H m 

) = 

1 √ 

(2 π) d | �m 

| exp 

(
−1 

2 

x T i j �
−1 
m 

x i j 

)
, (2)

he ratio becomes: 

f (x i j ) = log 

1 √ 

(2 π) d | �0 | 
exp 

(
− 1 

2 
x T 

i j 
�−1 

0 
x i j 

)
1 √ 

(2 π) d | �1 | 
exp 

(
− 1 

2 
x T 

i j 
�−1 

1 
x i j 

) . (3)

tripping the constant terms without relation to x ij , the simple for-

ulation is as follows: 

f (x i j ) = x T i j 

(
�−1 

1 − �−1 
0 

)
x i j (4)

here the covariance matrices are computed as 

0 = 

1 

N 0 

∑ 

y i j =0 

x i j x 
T 
i j (5)

1 = 

1 

N 1 

∑ 

y i j =1 

x i j x 
T 
i j . (6)

 0 and N 1 are the number of dissimilar and similar pairs respec-

ively. Through projecting �−1 
1 

− �−1 
0 

onto the cone of positive

emidefinite matrices, we get the Mahalanobis matrix M , and the

istance between two samples is 

f (x i j ) = x T i j Mx i j , (7)

 ij is in short for convenience. 

. The proposed work 

The KISSME algorithm and its variants [38,39] all rely on

he estimation of two covariance matrices of pair differences.

hese methods assume that the labels of pairs are correct.

owever, making all labels accurate is time-consuming and

esource-consuming, which is difficult to meet in practice. In the

resence of label noise, the estimation of covariance matrices is

iased seriously, which leads to a deviating distribution learned

rom the training samples and poor performance on the testing

amples. Under the circumstances, the goal of DML is to output

 Mahalanobis matrix M from the observed noisy distribution 

˜ D :
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Fig. 2. The latent model representing the relationship among the true label, the 

observed label and the sample feature. 

{  

i

 

p  

a  

t  

o  

p  

i  

s  

o  

i  

s  

t  

t  

o  

t  

t  

s  

a

 

x  

m

a  

s  

t  

t  

r

 

w  

A

 

fl  

o  

h  

d  

l  

t  

c  

s  

o  

d  

i  

p  

d  

s

 

S

 

H  

0

 

c

 

d  

r  

o

T  

B

 

 

m  

o  

b

L

 

c  

l

 

 

g  

p  

t

 

t  

t

 

w  

t

L

s  

t

L

 

s  

A  

L  

d

 (x 1 , ̃  y 1 ) , . . . , (x i j , ̃  y i j ) , . . . , (x N , ̃  y N ) } , where ˜ y i j is the observed sim-

larity of the ij th sample pair. 

As mentioned in the related work, the removal of certain sam-

les will cause loss of information in application, it could result in

 potential change of the data structure [40] . If there is information

elling the label noise from the true label, it will reduce the effect

f noise more or less. From the cognitive process of human, peo-

le is able to tell the class of noisy samples from the clear samples

n vision, this mainly results from the structure information and

ome prior information. Similarly, given the pair differences and

bserved labels, we can reason the probability of sample pairs be-

ng potential mislabeled and resample each pair without discarding

amples. Actually this could correct the observed noisy distribution

o learn the underlying true distribution of dataset. We assume

hat the structure learned during the iterations inflects some part

f true distribution to some degree, and that one class is flipped

o other classes at random. The structure information corresponds

o a classification model, as one factor influencing the resampling

cheme. The noise probability corresponds to a label noise model,

s another factor. 

Label noise model: We introduce a true label y ij for each pair

 ij as a latent variable. We only discuss the random noise, which

eans that the observed label ˜ y i j only depends on the true label y ij 
nd is independent of the observed sample pairs x ij . The relation-

hip is shown as Fig. 2 . The label noise model is expressed through

he probability of conditional distribution. The link between the

rue label y ij and the given observed label ˜ y i j is presented by pa-

ameter r lm 

, namely the flipping probability that is defined as 

r lm 

= p( ̃  y i j = m | y i j = l) . (8)

here, m ∈ {0, 1}, l ∈ {0, 1} are the value of ˜ y i j and y ij respectively.

ccordingly, we denote ˜ r ml = p(y i j = l| ̃  y i j = m ) . 

Classifier model: Even during iteration, the metric matrix can re-

ect the true similarity of some pairs to some degree. As for an-

ther factor influencing resampling scheme, we consider the Ma-

alanobis matrix as the structure information. We use a probability

epicting the similarity of each pair difference. Through the Maha-

anobis distance, it can verify that whether two test samples belong

o a group or not. The problem could be characterized as a binary

lassification. For a threshold b and a scale coefficient k , the clas-

ification model is of the form: y i j = 1 if k ( f i j − b) ≤ 0 and y i j = 0

therwise. f ij is the Mahalanobis distance of the ij -th sample pair

efined in (7). We hope that the probability of a pair being sim-

lar is high when the Mahalanobis distance is small, and that the

robability of a pair being dissimilar is low when the Mahalanobis

istance is large. Thus, a logistic sigmoid function is a good repre-

entation of the probability describing the similarity of pairs: 

p(y i j = 1 | x i j , M, k, b) = 1 / (1 + e k ( f i j −b) ) . (9)

o, we can express the probability of a pair being dissimilar: 

p(y i j = 0 | x i j , M, k, b) = 1 − p(y i j = 1 | x i j , M, k, b) . (10)

ere it remarks δ1 (x i j ) = p(y i j = 1 | x i j , M, k, b) and δ0 (x i j ) = p(y i j =
 | x i j , M, k, b) = 1 − δ1 (x i j ) . 

Parameter learning: Remarks parameter set θ = { M, k, b, r lm 

} . For

onvenience, we denote p(y i j | x i j , θ ) = p(y i j = l| x i j , M, k, b) . 

Combining these above two factors and assuming that the

istribution of p(y i j = l) is uniform, the pair differences are
esampled according to the probability given the difference x ij and

bserved label ˜ y i j for each pair: 

p(y i j | x i j , ̃  y i j , θ ) ∝ p(y i j | x i j , θ ) p(y i j = l| ̃  y i j = m ) 

= p(y i j = l| x i j , θ ) ̃ r ml . 
(11) 

hus based on the above uniform assumption of p(y i j = l) and

ayesian theorem 

p(y i j | x i j , ̃  y i j , θ ) = 

p(y i j = l| x i j , θ ) p(y i j = l| ̃  y i j = m ) ∑ 

l ′ p(y i j = l ′ | x i j , θ ) p(y i j = l ′ | ̃  y i j = m ) 
. (12)

Given the noisy distribution 

˜ D , our problem is simplified to

ake inference about the parameter set θ . From the perspective

f maximum likelihood, the objective function of our model can

e defined as follows: 

 (θ ) = 

N ∑ 

i j=1 

log p( ̃  y i j | x i j , θ ) . (13) 

By using the unknown true label y ij as a latent variable to cal-

ulate a posterior q (y i j | x i j , ̃  y i j ) , it can derive a lower bound of the

og-likelihood 

L (θ ) ≥
N ∑ 

i j=1 

1 ∑ 

y i j =0 

q (y i j | x i j , ̃  y i j ) log 
p( ̃  y i j , y i j | x i j ) 

q (y i j | x i j , ̃  y i j ) 
≡ L q (θ ) . (14) 

The bound of (14) becomes an equality, when q (y i j | x i j , ̃  y i j ) =
p(y i j | x i j , ̃  y i j , θ ) . We address the above problem through EM-like al-

orithm, where the algorithm mainly estimates the conditional ex-

ectation of true label y ij (E-step) and then optimizes the parame-

er set θ (M-step). 

For E-step, based on ˜ r ml = p(y i j = l| ̃  y i j = m ) and (12), the pos-

erior q (y i j | x i j , ̃  y i j ) , which also represents the conditional expecta-

ion of y ij , can be computed in the t th iteration as 

q (y i j | x i j , ̃  y i j ) = p(y i j | x i j , ̃  y i j , θ
t ) = 

p(y i j = l| x i j , θ
t ) ̃ r t 

ml ∑ 

l ′ p(y i j = l ′ | x i j , θ t ) ̃ r t 
ml ′ 

= 

δt 
l 
(x i j ) ̃ r t 

ml ∑ 

l ′ δ
t 
l ′ (x i j ) ̃ r t 

ml ′ 
. 

(15) 

For M-step, after discarding the constant and irrelative terms

ith respect to parameter set θ , the objective function L q ( θ ) in the

 -th iteration becomes as follows: 

 ob j (θ ; θ t ) = 

N ∑ 

i j=1 

1 ∑ 

l=0 

δt 
l 
(x i j ) ̃ r t 

ml ∑ 

l ′ δ
t 
l ′ (x i j ) ̃ r t 

ml ′ 
× log p( ̃  y i j = m, y i j = l| x i j , θ ) . 

(16) 

Because 

p( ̃  y i j = m, y i j = l| x i j , θ ) = p(y i j = l| x i j , θ ) p( ̃  y i j = m | y i j = l) 

= δl (x i j ) r lm 

, 
(17) 

ubstitute (17) into (16), the expected log-likelihood of t -th itera-

ion becomes as follows: 

 ob j (θ ; θ t ) = 

N ∑ 

i j=1 

1 ∑ 

l=0 

δt 
l 
(x i j ) ̃ r t 

ml ∑ 

l ′ δ
t 
l ′ (x i j ) ̃ r t 

ml ′ 
log δl (x i j ) r lm 

. (18) 

We discuss the computation of noise rate r lm 

firstly, and con-

ider the computation of k, b and Mahalanobis matrix M later.

bout r lm 

, we add constraints r 00 + r 01 = 1 and r 10 + r 11 = 1 as

agrange multipliers. For r 00 , adding λ1 (1 − r 00 − r 01 ) , the partial

erivation in the t th step is 

∂L ob j 

∂r 00 

= 

N ∑ 

i j=1 

δt 
0 (x i j ) ̃ r t 00 ∑ 1 

l ′ =0 δ
t 
l ′ (x i j ) ̃ r t 

0 l ′ 

1 ( ̃  y i j = 0) 

r 00 

− λ1 , (19) 
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Algorithm 1 Resampling-KISSME. 

1: Input: 

2: { (x i j ) | i j = 1 , 2 , . . . , N} : training samples; 

3: { ̃  y i j } : the observed similarity of pairs; 

4: T : the maximal iteration step; 

5: Initialize: θ = { M, k, b, r lm 

} . 
6: while problem(12) does not converge or t � T do 

7: M-step: optimize the parameter set θ according to Eq. 

(22) ∼ (31) , and project (31) onto the cone of positive 

semidefinite. 

8: E-step: re-estimate q (y i j = l| x i j , ̃  y i j = m, θt ) according to Eq. 

(15). 

9: end while 

10: Output: the learned M 

a
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a
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T  

s  
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s  
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d  

T  

U  

S  

t  
where, 1 ( x ) is indicative function. Thus: 

r 00 = 

1 

λ1 

N ∑ 

i j=1 

δt 
0 (x i j ) ̃ r t 00 1 ( ̃  y i j = 0) ∑ 1 

l ′ =0 δ
t 
l ′ (x i j ) ̃ r t 

0 l ′ 
. (20)

Similarly for r 01 , it gets: 

r 01 = 

1 

λ1 

N ∑ 

i j=1 

δt 
0 (x i j ) ̃ r t 10 1 ( ̃  y i j = 1) ∑ 1 

l ′ =0 δ
t 
l ′ (x i j ) ̃ r t 

1 l ′ 
. (21)

Adding Eq. (20) to Eq. (21) , and combing λ1 (r 00 + r 01 ) = λ1 , r 00 is

updated in the t th step as 

r 00 = 

∑ N 
i j=1 

δt 
0 (x i j ) ̃ r 

t 
00 1 ( ̃ y i j =0) ∑ 1 

l ′ =0 
δt 

l ′ (x i j ) ̃ r 
t 
0 l ′ ∑ N 

i j=1 
δt 

0 
(x i j ) ̃ r 

t 
00 

1 ( ̃ y i j =0) ∑ 1 
l ′ =0 

δt 
l ′ (x i j ) ̃ r 

t 
0 l ′ 

+ 

∑ N 
i j=1 

δt 
0 
(x i j ) ̃ r 

t 
10 

1 ( ̃ y i j =1) ∑ 1 
l ′ =0 

δt 
l ′ (x i j ) ̃ r 

t 
1 l ′ 

. (22)

Similarly for r 11 in the t th step, we have 

r 11 = 

∑ N 
i j=1 

δt 
1 (x i j ) ̃ r 

t 
11 1 ( ̃ y i j =1) ∑ 1 

l ′ =0 
δt 

l ′ (x i j ) ̃ r 
t 
1 l ′ ∑ N 

i j=1 
δt 

1 
(x i j ) ̃ r 

t 
11 

1 ( ̃ y i j =1) ∑ 1 
l ′ =0 

δt 
l ′ (x i j ) ̃ r 

t 
1 l ′ 

+ 

∑ N 
i j=1 

δt 
1 
(x i j ) ̃ r 

t 
01 

1 ( ̃ y i j =0) ∑ 1 
l ′ =0 

δt 
l ′ (x i j ) ̃ r 

t 
0 l ′ 

. (23)

and compute r 10 = 1 − r 11 , r 01 = 1 − r 00 . 

Through similar derivation to [34] , given the rate p( ̃  y = 1) = ˜ π,

˜ r ml in t th iteration can be got through: 

˜ r 10 = 

(1 − r 10 − ˜ π) r 01 

˜ π(1 − r 01 − r 10 ) 
, (24)

˜ r 01 = 

( ̃  π − r 01 ) r 10 

(1 − ˜ π)(1 − r 01 − r 10 ) 
. (25)

Then we consider the optimization of k and b . These two pa-

rameters could be optimized individually or meanwhile. However,

each of them acts different role in the classification model, which

is briefly explained in the definition of classifier model. b is a

threshold for the Mahalanobis distance, it focuses more on the dis-

crimination. k is a scalar, it focuses more on the scale of distance

and influences the rate of convergence more. The probability δ( x ij )

of more pairs approaches 0 or 1 when k is large, the algorithm

may converge fast and get into local optimization. The probability

δ( x ij ) of more pairs approaches 0.5 when k is small, the algorithm

may converge slowly or not converge within the default maximum

iteration. So we optimize b firstly and k later, instead of optimiz-

ing them simultaneously. For computation of b , we use probabil-

ity δ0(1) ( x ij ), as the soft label instead of hard label in ROC curve,

and use the Mahalanobis distance of threshold point as b when

the true positive rate is equal to the true negative rate. 

k is learned through the conjugate gradient method [41] :

k t ′ +1 = k t ′ − αd t ′ . The step size α is obtained by a line search, and

the search direction d t ′ is updated by the rule: d t ′ = −g t ′ + βt ′ d t ′ −1 ,

the scalar βt ′ is computed by: βt ′ = 

g T 
t ′ (g 

t ′ −g 
t ′ −1 

) 

d 
t ′ −1 

(g 
t ′ −g 

t ′ −1 
) 
. g t ′ is the t ′ th

gradient with respect to k , and the gradient is computed through

(for convenience, subscript t ′ omitted): 

g = 

∂L ob j 

∂k 
= 

N ∑ 

i j=1 

[
δt 

0 (x i j ) ̃ r t m 0 ∑ 

l ′ δ
t 
l ′ (x i j ) ̃ r t 

ml ′ 
δ1 (x i j ) −

δt 
1 (x i j ) ̃ r t m 1 ∑ 

l ′ δ
t 
l ′ (x i j ) ̃ r t 

ml ′ 
δ0 (x i j ) 

]
×( f i j − b) (26)

After calculating these parameters, we can infer the true simi-

larity of x ij from the given label in the presence of noise according

to the probability in (15). Therefore, we resample each ij -th pair

according to the rescaled weights w 0 
t 
i j 
, w 0 

t 
i j 

in the two distribution

during the t th iteration as 

w 0 
t 
i j = 

δt 
0 (x i j ) ̃ r t m 0 ∑ 1 

l ′ =0 δ
t 
l ′ (x i j ) ̃ r t 

ml ′ 
(27)
R  
nd 

 1 
t 
i j = 

δt 
1 (x i j ) ̃ r t m 1 ∑ 1 

l ′ =0 δ
t 
l ′ (x i j ) ̃ r t 

ml ′ 
. (28)

Under the resampling scheme, we get 

t 
0 = 

∑ 

i j 

w 0 
t 
i j x i j x 

T 
i j (29)

t 
1 = 

∑ 

i j 

w 1 
t 
i j x i j x 

T 
i j (30)

nd 

 t = (�t 
1 ) 

−1 − (�t 
0 ) 

−1 . (31)

hrough projecting (�t 
1 
) −1 − (�t 

0 
) −1 onto the cone of positive

emidefinite matrices to get the Mahalanobis matrix of the itera-

ion step t and to finish the t -th iteration. The algorithm iterates till

onvergence. Due to the resampling scheme, we name the method

s Resampling-KISSME (Re-KISSME). 

In fact, the Eqs. (29) and (30) imply that the Re-KISSME is a

elaxation of KISSME. The resampling weight guidelines the learn-

ng with a soft label instead of directly making use of the labels

ontaining noise. Taking the w 1 
t 
i j 

as an example, if the resampling

eight w 1 
t 
i j 

approximates to 0.5, the ij -th pair is near the deci-

ion boundary and is prone to be misclassified. Otherwise when

he probability w 1 
t 
i j 

approximates 1, the pair is far from the de-

ision boundary and is prone to be classified as similar pair. At

he same time, this means that we also conserve the weight w 0 
t 
i j 

ven approaching 0. We note that the resampling scheme aligns

eight on each pair in the estimation both of similar and dissim-

lar covariance matrix at the same time. Although a pair is rare to

e similar or dissimilar, a very low probability of this event is a

ore reasonable estimation than the zero weight. This resampling

cheme also makes that the covariance matrices need no regular-

zation. Besides, there is no need to compute the gradient with re-

pect to Mahalanobis matrix in Re-KISSME, resulting from the effi-

iency of KISSME. This makes the algorithm fast, which is validated

n our experiment. 

. Experiment 

To validate the effectiveness of our proposed algorithm, we con-

uct three series of experiments on nine benchmark data sets.

he first one is conducted on seven datasets downloaded from the

CI machine learning data repository [42] , including Breast Tissue,

tatlog (Heart), Iris, Parkinsons [43] , Protein [16] , Seeds, Wine and

wo person re-identification datasets, iLIDS and one camera pair of

AiD. The goals of our experiments are three folds. First, we want
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Table 1 

The UCI-datasets used in experiment. 

Dataset Sample number ( n ) Feature number ( d ) Class number ( c ) 

Breast Tissue 106 9 6 

Statlog (Heart) 270 13 2 

Iris 150 4 3 

Parkinsons 195 22 2 

Protein 116 20 6 

Seeds 210 7 3 

Wine 178 13 3 
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o confirm the comparative behavior with other distance metric.

econd, we want to known the performance and degeneration of

ur algorithm in application. Third, we want to verity the compu-

ation complexity of the algorithm. 

The original labels of the 9 benchmark data sets are clear. After

plitting the training/testing set, we make the testing set clear and

enerate the label noise of the training set through: (1) select the

amples of each class at random according the given noise rate,

2) flip their labels into one of other classes at random. Because

ome methods make use of the label directly, while other methods

ncluding the proposed method make use of the side-information.

o make the comparison fair, we flip the similarity of pairs after

enerating similar or dissimilar pairs from the clean label. Using

he observed labels, we use the Mahalanobis matrix M of regular

ISSME as the initial. We initialize b using the maximum of all Ma-

alanobis distances of all pairs, while initializing k and r by setting

 /k = b, r = [0 . 9 , 0 . 1 ; 0 . 1 , 0 . 9] . 

.1. Experiments on general classification 

In experiments on UCI datasets, the details of the datasets

re listed in Table 1 . Each dataset is divided into 4/1 for train-

ng/testing split at random, and the percentage of label noise in

raining set varies from 0% to 30%. This process is repeated 20

imes. To make quantitative analysis, we calculate the average ac-

uracy, standard deviation and mean rank of each method, then

se the Friedman test to evaluate the significance of comparison. 

We compare our method with several methods, including the

-NN without DML as the baseline (Eucli), and five state-of-the-

rt metric learning methods, LMNN, ITML, DML-eig [44] , RNCA,

ISSME. The RNCA is designed for the label noise. The parame-

er tuning of compared methods is the same as the original lit-

ratures. In each dataset, we pick up 30c(c-1) constraints for each

ataset. The results of accuracy are shown from Tables 2 –8 , as well

s mean rank in Table 9 . 

From these seven tables about accuracy, it is shown that the

erformance of DML methods degenerates with the increasing

oise rate on the several datasets: (1) Table 2 verifies that Re-

ISSME is not worse than other methods when the data set is

lear. What’s more, the accuracy of Re-KISSME is better than other

ethods at least on six data sets with different noise levels, which
Table 2 

Comparison of average accuracy (%, mean ± std) on UCI-datasets wit

Eucli LMNN ITML 

Breast tissue 51.60 ± 2.38 57.46 ± 3.70 55.28 ± 2.68 

Statlog (Heart) 66.52 ± 1.45 65.20 ± 1.90 76.72 ± 2.89 

Iris 96.56 ± 0.51 96.69 ± 0.75 96.79 ± 0.61 

Parkinsons 85.05 ± 1.44 82.82 ± 1.64 84.46 ± 1.63 

Protein 69.42 ± 2.00 71.36 ± 2.18 71.41 ± 2.93 

Seeds 88.71 ± 0.88 90.21 ± 0.96 95.33 ± 0.97 

Wine 69.40 ± 2.05 90.75 ± 2.05 92.46 ± 1.49 

Average 75.32 79.21 81.78 

Mean rank 5.5714 5 3.5714 
ccounts to more than half of whole data sets. (2) When there

s label noise, our proposal outperforms other method. Especially

hen the percentage of noise is 5%, 10%, 15%, the accuracy of Re-

ISSME dominates at least on six datasets. Over the second best

ethod, our method has an improvement of about 3% on Breast

issue. (3) As designed for label noise, RNCA performs poor be-

ause that it makes use of local structure information and suffers

oise more. Re-KISSME outperform regular KISSME in the presence

f label noise, which is validated at least on five datasets in these

ix tables. For example, the gaps between these two method is

.2% at noise level of 15% on breast tissue. 

To analyze the results further, we use the non-parametric sta-

istical analysis, Friedman test to validate whether the comparisons

re of significance. The Friedman test is conducted on the rank

alues of each algorithm at each noise level. The null hypothesis

tates that all algorithms not perform differently significantly, and

ost hoc test proceeds if the null hypothesis is rejected. We use

he corrected Friedman statistic: 

 F = 

(N 

′ − 1) χ2 
F 

N 

′ (k ′ − 1) − χ2 
F 

(32) 

here, 

2 
F = 

12 N 

′ 
k ′ (k ′ + 1) 

[ ∑ 

j ′ 
R 

2 
j ′ −

k ′ (k ′ + 1) 2 

4 

] 

(33) 

he R j ′ is the rank of j ′ -th algorithm, k ′ is the number of all

ethods, and N 

′ represents the number of data sets. The F F is

istributed according to the F-distribution with k ′ − 1 and (k ′ −
)(N 

′ − 1) degrees of freedom. 

Calculating the responding statistic of each noise level, the null

ypothesis is rejected at risk of α = 0 . 05 . So we use the Bonferroni

unn test to compare our method, which is the control method,

ith other seven methods by the critical difference (CD): 

D = q α

√ 

k ′ (k ′ + 1) 

6 N 

′ (34) 

he corresponding CD is 2 . 638 

√ 

7 ·8 
6 ·7 = 3 . 0461 . The Bonferroni-

unn test and rank differences between Re-KISSME and other

even algorithms is listed in Table 9 . It is shown that Re-KISSME

ignificantly performs better than the compared methods in most

ases, and that it beats other methods at least with a rank differ-

nce of 1 in all cases. The statistic test validates the effectiveness

f our method. 

.2. Experiments on iLIDS for person re-identification 

It’s well known that person re-identification is a challenging

roblem resulting from its large intra-class variation in view an-

le, pose, illumination, and occlusion. Feature representation and

etric learning are two fundamental problems for person re-

dentification, and it is suitable to conduct experiments to validate
hout label noise, the result of rank-1 is in bold face. 

DML-eig RNCA KISSME Re-KISSME 

54.64 ± 2.79 51.60 ± 2.38 62.37 ± 2.99 62.98 ± 3.98 

67.59 ± 1.27 66.24 ± 1.74 77.07 ± 1.96 77.72 ± 2.00 

96.42 ± 1.02 96.35 ± 0.73 96.99 ± 0.69 97.02 ± 0.78 

83.59 ± 1.56 85.05 ± 1.44 84.92 ± 2.24 87.54 ± 1.57 

71.43 ± 2.11 68.90 ± 3.27 71.79 ± 2.11 71.66 ± 2.95 

90.00 ± 0.93 91.76 ± 1.26 95.60 ± 1.03 95.74 ± 0.96 

76.14 ± 2.81 69.60 ± 1.96 96.77 ± 1.07 97.06 ± 0.89 

77.12 75.64 83.64 84.25 

5 5.5714 2.1429 1.1429 
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Table 3 

Comparison of average accuracy (%, mean ± std) on UCI-datasets with label noise of 5%, the result of rank-1 is in bold face. 

Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME 

Breast tissue 50.67 ± 3.37 56.13 ± 3.57 53.78 ± 2.74 52.92 ± 4.80 50.67 ± 3.37 58.73 ± 4.13 61.95 ± 3.65 

Statlog (Heart) 65.57 ± 1.78 63.31 ± 2.67 73.50 ± 3.69 66.59 ± 1.65 65.72 ± 1.71 74.74 ± 2.17 75.98 ± 2.20 

Iris 95.92 ± 0.87 89.50 ± 1.64 95.39 ± 1.64 95.36 ± 1.03 96.28 ± 1.15 96.56 ± 1.44 96.85 ± 1.03 

Parkinsons 83.28 ± 1.84 82.10 ± 2.04 83.41 ± 2.52 81.87 ± 1.82 83.28 ± 1.94 84.08 ± 2.14 86.05 ± 1.80 

Protein 67.13 ± 2.95 66.89 ± 2.63 68.14 ± 3.11 66.63 ± 2.95 66.52 ± 3.08 70.13 ± 2.72 71.98 ± 2.16 

Seeds 88.88 ± 1.15 90.71 ± 1.31 93.50 ± 1.90 89.38 ± 1.07 90.95 ± 1.46 95.12 ± 1.24 95.17 ± 1.50 

Wine 69.22 ± 2.80 81.13 ± 2.93 91.25 ± 2.27 70.20 ± 2.99 69.38 ± 2.63 95.88 ± 0.96 97.24 ± 0.97 

Average 74.38 75.68 79.85 74.71 74.69 82.12 83.60 

Mean rank 5.5714 5.2857 3.4286 5.5714 5.1429 2 1 

Table 4 

Comparison of average accuracy (%, mean ± std) on UCI-datasets with label noise of 10%, the result of rank-1 is in bold face. 

Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME 

Breast tissue 49.89 ± 4.39 54.97 ± 3.91 52.01 ± 4.61 52.51 ± 3.76 49.89 ± 4.39 58.69 ± 4.60 61.15 ± 3.96 

Statlog (Heart) 64.43 ± 2.50 62.74 ± 2.30 69.43 ± 3.71 63.69 ± 2.60 64.39 ± 2.41 73.20 ± 2.39 74.65 ± 2.16 

Iris 95.09 ± 1.00 90.80 ± 1.80 94.96 ± 1.35 94.27 ± 1.53 94.96 ± 1.72 94.96 ± 1.49 96.02 ± 1.08 

Parkinsons 82.33 ± 2.25 80.85 ± 2.19 82.05 ± 1.87 80.26 ± 1.85 82.28 ± 2.17 81.59 ± 2.73 83.69 ± 2.11 

Protein 66.42 ± 2.47 62.65 ± 4.59 65.51 ± 3.94 63.80 ± 2.82 65.30 ± 2.70 68.76 ± 2.40 69.64 ± 2.80 

Seeds 88.57 ± 1.34 89.52 ± 1.34 91.43 ± 2.05 88.50 ± 1.45 89.76 ± 1.66 94.02 ± 1.22 94.24 ± 0.89 

Wine 67.88 ± 1.94 76.12 ± 2.69 88.66 ± 2.58 69.41 ± 1.83 67.88 ± 1.94 95.18 ± 1.50 96.38 ± 0.81 

Average 73.51 73.95 77.72 73.20 73.49 80.92 82.25 

Mean rank 4.2857 5.5714 3.7143 5.8571 5 2.5714 1 

Table 5 

Comparison of average accuracy (%, mean ± std) on UCI-datasets with label noise of 15%, the result of rank-1 is in bold face. 

Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME 

Breast tissue 49.03 ± 4.69 53.06 ± 3.65 52.81 ± 5.03 51.01 ± 5.05 49.03 ± 4.69 56.94 ± 4.24 59.34 ± 5.03 

Statlog (Heart) 62.81 ± 1.95 60.54 ± 3.00 67.30 ± 3.65 63.19 ± 2.64 62.96 ± 2.02 70.20 ± 3.30 72.04 ± 3.84 

Iris 92.69 ± 1.91 89.74 ± 2.80 91.55 ± 2.11 92.31 ± 1.78 91.48 ± 2.18 92.38 ± 2.73 93.38 ± 2.54 

Parkinsons 80.79 ± 2.20 79.36 ± 1.87 80.33 ± 2.83 80.87 ± 2.38 80.79 ± 2.20 81.03 ± 1.60 82.74 ± 2.66 

Protein 65.49 ± 2.82 60.63 ± 5.74 65.46 ± 2.66 61.93 ± 2.91 63.93 ± 3.14 68.21 ± 3.42 70.47 ± 2.39 

Seeds 87.69 ± 1.19 88.62 ± 1.34 89.71 ± 1.88 87.81 ± 1.41 88.55 ± 1.40 91.74 ± 1.77 92.43 ± 2.01 

Wine 66.95 ± 3.01 71.90 ± 3.53 85.56 ± 3.93 68.13 ± 2.65 66.95 ± 3.01 93.15 ± 1.04 94.21 ± 1.80 

Average 72.20 71.98 76.10 72.18 71.96 79.10 80.66 

Mean rank 5.0714 5.5714 4 4.7143 5.5 2.1429 1 

Table 6 

Comparison of average accuracy (%, mean ± std) on UCI-datasets with label noise of 20%, the result of rank-1 is in bold face. 

Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME 

Breast tissue 47.52 ± 2.74 51.86 ± 5.11 49.60 ± 4.65 48.63 ± 3.04 47.52 ± 2.74 55.86 ± 4.01 59.07 ± 5.72 

Statlog (Heart) 62.28 ± 2.44 59.57 ± 2.52 65.33 ± 3.35 61.85 ± 3.15 62.04 ± 2.67 67.72 ± 3.97 68.76 ± 3.38 

Iris 91.32 ± 1.53 88.42 ± 2.17 90.76 ± 1.60 90.76 ± 1.34 90.62 ± 2.43 90.74 ± 1.82 92.29 ± 1.58 

Parkinsons 78.15 ± 1.94 77.77 ± 1.89 77.18 ± 1.99 78.08 ± 1.87 78.15 ± 1.94 76.54 ± 2.65 79.00 ± 3.67 

Protein 62.11 ± 3.08 56.50 ± 4.61 61.92 ± 3.48 57.61 ± 3.23 60.15 ± 3.38 66.52 ± 3.58 66.13 ± 3.33 

Seeds 84.69 ± 1.94 85.26 ± 1.65 86.88 ± 2.30 85.21 ± 1.89 84.71 ± 2.35 90.02 ± 2.26 90.64 ± 1.58 

Wine 66.31 ± 2.66 70.04 ± 3.36 80.81 ± 4.92 67.53 ± 2.79 66.33 ± 2.68 90.68 ± 1.41 93.27 ± 1.96 

Average 70.34 69.92 73.21 69.95 69.93 76.87 78.45 

Mean rank 4.5714 5.2857 3.8571 4.8571 5.2857 3 1.1429 

Table 7 

Comparison of average accuracy (%, mean ± std) on UCI-datasets with label noise of 25%, the result of rank-1 is in bold face. 

Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME 

Breast tissue 44.97 ± 2.77 50.20 ± 3.21 49.79 ± 4.02 47.15 ± 3.80 44.97 ± 2.77 50.80 ± 4.16 54.44 ± 5.32 

Statlog (Heart) 59.00 ± 2.80 57.39 ± 2.27 61.19 ± 3.22 58.52 ± 2.94 59.06 ± 2.81 65.20 ± 2.44 66.65 ± 3.24 

Iris 88.96 ± 2.59 87.15 ± 3.50 87.70 ± 2.97 87.61 ± 2.77 87.25 ± 3.40 88.08 ± 2.90 89.23 ± 2.21 

Parkinsons 73.26 ± 3.60 72.64 ± 3.16 72.69 ± 3.14 72.92 ± 3.06 73.15 ± 3.75 71.97 ± 3.92 74.69 ± 2.94 

Protein 60.22 ± 3.65 55.89 ± 4.74 59.10 ± 4.89 55.30 ± 3.80 59.11 ± 4.35 64.27 ± 3.62 64.15 ± 3.66 

Seeds 83.02 ± 2.24 83.64 ± 2.48 83.79 ± 2.48 82.95 ± 2.27 82.52 ± 2.51 86.24 ± 3.04 86.81 ± 2.43 

Wine 64.62 ± 3.31 67.35 ± 3.06 77.52 ± 3.42 65.34 ± 3.04 64.76 ± 3.41 87.18 ± 2.46 88.75 ± 2.14 

Average 67.72 67.75 70.25 67.11 67.26 73.40 74.96 

Mean rank 4.3571 5.2857 3.8571 5.4286 5.2143 2.7143 1.1429 
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Table 8 

Comparison of average accuracy (%, mean ± std) on UCI-datasets with label noise of 30%, the result of rank-1 is in bold face. 

Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME 

Breast tissue 43.35 ± 4.76 46.36 ± 4.31 47.53 ± 4.63 44.85 ± 5.83 43.35 ± 4.76 47.49 ± 5.25 50.93 ± 4.88 

Statlog (Heart) 57.46 ± 2.69 56.54 ± 2.81 59.48 ± 3.27 58.06 ± 2.24 57.33 ± 2.76 61.56 ± 3.61 62.31 ± 3.15 

Iris 81.68 ± 2.37 82.02 ± 3.35 80.84 ± 2.98 81.77 ± 2.35 82.12 ± 3.73 80.40 ± 2.81 83.28 ± 2.32 

Parkinsons 70.64 ± 3.42 69.44 ± 3.65 70.08 ± 4.39 70.64 ± 4.06 70.49 ± 3.30 67.90 ± 3.35 70.74 ± 2.92 

Protein 57.56 ± 2.65 52.95 ± 4.70 56.82 ± 3.28 51.55 ± 4.02 56.48 ± 3.81 60.25 ± 5.38 62.25 ± 3.46 

Seeds 80.02 ± 2.36 80.21 ± 2.19 80.57 ± 2.43 79.90 ± 2.01 79.05 ± 2.84 82.07 ± 2.80 82.83 ± 2.43 

Wine 61.18 ± 3.1 62.71 ± 3.34 67.58 ± 4.13 62.31 ± 2.90 61.18 ± 3.17 80.77 ± 3.66 81.81 ± 2.34 

Average 64.56 64.32 66.13 64.16 64.29 68.63 70.60 

Mean rank 4.7857 4.8571 3.7143 4.7857 5.2857 3.5714 1 

Table 9 

Mean Rank Values Differences Between Re-KISSME and Other Methods. 

Noise level Friedman test ( p -value) Bonferroni-Dunn test (rank difference) 

Eucli LMNN ITML DML-eig RNCA KISSME 

0% 0.008 4.4285 3.8571 2.4285 3.8571 4.4285 1 

5% 0.001 4.5714 4.2857 2.4286 4.5714 4.1429 1 

10% 0.001 3.2857 4.5714 2.7143 4.8571 4 1.5714 

15% 0.001 4.0714 4.5714 3 3.7143 4.5 1.1429 

20% 0.002 3.4285 4.1428 2.7142 3.7142 4.1428 1.8571 

25% 0.001 3.2142 4.1428 2.7142 4.2857 4.0714 1.5714 

30% 0.004 3.7857 3.8571 2.7143 3.7857 4.2857 2.5714 
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he performance of the DML method. Here we focus on the dis-

ance metric, so we extract the LOMO [6] descriptors from each

mage as the original feature representation. 

The iLIDS dataset [45] a widely-used benchmark, which has 476

mages of 119 pedestrians. All images are resized to 128 × 48. The

umber of images for each individual varies from 2 to 8. Since

his dataset was collected at an airport, the images often have se-

ere occlusions caused by people and luggage. These images were

aptured by multiple cameras and there exist great challenges in

ame class. After adding the different percentages of label noise,

he recognition of objective function will be more complex. 

In our experiments, the images of ps persons are randomly se-

ected to compose testing set, while the rest images compose train-

ng set. The ps are set as 59 in the iLIDS, which means that one

alf of persons are used for training, and the rest for testing. The

ercentage of label noise in training sets varies from 0% to 40%,

here the percentage 0% means that the label is clear. This par-

ition is repeated 10 times. The single-shot evaluation approach is

dopted, one image is randomly selected as the gallery image and

he rest are used as probe images for each person in the test set.

his process is repeated 10 times. We evaluate the performance by

alculating the average Cumulative Matching Characteristic (CMC)

urves and reporting the proportion of uncertainty removed (PUR)

cores. For CMC curves, C MC (r) = 

∑ r 
i =1 p(i ) is the top r matches,

 ( i ) represents the probability of correct match at rank- i . For the

UR scores is computed as 

 UR = 

log(N) + 

∑ N 
i =1 p(i ) log(p(i )) 

log(N) 
(35) 

The proposal is compared with ten popular metric learn-

ng methods, including DML-eig, RNCA, XQDA [6] , SVMML [46] ,

ISSME, PCCA [47] , rPCCA [48] , LFDA [49] , kLFDA [48] and MFA

48,50] . The parameter tuning of respective methods refers to the

riginal literature. To make the computation tractable, the feature

imension is reduced to 45 through first conducting PCA suggested

s in [48] . The results on this dataset are reported as shown in

ig. 3 : (1) These methods degenerate more or less with the in-

reasing percentage of label noise, this validates that the label

oise would harm the performance of DML in application. Espe-

ially for SVMML and KISSME, these two methods suffer from the
erious degeneration of performance in the presence of label noise.

2) The CMC curve of our algorithm is over other methods when

he label is clear. This validates that our proposal also improves the

erformance over KISSME in absence of label noise. (3) Benefited

rom the resampling scheme, our proposal Re-KISSME outperforms

ther methods at different level of label noise. This superiority of

e-KISSME is obvious in comparison with XQDA and KISSME. The

erformances of these three methods are the top 3 and similar in

he Fig. 3 a, because that they shares a common assumption that

he similar and dissimilar pairs come from two different Gaussian

istributions. (4) Although as a method designed for label noise,

NCA is inferior to Re-KISSME. This may because the RNCA make

ss of local structue, which is influenced by the label noise more

han Re-KISSME. 

To detail the results more clearly, the scores of the first 20 ranks

nd the PUR scores are shown from Tables 10–12 . Our method

chieves the best performance, with 51.8%, 50.3%, 48.8%, 47.7%,

6% rank-1 identification rates, 48.1%, 44.9%, 43.1%, 42.1%, 40.3%

UR score with label rate of 0%, 10%, 20%, 30%, 40% respectively.

hen the label is clear, Re-KISSME achieves an improvement of

.3% at rank-1, and 7% at PUR score on XQDA. When the noise rate

ncreases to 40%, the proposed method outperform KISSME and

NCA with an improvement of 44.8% and 15.5% at top-1, respec-

ively. The results show that our performance is competitive and

obust in the presence of label noise. 

.3. Experiments on camera pair 2–4 of RAiD for person 

e-identification 

RAiD [51] dataset is collected recently consisting of two indoor

camera 1 and 2) and two outdoor (camera 3 and 4). The size of

ll images is 128 × 48. This new dataset consists of 43 subjects and

920 images, which has large illumination variation. To make it

ractable for compared methods, we choose the camera pairs 2–4

indoor-outdoor) with 2655 images. PCA is first applied to reduce

he dimension of LOMO descriptors to 100, because the images is

arger than iLIDS. The recognition of subjects also becomes more

hallenging after adding label noise. In this experiment, we focus

n analysis of degeneration with increasing label noise. So the per-

entage of label noise ranges from 5% to 40%. 
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Fig. 3. CMC curves of each method on iLIDS. 

Table 10 

CMC at r = 1, 5, 10, 20 and PUR scores (%) on iLIDS with 0%-10% label noise. 

r Noise rate = 0% Noise rate = 5% Noise rate = 10% 

1 5 10 20 PUR 1 5 10 20 PUR 1 5 10 20 PUR 

XQDA 43.5 70.9 82.0 92.0 41.1 41.3 68.3 80.1 90.4 38.3 38.5 65.3 77.2 88.3 35.0 

PCCA 21.1 49.8 66.5 83.5 22.4 22.3 47.5 61.7 78.4 19.5 22.9 49.3 63.6 80.1 20.7 

LFDA 40.7 67.7 79.7 90.5 37.6 39.2 65.5 77.5 88.7 35.3 37.2 63.3 75.9 87.6 33.2 

SVMML 28.1 59.2 74.9 89.7 29.8 26.3 56.3 72.6 87.3 27.6 22.9 52.7 69.0 85.5 24.3 

MFA 34.3 59.4 72.0 86.5 30.8 33.7 58.0 70.4 85.3 29.6 32.6 57.8 69.9 84.0 28.3 

rPCCA 31.6 61.0 75.1 88.8 31.3 23.7 49.5 63.8 80.0 21.2 23.1 49.7 63.9 80.5 21.0 

kLFDA 39.6 66.9 79.4 91.3 37.6 38.7 65.9 78.4 90.8 36.5 37.1 64.9 76.8 89.4 34.8 

DML-eig 35.2 58.9 70.5 82.8 29.1 30.4 54.8 66.6 79.6 24.6 27.6 50.3 63.2 77.7 21.6 

RNCA 43.5 68.3 79.1 90.2 39.2 43.4 68.6 79.4 90.3 39.2 41.1 67.4 77.7 88.7 37.2 

KISSME 42.5 70.8 81.6 91.7 40.6 33.1 62.5 75.1 87.4 31.7 22.5 53.4 68.8 84.2 23.9 

Re-KISSME 51.8 76.6 85.6 93.8 48.1 51.3 75.1 84.1 92.8 46.6 50.3 73.4 82.2 91.4 44.9 
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Table 11 

CMC at r = 1, 5, 10, 20 and PUR scores (%) on iLIDS with 15%-25% label noise. 

r Noise rate = 15% Noise rate = 20% Noise rate = 25% 

1 5 10 20 PUR 1 5 10 20 PUR 1 5 10 20 PUR 

XQDA 38.6 64.3 75.7 86.8 34.2 36.8 61.8 73.9 85.5 31.8 34.9 61.0 72.6 84.3 30.3 

PCCA 26.3 51.0 64.8 79.9 22.1 24.0 49.5 64.0 79.2 20.9 23.6 49.6 63.7 79.2 20.6 

LFDA 34.7 61.4 73.8 85.3 30.7 34.3 59.8 72.6 85.0 29.8 32.4 57.2 69.2 82.9 27.4 

SVMML 20.0 48.7 65.2 82.8 21.2 17.8 45.0 61.9 80.5 18.7 14.9 40.8 58.1 76.8 15.6 

MFA 32.1 57.9 71.0 84.7 28.5 33.0 59.6 73.3 86.7 30.2 32.7 60.5 74.5 87.4 30.6 

rPCCA 26.4 51.2 64.9 80.0 22.3 24.1 49.7 64.1 79.2 21.0 23.7 49.7 63.8 79.3 20.7 

kLFDA 37.4 63.8 76.8 88.5 34.3 35.4 62.2 75.0 87.9 32.4 34.3 61.3 74.8 87.1 31.4 

DML-eig 25.4 47.4 60.0 75.1 19.3 25.1 47.2 60.7 75.8 19.3 22.8 44.2 57.1 73.3 16.9 

RNCA 37.7 63.9 74.7 86.7 33.4 38.4 63.7 75.0 86.9 33.7 34.8 61.5 73.3 85.5 31.0 

KISSME 15.0 45.5 63.1 81.1 18.6 8.0 32.1 51.2 73.0 11.4 4.3 23.1 41.0 65.0 7.1 

Re-KISSME 49.1 72.5 81.0 90.8 43.6 48.8 72.1 81.4 90.8 43.1 47.7 71.6 80.8 90.0 42.1 

Table 12 

CMC at r = 1, 5, 10, 20 and PUR scores (%) on iLIDS with 30%-40% label noise. 

r Noise rate = 30% Noise rate = 35% Noise rate = 40% 

1 5 10 20 PUR 1 5 10 20 PUR 1 5 10 20 PUR 

XQDA 34.7 59.8 71.6 84.4 29.9 31.1 55.6 68.2 81.7 25.7 32.7 57.4 69.8 82.5 27.5 

PCCA 22.8 47.3 61.2 77.6 19.3 22.9 47.1 61.5 78.1 19.4 21.8 45.9 59.9 76.4 18.2 

LFDA 31.9 56.8 69.5 82.7 27.0 30.1 54.0 66.3 80.4 24.5 27.4 51.2 64.4 78.5 22.1 

SVMML 11.5 34.3 51.3 72.0 11.7 10.2 30.5 45.5 66.1 8.8 7.7 25.8 40.8 61.1 6.2 

MFA 32.8 60.9 74.5 87.4 31.0 33.1 60.8 74.6 87.0 30.9 32.9 60.9 74.1 86.6 30.4 

rPCCA 22.8 47.4 61.2 77.6 19.4 22.8 47.2 61.5 78.1 19.5 21.9 46.0 59.9 76.4 18.2 

kLFDA 33.6 58.6 71.2 84.2 28.8 33.4 58.7 70.5 83.6 28.3 31.4 56.6 69.6 83.2 26.9 

DML-eig 21.9 44.1 57.2 72.6 16.4 20.8 42.2 55.2 71.2 15.0 22.3 44.3 57.2 73.0 16.6 

RNCA 33.5 60.2 73.2 86.3 30.3 32.9 59.3 71.9 86.1 29.7 30.5 56.4 69.0 81.9 26.2 

KISSME 2.4 16.7 33.4 58.9 5.1 1.8 11.5 25.4 50.0 3.0 1.2 8.5 19.4 43.5 2.0 

Re-KISSME 47.7 71.6 81.1 90.1 42.1 47.1 71.2 80.5 89.9 41.4 46.0 70.3 79.1 88.9 40.3 

5 10 15 20 25 30 35 40

Noise Rate (%)

-80

-60

-40

-20

0

20

40

60

80

M
at

ch
in

g
 R

at
e 

(%
)

Degeneration of score at rank-1 on camera pair 2-4 of RAiD

XQDA

LFDA

SVMML

KISSME

kLFDA

MFA

DML-eigen

RNCA

Re-KISSME

5 10 15 20 25 30 35 40

Noise Rate (%)

-100

-80

-60

-40

-20

0

20

40

60

80

M
at

ch
in

g
 R

at
e 

(%
)

Degeneration of score at PUR on camera pair 2-4 of RAiD

XQDA

LFDA

SVMML

KISSME

kLFDA

MFA

DML-eigen

RNCA

Re-KISSME

Fig. 4. The degeneration of each method on camera pair 2–4 of RAiD with 5%-40% label noise. 
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For this dataset, the ps is set as 21 in the RAiD, which also

eans that one half of persons are used for training, and the other

alf for testing. This partition is repeated 10 times. The single-

hot evaluation approach is adopted, one image of each person is

andomly selected to construct the gallery set and other images

onstruct the probe set in the test set. This process is repeated

0 times. Figure 4 plots the average accuracies of rank-1 and PUR

cores of different noise levels for each methods, and details are

hown in Table 13 and Table 14 . 

Considering the high time cost and discarding PCCA and rPCCA,

e-KISSME is evaluated by comparison with nine popular metric
earning methods, XQDA, SVMML, KISSME, DML-eig, RNCA, LFDA,

LFDA , MFA , ITML. The parameter setting of comparable methods

s as mentioned before. The observations on this dataset are fol-

ows: (1) It is shown that the Re-KISSME outperforms other meth-

ds at rank-1 and PUR score in most cases from Tables 13 and 14 .

he performance of Re-KISSME defeats other methods at rank-1

hen label noise rate is higher than 15%, although the accuracy

f Re-KISSME at rank-1 score is little smaller than MFA and XQDA

ith 10% noise. Similar results are also found for the PUR. (2)

he scores of Re-KISSME are about 77% at rank-1 and 62% at PUR

core when noise rate is higher than 15%, there is little difference.
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Table 13 

CMC at r = 1 and PUR scores (%) on camera pair 2–4 of RAiD with 5%-20% label noise. 

r Noise rate = 5% Noise rate = 10% Noise rate = 15% Noise rate = 20% 

1 PUR 1 PUR 1 PUR 1 PUR 

XQDA 81.7 74.0 76.5 66.9 74.1 63.0 71.3 58.7 

LFDA 69.2 53.4 65.1 48.6 62.2 45.6 57.9 40.5 

SVMML 69.7 64.6 64.3 58.3 55.1 49.9 51.3 45.3 

MFA 82.9 75.2 80.0 71.6 76.2 66.4 73.9 63.7 

kLFDA 57.7 36.5 56.8 36.4 56.2 35.8 55.5 35.4 

ITML 70.5 55.9 68.7 53.8 62.1 46.2 62.3 45.3 

DML-eig 43.3 24.7 46.6 27.6 49.9 30.7 52.3 33.4 

RNCA 51.2 29.6 51.2 29.7 55.4 38.8 67.2 52.5 

KISSME 35.9 30.6 19.2 17.5 12.7 12.4 6.2 6.5 

Re-KISSME 83.7 75.6 75.8 62.4 77.4 63.3 76.9 61.8 

Table 14 

CMC at r = 1 and PUR scores (%) on cameras pair 2–4 of RAiD with 25%-40% label noise. 

r Noise rate = 25% Noise rate = 30% Noise rate = 35% Noise rate = 40% 

1 PUR 1 PUR 1 PUR 1 PUR 

XQDA 67.9 54.8 64.6 50.2 62.5 48.2 60.1 45.9 

LFDA 54.4 36.6 51.0 33.2 49.1 31.0 44.8 26.8 

SVMML 43.7 37.6 39.6 32.4 34.8 26.0 27.9 19.8 

MFA 71.6 60.9 69.1 57.6 68.4 56.8 66.9 55.0 

kLFDA 55.5 35.3 54.9 34.4 54.4 33.8 52.8 32.1 

ITML 61.2 45.0 63.3 46.8 63.1 48.9 60.3 43.8 

DML-eig 52.3 33.5 52.1 33.0 53.8 34.9 52.2 33.6 

RNCA 58.5 41.3 53.9 35.7 53.5 32.5 57.3 37.0 

KISSME 6.4 6.3 3.3 4.7 2.4 2.8 2.6 2.8 

Re-KISSME 77.7 62.7 77.9 62.8 77.8 62.7 77.9 62.8 

Table 15 

Training time (seconds) of each method on UCI-dataset iris with 5% label noise. 

Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME 

Time 3.40E-06 0.9014258 1.9182508 0.0942964 0.9727386 0.0 0 0559 0.0261398 

Solving method Non-iterative Iterative Iterative Iterative Iterative Non-iterative Iterative 

Table 16 

Training time (seconds) of each method on cameras pair 2–4 of RAiD with 5% label noise. 

XQDA LFDA SVMML KISSME kLFDA ITML DML-eig RNCA MFA Re-KISSME 

Time 0.0158 229.2761 227.7476 0.0030 23.1695 564.3897 5.5920 911.9961 87.0308 13.0250 

Solving method Non-iterative Iterative Iterative Non-iterative Iterative Iterative Iterative Iterative Iterative Iterative 
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However, the score of KISSME degenerates to 2.6% at rank-1 at the

same time. When the noise rate increases to 40%, our proposal

achieves an improvement of 20.6% on RNCA. 

5.4. Computational cost 

Finally we compare the computational cost of the proposed

method, so the training time of each method is recorded. We

choose the experiments on UCI data set iris and person re-

identification dataset RAiD2-4 at noise level of 5% as analysis ex-

amples. The averaging time of one trial in each case is recorded,

and the results are shown in Tables 15 and 16 for two datasets,

respectively. 

From Table 15 , the computational cost of KISSME and Re-

KISSME are less than LMNN, ITML, DML-eig and RNCA. As these

methods on general classification are iterative methods except

KISSME, it is natural that Re-KISSME is of a little higher time

cost than KISSME. From Table 16 , XQDA, KISSME, DML-eig and Re-

KISSME are faster than LFDA, SVMML, kLFDA , MFA , ITML and RNCA .

From these two tables, the proposal is of low computational cost

compared to most of comparable DML methods. 
. Conclusion 

To address the problem of label noise for the DML with pair-

ise constraints, this paper proposes a method Re-KISSME. This

ethod reasons the true similarity of each pair and resample each

air to optimize the metric matrix. First, the resampling scheme

s based on two factors: (1) the structure of sample pairs; (2) the

riors of label. Second, the covariance matrices are iteratively com-

uted according to the resampling scheme. Introducing the true

onstraint as a latent variable, a maximum likelihood estimation

odel is constructed to solve the parameters. As a result, Re-

ISSME can learn the underlying distribution in the presence of

abel noise. 

We conduct experiments on UCI datasets and two person re-

dentification datasets with synthetic label noise. First, with dif-

erent level of noise on these three datasets, the result of per-

ormance and Friedman test validate that Re-KISSME outperforms

ther methods on seven UCI datasets. Second the experiments

how that our proposal improves KISSME and reduces the negative

nfluence of label noise on two person re-identification datasets.

inally, further work should take DML methods based on triplet
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onstraints into account as Re-KISSME only considers the pairwise

onstraints. 
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