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ABSTRACT

Distance metric learning aims to learn a metric with the similarity of samples. However, the increasing
scalability and complexity of dataset or complex application brings about inevitable label noise, which
frustrates the distance metric learning. In this paper, we propose a resampling scheme robust to label
noise, Re-KISSME, based on Keep It Simple and Straightforward Metric (KISSME) learning method. Specif-
ically, we consider the data structure and the priors of labels as two resampling factors to correct the
observed distribution. By introducing the true similarity as latent variable, these two factors are inte-
grated into a maximum likelihood estimation model. As a result, Re-KISSME can reason the underlying
similarity of each pair and reduce the influence of label noise to estimate the metric matrix. Our model
is solved by iterative algorithm with low computational cost. With synthetic label noise, the experiments
on UCI datasets and two application datasets of person re-identification confirm the effectiveness of our
proposal.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Distance metric learning (DML) depicts the intrinsic structure
and the correlation between different dimensions of data. As a pre-
process step of data analysis, the learned metric can improve the
performance of metric-based algorithm, such as clustering, rank-
ing [1] and classification. Many typical DML methods are proposed
and successfully used in many applications, especially in image re-
trieval [2], face recognition [3], image annotation [4], visual track-
ing [5], and person re-identification [6,7]. For a comprehensive re-
view of distance metric learning, please refer to [8,9].

Usually guided by the constraints from the labels or similar-
ity of samples, a good metric aims to keep each group compact
and different groups apart. Integrating the constraints as loss terms
and the priors as regularization terms into the objective function,
most of algorithms transform the task into a complex optimization
problem of finding a positive semi-definite matrix. Common DML
methods assume that all labels or similarity of samples are correct,
which is impossible with the increasing scalability and complex-
ity of dataset or in complex application. As a result, the inevitable
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existence of label noise affects the performance of DML methods.
As shown in Fig. 1, the wrong constraints can mislead the learn-
ing process into pushing dissimilar pairs close together and pulling
similar pairs far away, which may betray the goal of distance met-
ric learning and lead to poor generalization on testing data.

Learning with noisy labels has been studied for several years.
One kind of methods directly remove or relabel the suspected sam-
ples according to some predefined criterion. Unfortunately, sev-
eral work has shown that relabeling the mislabeled samples pos-
sibly harms more than removing them [10]. Besides, methods of
removing suspicious samples have risk of cleaning right samples
or conserving wrong samples, which would mislead the learn-
ing as well [11]. The other kind of methods design noise-tolerant
classifiers, which usually consider a noise model in addition with
the classification model or design specific surrogate loss. However,
there is little attention on addressing the problem of label noise in
DML besides Robust Neighbourhood Components Analysis (RNCA)
[12] and Generalized Maximum Entropy model for learning from
noisy side information (GMEns) [13].

One of the most effective and widely used methods in DML is
Keep It Simple and Straightforward Metric (KISSME) [14] learning
method, which is a statistical proposal assuming that pair differ-
ences are sampled from two different Gaussian distributions. This
method does not rely on the complex optimization with respect
to the Mahalanobis matrix and has low computational cost. This
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Fig. 1. Without vs. With considering label noise. The red arrows indicate the wrong direction of learning, and the black arrows indicate the right direction of learning.

efficient method depends on the estimation of two covariance ma-
trices, which would be biased by the label noise. The major prob-
lem of bias is that pairs of two Gaussian distributions are wrong
sampled due to label noise, which makes the final Mahalanobis
matrix less discriminative. Instead of removal of potential misla-
belled samples, which results in loss of information, making use of
samples as much as possible is a better choice. Motivated by the
work of [15], we introduce a resampling scheme for the sample
pairs based on KISSME to optimize the estimation of metric ma-
trix.

In this paper, we propose a robust resampling method based
on KISSME, to address the problem of label noise for DML meth-
ods with pairwise constraints. We assume that the Mahalanobis
matrix learned during the iteration can reflect the similarity of
sample pairs to some extent, and that label noise is random. Con-
sidering the structure of samples and the priors of labels as two
resampling factors, the pair differences are resampled to estimate
the covariance matrices. By introducing the true similarity as a
latent variable, we model these two factors through a maximum
likelihood estimation model, and estimate the Mahalanobis matrix
in each iteration till convergence. The learned metric and the la-
bel flipping parameter can reflect the potential true similarity of
each pair from feature space and label space respectively, so as to
reason the latent true similarity of each pair and reduce the ef-
fect of label noise. Also our algorithm has low computational cost.
The experiments are conducted on UCI datasets as well as two ap-
plication datasets of person re-identification with different level of
synthetic label noise, and the results validate the effectiveness of
our proposal. The main contributions of our work are as follows:

(1) We propose a robust resampling scheme to correct the ob-
served distribution for DML in the presence of label noise,
given the observed features and labels of sample pairs;

(2) By modeling the data structure and the prior of label
through a maximum likelihood estimation model, an itera-
tive algorithm is developed. Our algorithm Re-KISSME im-
proves the performance of KISSME with and without exis-
tence of label noise;

(3) We conduct extensive experiments on general classification
task and application of person re-identification with differ-
ent levels of synthetic label noise. The results show the ef-
fectiveness and robustness of our proposal.

The rest of this paper is organized as follows. We discuss re-
lated work about DML and learning with noisy labels in Section 2.
Reviewing KISSME algorithm is in Section 3. Through introducing
the true equivalence of each pair as latent variable in a likelihood
estimation model, we propose our method Re-KISSME in Section 4.
The experiments on performance are shown in Section 5, and con-
clusion is in Section 6.

2. Related work

This section reviews some of the previous work on topics
closely related to this paper. We first briefly review DML in this
section, and then the studies of learning with noisy labels are fol-
lowed.

2.1. Distance metric leaning

From the way of solver, one type of related work involves
convex or nonconvex optimization, which is usually solved by it-
erative gradient-based methods. Mahalanobis metric for cluster-
ing (MMC) [16] formulates the problem as a convex optimization
learning from side-information, which arouses the later work of
DML. Neighborhood Component Analysis (NCA) [17] maximizes the
probability that each data sample selects the points of same label
as neighbours. Large Margin Nearest Neighbor (LMNN) [18] aims to
penalize large distances between anchor point to its target neigh-
bors and small distances between anchor point to its impostors for
k-NN classification. Information Theoretic Metric Learning (ITML)
[19] minimizes the relative entropy between two Gaussians un-
der pairwise constraints, which is solved by an iterative Breg-
man projection algorithm. Parametric Local Metric Learning (PLML)
[20] learns local metrics consisting of basis metrics, based on an-
chor points from different regions of the instance space. Based on
the similar triplet constraints of LMNN, much work extends LMNN
from different views, such as GB-LMNN [21], x2-LMNN [21]. Sim-
ilarly, Unified Multi-Metric Learning (UMZ2L) [22] is a framework
combining multiple types of metrics from different perspectives
under triplet constraints. These methods all optimize the objection
in positive direction for similar pairs while in negative direction for
dissimilar pairs [14]. They assume that the labels or constraints are
correct, whose objective function would be violated by the phe-
nomenon of label noise.

The other type of related work needs no complex optimiza-
tion procedure. Relevant Components Analysis (RCA) [23] learns a
global linear transformation matrix from the positive pairs, which
of solution is the inverse of the average chunklet covariance ma-
trix. Discriminative Component Analysis (DCA) [2] improves RCA
by considering negative pairs in addition, whose objective func-
tion is the ratio of determinants of two covariance matrices. Xi-
ang et al. [24] extends DCA by exploring the trace of two covari-
ance matrix based on both similar and dissimilar pairs, which is
solved by eigenvalue decomposition. Assuming the pair differences
are sampled from two Gaussian distributions, KISSME is an effi-
cient way to learn a metric matrix from pairwise constraints. The
solver of these methods relied on the estimation of covariance ma-
trices, which would still be biased in the presence of label noise.
There also has been study showing that the large noise in the pair-
wise constraints could seriously deceive the DML and lead to poor
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generalization on testing samples [25], as well as in our empirical
study.

2.2. Learning with noisy labels

The methods designed for the existence of label noise can be
roughly categorized into two categories. One kind of them are
data-oriented methods, which add data preprocessing steps be-
fore classification. The other kind are model-based methods, which
construct the model without data preprocessing. Survey refers to
[26].

The first kind of methods delete or relabel the mislabeled sam-
ples, and the classifier of each method is learned on the remaining
training samples. The suspicious samples are selected according
to some criterion, such as gain criteria [27], complexity measure
[28], and geometrical structure [29]. There are researches show-
ing that removing suspicious samples is more efficient than rela-
beling them. But this category of methods may lead to removing
correct samples or remaining wrong samples, which would harm
the performance of classification more. Regression based Distance
Metric Learning (RDML) [25], as a kind of DML method for crowd-
source, solves the problem via filtering noisy pairwise constraints
and recovering the similarity matrix through matrix completion al-
gorithm. Note that RDML differs from our work in that the crowd-
source offers multi-annotator for each sample, which could reason
the confidence of label directly. Our algorithm explores the prob-
lem of DML given one label for each sample, which gives no con-
fidence of each label directly.

The model-based methods focus on designing specific surrogate
loss function robust to label noise, or considering a noise model
besides the classification model. Natarajan et al. [30] propose two
methods, an unbiased estimators of any loss and a weighted loss
function, to modify any given surrogate loss function for the class-
conditional situation. Liu and Tao [31] prove that using impor-
tance reweighting in any surrogate loss function is effective for
classification with noisy labels , which is like transfer learning.
The Labeled Instance Centroid Smoothing (LICS) [32] approach re-
duces the influence of noisy labels through incorporating labeled
instance centroid and considering the influence of variance. For
multiclass classification problem of deep Neural Networks, Ghosh
et al. [33] derive some sufficient conditions on a loss function,
which would be inherently tolerant to label noise. Some model-
based methods are solved by iterative algorithm, which consider a
noise model and a classification model simultaneously in the train-
ing. The probabilistic methods are widely used in modeling the
noise process, which reason the label flipping probability. Based on
EM algorithm, Lawrence and Schélkopf [34] assign a label flipping
rate of each sample and provide a data-generative process prob-
abilistically for kernel Fisher Discriminant in the presence of la-
bel noise. This method has inspired much related work, such as
probabilistic Kernel Fisher (PKF) [35]. The robust logistic regres-
sion (rLR) [36] model learns the label flipping probabilities and a
logistic regressor for classifier simultaneously. A new robust boost-
ing (rBoost) [37] algorithm is designed by employing a label-noise
robust base learner and modifying the exponential loss. Recently
Raykar et al. [15] estimate the true labels of subjects through an
EM approach for learning from crowds, which has inspired much
later work. However, these methods are not proposed for the prob-
lem of DML and most of them are designed for binary classifica-
tion.

Although not yet a popular research direction in DML liter-
atures, there is some model-based work attempting to consider
learning a metric in the presence of label noise. GMEns [13] pro-
poses a framework for learning from noisy side information to rea-
son the similarity of each pair. RNCA [12] solves the problem of
label noise for NCA algorithm, and needs the given information of

labels, which is harder to get than side-information. Because the
gradient with respect to the metric matrix is involved in iteration,
these methods usually require high computational cost.

3. Premilinary

Given the training dataset of n samples in original space: X =
[x1,..., xn] € RA" | the side-information is reformulated as pair re-
lations: (x;,x;) € .7 or (x;,X;) € 9, where .7 denotes the similar
pairs and 2 denotes the dissimilar pairs. The Mahalanobis distance
is defined as: dy(i, j) = \/(x,- —xj)TM(xi—xj), where the metric
matrix M is required to be positive semi-definite. We introduce dif-
ference vector x;; = x; —x; and label y;: y;; =1 for (x;,x;) € 7 or
yij =0 for (x;,x;) € 2.

Assuming the similar and dissimilar pairs belong to two dif-
ferent Gaussian distribution with zero mean, KISSME tests the hy-
pothesis Hy that a pair is dissimilar versus the alternative Hy:

p(xij|[Ho) p(xijl6o)
p(xijlH1) 7 p(x;;161)

where p(x;|0m) is a probability of a Gaussian distribution for hy-
pothesis Hy, parameterized by 6,. The large value indicates that x;
and x; are dissimilar pair, vice-versa small value for a similar pair.
So a small value of f(x;) implies that pair (i, j) is similar and Hy is
rejected, a large value implies that Hy is validated. From the prob-
ability of Gaussian distribution:

f(xij) = log (1)

1

1
J @) | = |exp(7

the ratio becomes:

1
f(x;) = log N
1) -

1 T T —1y
%Zn)dlzl‘exp(—jxuiil x,j)

Stripping the constant terms without relation to x;;, the simple for-
mulation is as follows:

p(xij|Hm) = XSl ). (2)

1,751,
—3X;; X xu)

(3)

fip) =x5(27" = 2" (4)
where the covariance matrices are computed as
1
20 = Nio Z X,‘]XE- (5)
Yij=0
) ! T 6
=N Z XijXij- (6)
yij=1

Ng and N; are the number of dissimilar and similar pairs respec-
tively. Through projecting 2;1 - 261 onto the cone of positive
semidefinite matrices, we get the Mahalanobis matrix M, and the
distance between two samples is

fxij) = X,-TjMxij» (7)

fj is in short for convenience.
4. The proposed work

The KISSME algorithm and its variants [38,39] all rely on
the estimation of two covariance matrices of pair differences.
These methods assume that the labels of pairs are correct.
However, making all labels accurate is time-consuming and
resource-consuming, which is difficult to meet in practice. In the
presence of label noise, the estimation of covariance matrices is
biased seriously, which leads to a deviating distribution learned
from the training samples and poor performance on the testing
samples. Under the circumstances, the goal of DML is to output
a Mahalanobis matrix M from the observed noisy distribution D:
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Fig. 2. The latent model representing the relationship among the true label, the
observed label and the sample feature.

{x1.91). ... xij. 7ij). . ... (xn. Jn)}. where Jj; is the observed sim-
ilarity of the ijth sample pair.

As mentioned in the related work, the removal of certain sam-
ples will cause loss of information in application, it could result in
a potential change of the data structure [40]. If there is information
telling the label noise from the true label, it will reduce the effect
of noise more or less. From the cognitive process of human, peo-
ple is able to tell the class of noisy samples from the clear samples
in vision, this mainly results from the structure information and
some prior information. Similarly, given the pair differences and
observed labels, we can reason the probability of sample pairs be-
ing potential mislabeled and resample each pair without discarding
samples. Actually this could correct the observed noisy distribution
to learn the underlying true distribution of dataset. We assume
that the structure learned during the iterations inflects some part
of true distribution to some degree, and that one class is flipped
to other classes at random. The structure information corresponds
to a classification model, as one factor influencing the resampling
scheme. The noise probability corresponds to a label noise model,
as another factor.

Label noise model: We introduce a true label y; for each pair
X;j as a latent variable. We only discuss the random noise, which
means that the observed label y;; only depends on the true label y;;
and is independent of the observed sample pairs x;. The relation-
ship is shown as Fig. 2. The label noise model is expressed through
the probability of conditional distribution. The link between the
true label y; and the given observed label y;; is presented by pa-
rameter ry,, namely the flipping probability that is defined as

Tim = p(i; = mly;; = 1). (8)
where, me {0, 1}, [e{0, 1} are the value of y;; and yj;; respectively.
Accordingly, we denote 7, = p(y;; = l|Jij = m).

Classifier model: Even during iteration, the metric matrix can re-
flect the true similarity of some pairs to some degree. As for an-
other factor influencing resampling scheme, we consider the Ma-
halanobis matrix as the structure information. We use a probability
depicting the similarity of each pair difference. Through the Maha-
lanobis distance, it can verify that whether two test samples belong
to a group or not. The problem could be characterized as a binary
classification. For a threshold b and a scale coefficient k, the clas-
sification model is of the form: y;; =1 if k(f;; —b) <0 and y;; =0
otherwise. f; is the Mahalanobis distance of the ij-th sample pair
defined in (7). We hope that the probability of a pair being sim-
ilar is high when the Mahalanobis distance is small, and that the
probability of a pair being dissimilar is low when the Mahalanobis
distance is large. Thus, a logistic sigmoid function is a good repre-
sentation of the probability describing the similarity of pairs:

P = 11xij. M.k, b) = 1/(1 + eUu=b)), 9)
So, we can express the probability of a pair being dissimilar:
p(yij = 0lx;j, M, k, b) =1 — p(yi; = 1|x;, M, k., b). (10)

Here it remarks & (x;;) = p(y;j = 1|x;;. M, k, b) and &g (x;;) = p(yij =
Olij, M, k, b) =1- 81 (XU)
Parameter learning: Remarks parameter set 6 = {M, k, b, r;,,}. For
convenience, we denote p(y;;|x;j, 8) = p(y;; = l|x;j, M, k, b).
Combining these above two factors and assuming that the
distribution of p(y;j =1) is uniform, the pair differences are

resampled according to the probability given the difference x;; and

observed label y;; for each pair:

pijlxij. Vij. 0) oxpyijlxij, ) p(yij = 1y = m)
=pij = l|xij, ).

Thus based on the above uniform assumption of p(y;; =1) and
Bayesian theorem

(11)

P = 11X, 0) Py = 113 = m)
Yo pij =X, ) p(yij =g =m)

Given the noisy distribution D, our problem is simplified to
make inference about the parameter set 6. From the perspective
of maximum likelihood, the objective function of our model can
be defined as follows:

pWijlxij. ¥ij. 0) = (12)

N

L(0) =) log p(Jlxij, 0). (13)
ij=1

By using the unknown true label y; as a latent variable to cal-

culate a posterior q(y;j|x;j, Ji;). it can derive a lower bound of the
log-likelihood

p(Fij. Yijlxij)

N 1
Le - e U. . lO =
@) > Z Z q(vijlxij, ¥ij) log q(yijlxij, Jij)

ij=1y;;=0

=L,(0). (14)

The bound of (14) becomes an equality, when q(y;;|x;j. Jij) =
p(yijlxij, Jij, 0). We address the above problem through EM-like al-
gorithm, where the algorithm mainly estimates the conditional ex-
pectation of true label y; (E-step) and then optimizes the parame-
ter set 6 (M-step).

For E-step, based on = p(y;; = |y;; = m) and (12), the pos-
terior q(y;;|x;j, i;), which also represents the conditional expecta-
tion of yj;, can be computed in the tth iteration as

p(ij = lxij, 697,
Y iy =Ulxy, 09,

qijlxij, ij) = p(ijlxij. §ij. 0°) =
. (15)
_ STy
PRI
For M-step, after discarding the constant and irrelative terms
with respect to parameter set 6, the objective function Ly(8) in the
t-th iteration becomes as follows:

i -
Lopj (6;60") = ZZ U e log p(Fij = m, yij = xi;, ).
ij=11=0 Zl, U) ml’
(16)
Because
pUij =m,y;; =lx;j, 0) = p(yij = lxi;, O)p(Fij = mly;j =D (17)
= 8 (Xij)Tim.

substitute (17) into (16), the expected log-likelihood of t-th itera-
tion becomes as follows:

N 1

8 (x
Lay(6:0) = 33 il & ’) 2L g5y i (18)

ij=11=0

We discuss the computation of noise rate ry, firstly, and con-
sider the computation of k, b and Mahalanobis matrix M later.
About 1, we add constraints rgg +79; =1 and rig+r;1 =1 as
Lagrange multipliers. For ryg, adding A (1 —rgg —191), the partial
derivation in the tth step is
OLop; XN: 8 (xipfgy 1 =0)
81’00 o

2000 “a, (19)
21 =08} (i), Too
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where, 1 (x) is indicative function. Thus:

N ~
Zar Xi)F1(Ji = 0
roo: l 0( l]) 00 (.yl] )

(20)
1 ~
)"] ij=1 ZV:O 81[/ (Xl])r([)l/
Similarly for ry, it gets:
1 &85 1 = 1)
o = - > : (1)

1 ~
ij=1 Zl':() 8}; (Xl'j)rglr
Adding Eq. (20) to Eq. (21), and combing Aq(rgg + ro1) = Aq, Tgo IS
updated in the tth step as

ZN 88 (xij) o, 1(7;;=0)
=150 8L (apie,

Too = — — . 22
00 SN OG0 | SN 50l G=D) (22)
=15 48, (xipfe, =15} 8, (ipf,
Similarly for ry; in the tth step, we have
N 8 x)F1F=1)
Z”= 1\ J=
ij=1 o 8 (ipF (23)

m= .
1 N SGRAG=D | § N 86 16,=0)
=1 508 R, U=1 50 o 86 (i,
and compute rig=1—7111, rg1 = 1 — rp.
Through similar derivation to [34], given the rate p(y =1) = 7,
oy N tth iteration can be got through:
- (1 =110 = )10

MOS0 24

(F —To1)r0

(1=7)(A =101 —110)’

Then we consider the optimization of k and b. These two pa-
rameters could be optimized individually or meanwhile. However,
each of them acts different role in the classification model, which
is briefly explained in the definition of classifier model. b is a
threshold for the Mahalanobis distance, it focuses more on the dis-
crimination. k is a scalar, it focuses more on the scale of distance
and influences the rate of convergence more. The probability (x;)
of more pairs approaches 0 or 1 when k is large, the algorithm
may converge fast and get into local optimization. The probability
3(x;;) of more pairs approaches 0.5 when k is small, the algorithm
may converge slowly or not converge within the default maximum
iteration. So we optimize b firstly and k later, instead of optimiz-
ing them simultaneously. For computation of b, we use probabil-
ity 8(1y(%;), as the soft label instead of hard label in ROC curve,
and use the Mahalanobis distance of threshold point as b when
the true positive rate is equal to the true negative rate.

k is learned through the conjugate gradient method [41]:
ki1 =ky —ady. The step size « is obtained by a line search, and

the search direction d,s is updated by the rule: d = —g + By dy_q,
T (g,—

the scalar B, is computed by: B, = M. gy is the t'th
1188 _1)

gradient with respect to k, and the gradient is computed through
(for convenience, subscript t' omitted):

(25)

o1 =

aLObj al 6(t) (xij)ﬁno (S[ (X,‘ )Ft

= = 20\ Tmo gy Q0N Tm g

& ok 1]2 Zl/ alt/(Xij)thl/ 1( U) Z,/ Slt’(xij)i?—nl’ 0( l])
x(fij—b) (26)

After calculating these parameters, we can infer the true simi-
larity of x;; from the given label in the presence of noise according
to the probability in (15). Therefore, we resample each ij-th pair
according to the rescaled weights wof]., Wogj in the two distribution
during the tth iteration as

t =t
¢ 86 (Xij)Tio

ol = _ (27)
D VAP ACH

Algorithm 1 Resampling-KISSME.

1: Input:
: {(xij)lij =1,2,..., N}: training samples;
: {Jij}: the observed similarity of pairs;
T: the maximal iteration step;
: Initialize: 6 = {M, k, b, 1y, }.
: while problem(12) does not converge or t < T do
M-step: optimize the parameter set 6 according to Eq.
(22) ~ (31), and project (31) onto the cone of positive
semidefinite.

8:  E-step: re-estimate q(y;; = l|x;;, J;; = m, 6;) according to Eq.

(15).

9: end while
10: Output: the learned M

and
N 8 (i) (28)
; .
T Y 81 (Xip) Ty
Under the resampling scheme, we get
ij
ij
and
M= (=) T —(ZH) " (31)

Through projecting (X¢)~! — (Z{)~! onto the cone of positive
semidefinite matrices to get the Mahalanobis matrix of the itera-
tion step t and to finish the t-th iteration. The algorithm iterates till
convergence. Due to the resampling scheme, we name the method
as Resampling-KISSME (Re-KISSME).

In fact, the Eqgs. (29) and (30) imply that the Re-KISSME is a
relaxation of KISSME. The resampling weight guidelines the learn-
ing with a soft label instead of directly making use of the labels
containing noise. Taking the w, fj as an example, if the resampling
weight wlle approximates to 0.5, the ij-th pair is near the deci-
sion boundary and is prone to be misclassified. Otherwise when
the probability w1fj approximates 1, the pair is far from the de-
cision boundary and is prone to be classified as similar pair. At
the same time, this means that we also conserve the weight Wofj
even approaching 0. We note that the resampling scheme aligns
weight on each pair in the estimation both of similar and dissim-
ilar covariance matrix at the same time. Although a pair is rare to
be similar or dissimilar, a very low probability of this event is a
more reasonable estimation than the zero weight. This resampling
scheme also makes that the covariance matrices need no regular-
ization. Besides, there is no need to compute the gradient with re-
spect to Mahalanobis matrix in Re-KISSME, resulting from the effi-
ciency of KISSME. This makes the algorithm fast, which is validated
in our experiment.

5. Experiment

To validate the effectiveness of our proposed algorithm, we con-
duct three series of experiments on nine benchmark data sets.
The first one is conducted on seven datasets downloaded from the
UCI machine learning data repository [42], including Breast Tissue,
Statlog (Heart), Iris, Parkinsons [43], Protein [16], Seeds, Wine and
two person re-identification datasets, iLIDS and one camera pair of
RAID. The goals of our experiments are three folds. First, we want
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Table 1
The UCI-datasets used in experiment.

Dataset Sample number (n) Feature number (d) Class number (c)
Breast Tissue 106 9 6
Statlog (Heart) 270 13 2
Iris 150 4 3
Parkinsons 195 22 2
Protein 116 20 6
Seeds 210 7 3
Wine 178 13 3

to confirm the comparative behavior with other distance metric.
Second, we want to known the performance and degeneration of
our algorithm in application. Third, we want to verity the compu-
tation complexity of the algorithm.

The original labels of the 9 benchmark data sets are clear. After
splitting the training/testing set, we make the testing set clear and
generate the label noise of the training set through: (1) select the
samples of each class at random according the given noise rate,
(2) flip their labels into one of other classes at random. Because
some methods make use of the label directly, while other methods
including the proposed method make use of the side-information.
To make the comparison fair, we flip the similarity of pairs after
generating similar or dissimilar pairs from the clean label. Using
the observed labels, we use the Mahalanobis matrix M of regular
KISSME as the initial. We initialize b using the maximum of all Ma-
halanobis distances of all pairs, while initializing k and r by setting
1/k=b, r=[0.9,0.1;0.1,0.9].

5.1. Experiments on general classification

In experiments on UCI datasets, the details of the datasets
are listed in Table 1. Each dataset is divided into 4/1 for train-
ing/testing split at random, and the percentage of label noise in
training set varies from 0% to 30%. This process is repeated 20
times. To make quantitative analysis, we calculate the average ac-
curacy, standard deviation and mean rank of each method, then
use the Friedman test to evaluate the significance of comparison.

We compare our method with several methods, including the
5-NN without DML as the baseline (Eucli), and five state-of-the-
art metric learning methods, LMNN, ITML, DML-eig [44]|, RNCA,
KISSME. The RNCA is designed for the label noise. The parame-
ter tuning of compared methods is the same as the original lit-
eratures. In each dataset, we pick up 30c(c-1) constraints for each
dataset. The results of accuracy are shown from Tables 2-8, as well
as mean rank in Table 9.

From these seven tables about accuracy, it is shown that the
performance of DML methods degenerates with the increasing
noise rate on the several datasets: (1) Table 2 verifies that Re-
KISSME is not worse than other methods when the data set is
clear. What's more, the accuracy of Re-KISSME is better than other
methods at least on six data sets with different noise levels, which

accounts to more than half of whole data sets. (2) When there
is label noise, our proposal outperforms other method. Especially
when the percentage of noise is 5%, 10%, 15%, the accuracy of Re-
KISSME dominates at least on six datasets. Over the second best
method, our method has an improvement of about 3% on Breast
Tissue. (3) As designed for label noise, RNCA performs poor be-
cause that it makes use of local structure information and suffers
noise more. Re-KISSME outperform regular KISSME in the presence
of label noise, which is validated at least on five datasets in these
six tables. For example, the gaps between these two method is
3.2% at noise level of 15% on breast tissue.

To analyze the results further, we use the non-parametric sta-
tistical analysis, Friedman test to validate whether the comparisons
are of significance. The Friedman test is conducted on the rank
values of each algorithm at each noise level. The null hypothesis
states that all algorithms not perform differently significantly, and
post hoc test proceeds if the null hypothesis is rejected. We use
the corrected Friedman statistic:

(N —D)x¢
F=—-"--/">"—> 32
PN —1) = 42 (32)
where,
12N KK + 1)2
2 S —
XS R+ 1) Z 7 (33)

The Rj is the rank of j-th algorithm, k' is the number of all
methods, and N’ represents the number of data sets. The Fr is
distributed according to the F-distribution with k¥’ —1 and (k' —
1)(N’ — 1) degrees of freedom.

Calculating the responding statistic of each noise level, the null
hypothesis is rejected at risk of & = 0.05. So we use the Bonferroni
Dunn test to compare our method, which is the control method,
with other seven methods by the critical difference (CD):

k(K +1)

CD =qq G\’

(34)

The corresponding CD is 2.638 = 3.0461. The Bonferroni-

Dunn test and rank differences between Re-KISSME and other
seven algorithms is listed in Table 9. It is shown that Re-KISSME
significantly performs better than the compared methods in most
cases, and that it beats other methods at least with a rank differ-
ence of 1 in all cases. The statistic test validates the effectiveness
of our method.

5.2. Experiments on iLIDS for person re-identification

It's well known that person re-identification is a challenging
problem resulting from its large intra-class variation in view an-
gle, pose, illumination, and occlusion. Feature representation and
metric learning are two fundamental problems for person re-
identification, and it is suitable to conduct experiments to validate

Table 2
Comparison of average accuracy (%, mean + std) on UCI-datasets without label noise, the result of rank-1 is in bold face.
Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME

Breast tissue 51.60+2.38 57.46 +3.70 5528 +£2.68 54.64+2.79 51.60+2.38 62.37+299  62.98+3.98
Statlog (Heart)  66.52 4145 65.20 +£1.90 76.72 £2.89 67.59 +1.27 66.24 +1.74 77.07 £ 1.96 77.72+2.00
Iris 96.56 +0.51 96.69+0.75  96.79+0.61 96.42 +1.02 96.35+0.73  96.99+0.69 97.02+0.78
Parkinsons 85.05+144  82.82+164 84.46+163 83.59+1.56 85.05+144 84.92+224  8754+1.57
Protein 69.42 +2.00 71.36+2.18 7141 +£2.93 7143 +2.11 68.90 +£3.27 71.79 +£ 211 71.66 +2.95
Seeds 88.71+0.88 90.21+0.96 9533+0.97 90.00+0.93 91.76+1.26 95.60 + 1.03 95.74 + 0.96
Wine 69.40+2.05 90.75+2.05 92.46+149 76.14 +£2.81 69.60+1.96  96.77+1.07 97.06 +0.89
Average 75.32 79.21 81.78 7712 75.64 83.64 84.25
Mean rank 5.5714 5 3.5714 5 5.5714 2.1429 1.1429
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Table 3
Comparison of average accuracy (%, mean =+ std) on UCI-datasets with label noise of 5%, the result of rank-1 is in bold face.
Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME
Breast tissue 50.67+3.37  56.13+3.57 53.78+£2.74  5292+4.80 50.67+337 58.73+4.13 61.95 + 3.65
Statlog (Heart)  65.57+178  63.31+2.67 7350+3.69 66.59+165 6572+1.71 74.74 £2.17 75.98 £2.20
Iris 95.92+0.87 89.50+1.64 9539+164 9536+1.03  96.28+1.15 96.56+144  96.85+1.03
Parkinsons 83.28+1.84  8210+2.04 83414252 81.87+182 83.28+1.94 84.08+214  86.05+1.80
Protein 6713 £2.95 66.89+2.63 68.14+3.11 66.63+2.95 66.52+3.08 70.13+272 71.98 +2.16
Seeds 88.88+1.15 90.71 £1.31 93504190 89.38+107 9095+146  9512+1.24 95.17 +1.50
Wine 69.224+2.80  81.13+293 91254227  7020+299 6938+2.63 95884096  97.24+0.97
Average 74.38 75.68 79.85 74.71 74.69 82.12 83.60
Mean rank 5.5714 5.2857 3.4286 5.5714 5.1429 2 1
Table 4
Comparison of average accuracy (%, mean +std) on UCI-datasets with label noise of 10%, the result of rank-1 is in bold face.
Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME
Breast tissue 49.89+439 54974391 52.01 +£4.61 5251+3.76  49.89+439 58.69+4.60 61.15+3.96
Statlog (Heart)  64.43+2.50 62.74+230  69.43+3.71 63.69+2.60 64.39+241 73.20+239  74.65+2.16
Iris 95.09+1.00 90.80+1.80 94964135 9427+153 9496+172 9496+149 96.02+1.08
Parkinsons 82334225 80.85+2.19 82.05+1.87 80.26+185  82.28+2.17 8159+2.73  83.69+2.11
Protein 66.42+247  62.65+459 6551+394 63.80+2.82 65304270 68.76+240  69.64+2.80
Seeds 88.57+134  89.52+134 9143+2.05 88.50+145 89.76+1.66  94.02+122  94.24+0.89
Wine 67.88 +1.94 76.12 +£2.69 88.66+2.58 69.41+1.83 67.88+1.94 95.18 +£1.50 96.38 +0.81
Average 73.51 73.95 77.72 73.20 73.49 80.92 82.25
Mean rank 4.2857 5.5714 3.7143 5.8571 5 2.5714 1
Table 5
Comparison of average accuracy (%, mean +std) on UCI-datasets with label noise of 15%, the result of rank-1 is in bold face.
Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME
Breast tissue 49.03+4.69 53.06+3.65 52.81+5.03 51.01+5.05 49.03+4.69 56.94+4.24  59.34+5.03
Statlog (Heart) 62.81+195 60.54+3.00 6730+£3.65 6319+2.64 6296+2.02 7020+3.30 72.04+3.84
Iris 92.69+1.91 89.74+2.80  91.55+2.11 92.31+£1.78 91.48+2.18 92.38+2.73  93.38+2.54
Parkinsons 80.79+220 79.36+187  80.33+2.83 80.87+238 80.79+2.20 81.03+160 82.74+2.66
Protein 65.49+2.82 60.63+574 6546+2.66 61.93+291 63.93+£3.14 6821+342 7047 +239
Seeds 87.69+1.19 88.62+134  89.71+188  87.81+141 88.55+140  91.74+1.77 9243 +£2.01
Wine 66.95+3.01  71.90+3.53 85.56+3.93  6813+265 66.95+3.01 9315+1.04  94.21+1.80
Average 72.20 71.98 76.10 7218 71.96 79.10 80.66
Mean rank 5.0714 5.5714 4 4.7143 5.5 21429 1
Table 6
Comparison of average accuracy (%, mean +std) on UCI-datasets with label noise of 20%, the result of rank-1 is in bold face.
Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME
Breast tissue 47524274 51.86 £5.11 49.60+4.65 48.63+3.04 47521274 55.86+4.01 59.07 +5.72
Statlog (Heart) 6228 +2.44  59.57+252 6533+335 61.85+3.15 62.04+2.67 67.724+3.97 68.76 +-3.38
Iris 91.32+1.53 88.42+2.17 90.76+1.60  90.76+134  90.62+243  90.74+1.82 92.29 +1.58
Parkinsons 78.15+1.94 77.77 £1.89 7718 £1.99 78.08£1.87 7815+194 76.54+2.65  79.00 + 3.67
Protein 62.11+3.08 56.50+4.61 6192+348  57.61+3.23 60.15+3.38 66.52+3.58 66.13+3.33
Seeds 84.69+194 8526+165 86.88+230 8521+189 8471+235 90.02+226  90.64+1.58
Wine 6631+2.66  70.04+336 80.81+4.92 6753+279 66.33+2.68 90.68+141 93.27 +1.96
Average 70.34 69.92 73.21 69.95 69.93 76.87 78.45
Mean rank 4.5714 5.2857 3.8571 4.8571 5.2857 3 11429
Table 7
Comparison of average accuracy (%, mean +std) on UCI-datasets with label noise of 25%, the result of rank-1 is in bold face.
Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME
Breast tissue 4497 +2.77 5020+321  49.79+4.02 4715+3.80 4497 +2.77  50.80+4.16 54.44 +5.32
Statlog (Heart)  59.00+£2.80  57.39+2.27 6119 £3.22 58.52+294 59.06+2.81 6520+244 66.65+3.24
Iris 88.96+2.59  8715+3.50 87.70+297  8761+£277  8725+340 838.08+290 89.23+2.21
Parkinsons 73.26+£3.60  72.64+3.16 72.69+3.14 7292+3.06 73.15+3.75 71.97 £3.92 74.69 +2.94
Protein 60.22+3.65 55.89+4.74  59.10+4.89 55.30+3.80  59.11+4.35 64.27+3.62 64.15+3.66
Seeds 83.02+224  83.64+248 83.79+248 8295+227  82.52+251 86.24+3.04 86.81+243
Wine 64.62 +3.31 6735+3.06  77.52+342  6534+3.04 64.76+3.41 8718 +2.46 88.75+2.14
Average 67.72 67.75 70.25 67.11 67.26 73.40 74.96
Mean rank 4.3571 5.2857 3.8571 5.4286 5.2143 2.7143 1.1429
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Table 8
Comparison of average accuracy (%, mean +std) on UCI-datasets with label noise of 30%, the result of rank-1 is in bold face.
Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME
Breast tissue 4335+4.76  46.36 +4.31 4753+4.63  44.85+5.83 4335+476  4749+5.25 50.93 +4.88
Statlog (Heart)  57.46+2.69  56.54+2.81 59484327 58.06+224 57.33+2.76 61.56 +3.61 62.31+3.15
Iris 81.68+237  82.02+335 80.84+298 8177+235 8212+3.73 80.40+2.81  83.28+2.32
Parkinsons 70.64+342 69.44+365 70.08+439 70.64+4.06 7049+330 67.90+3.35 70.74 £2.92
Protein 57.56 +2.65 5295+470 56.82+3.28  51.55+4.02 56.48+3.81 60.25+5.38 62.25+3.46
Seeds 80.02+2.36  80.21+2.19 80.57+2.43  79.90+2.01 79.05+2.84 82.07+2.80  82.83+243
Wine 6118 £3.1 62.71+334 6758 +4.13 6231+£290 61.18+3.17 80.77+3.66  81.81+2.34
Average 64.56 64.32 66.13 64.16 64.29 68.63 70.60
Mean rank 47857 4.8571 3.7143 47857 5.2857 3.5714 1
Table 9
Mean Rank Values Differences Between Re-KISSME and Other Methods.
Noise level ~ Friedman test (p-value)  Bonferroni-Dunn test (rank difference)
Eucli LMNN ITML DML-eig RNCA KISSME

0% 0.008 44285 3.8571 24285 3.8571 44285 1

5% 0.001 45714  4.2857 24286 4.5714 41429 1

10% 0.001 3.2857 4.5714 2.7143 4.8571 4 15714

15% 0.001 40714 45714 3 3.7143 4.5 1.1429

20% 0.002 34285 41428 2.7142  3.7142 41428 1.8571

25% 0.001 3.2142 41428 27142  4.2857 4.0714 15714

30% 0.004 3.7857 3.8571 27143  3.7857 4.2857 25714

the performance of the DML method. Here we focus on the dis-
tance metric, so we extract the LOMO [6] descriptors from each
image as the original feature representation.

The iLIDS dataset [45] a widely-used benchmark, which has 476
images of 119 pedestrians. All images are resized to 128 x 48. The
number of images for each individual varies from 2 to 8. Since
this dataset was collected at an airport, the images often have se-
vere occlusions caused by people and luggage. These images were
captured by multiple cameras and there exist great challenges in
same class. After adding the different percentages of label noise,
the recognition of objective function will be more complex.

In our experiments, the images of ps persons are randomly se-
lected to compose testing set, while the rest images compose train-
ing set. The ps are set as 59 in the iLIDS, which means that one
half of persons are used for training, and the rest for testing. The
percentage of label noise in training sets varies from 0% to 40%,
where the percentage 0% means that the label is clear. This par-
tition is repeated 10 times. The single-shot evaluation approach is
adopted, one image is randomly selected as the gallery image and
the rest are used as probe images for each person in the test set.
This process is repeated 10 times. We evaluate the performance by
calculating the average Cumulative Matching Characteristic (CMC)
curves and reporting the proportion of uncertainty removed (PUR)
scores. For CMC curves, CMC(r) = ¥°I_; p(i) is the top r matches,
p(i) represents the probability of correct match at rank-i. For the
PUR scores is computed as

log(N) + >y p(i)log(p(i))
log(N)

The proposal is compared with ten popular metric learn-
ing methods, including DML-eig, RNCA, XQDA [6], SVMML [46],
KISSME, PCCA [47], rPCCA [48], LFDA [49], KLFDA [48] and MFA
[48,50]. The parameter tuning of respective methods refers to the
original literature. To make the computation tractable, the feature
dimension is reduced to 45 through first conducting PCA suggested
as in [48]. The results on this dataset are reported as shown in
Fig. 3: (1) These methods degenerate more or less with the in-
creasing percentage of label noise, this validates that the label
noise would harm the performance of DML in application. Espe-
cially for SVMML and KISSME, these two methods suffer from the

PUR = (35)

serious degeneration of performance in the presence of label noise.
(2) The CMC curve of our algorithm is over other methods when
the label is clear. This validates that our proposal also improves the
performance over KISSME in absence of label noise. (3) Benefited
from the resampling scheme, our proposal Re-KISSME outperforms
other methods at different level of label noise. This superiority of
Re-KISSME is obvious in comparison with XQDA and KISSME. The
performances of these three methods are the top 3 and similar in
the Fig. 3 a, because that they shares a common assumption that
the similar and dissimilar pairs come from two different Gaussian
distributions. (4) Although as a method designed for label noise,
RNCA is inferior to Re-KISSME. This may because the RNCA make
uss of local structue, which is influenced by the label noise more
than Re-KISSME.

To detail the results more clearly, the scores of the first 20 ranks
and the PUR scores are shown from Tables 10-12. Our method
achieves the best performance, with 51.8%, 50.3%, 48.8%, 47.7%,
46% rank-1 identification rates, 48.1%, 44.9%, 43.1%, 42.1%, 40.3%
PUR score with label rate of 0%, 10%, 20%, 30%, 40% respectively.
When the label is clear, Re-KISSME achieves an improvement of
8.3% at rank-1, and 7% at PUR score on XQDA. When the noise rate
increases to 40%, the proposed method outperform KISSME and
RNCA with an improvement of 44.8% and 15.5% at top-1, respec-
tively. The results show that our performance is competitive and
robust in the presence of label noise.

5.3. Experiments on camera pair 2-4 of RAiD for person
re-identification

RAID [51] dataset is collected recently consisting of two indoor
(camera 1 and 2) and two outdoor (camera 3 and 4). The size of
all images is 128 x 48. This new dataset consists of 43 subjects and
6920 images, which has large illumination variation. To make it
tractable for compared methods, we choose the camera pairs 2-4
(indoor-outdoor) with 2655 images. PCA is first applied to reduce
the dimension of LOMO descriptors to 100, because the images is
larger than iLIDS. The recognition of subjects also becomes more
challenging after adding label noise. In this experiment, we focus
on analysis of degeneration with increasing label noise. So the per-
centage of label noise ranges from 5% to 40%.
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Fig. 3. CMC curves of each method on iLIDS.
Table 10
CMC at r=1, 5, 10, 20 and PUR scores (%) on iLIDS with 0%-10% label noise.
r Noise rate=0% Noise rate=5% Noise rate=10%
1 5 10 20 PUR 1 5 10 20 PUR 1 5 10 20 PUR
XQDA 435 70.9 82.0 92.0 411 413 68.3 80.1 90.4 383 38.5 65.3 77.2 88.3 35.0
PCCA 211 49.8 66.5 83.5 224 223 475 61.7 784 19.5 229 49.3 63.6 80.1 20.7
LFDA 40.7 67.7 79.7 90.5 37.6 39.2 65.5 77.5 88.7 353 372 63.3 75.9 87.6 332
SVMML 28.1 59.2 74.9 89.7 29.8 26.3 56.3 72.6 87.3 27.6 229 52.7 69.0 85.5 243
MFA 343 59.4 72.0 86.5 30.8 337 58.0 70.4 85.3 29.6 32.6 57.8 69.9 84.0 283
rPCCA 31.6 61.0 751 88.8 313 23.7 49.5 63.8 80.0 21.2 231 49.7 63.9 80.5 21.0
KLFDA 39.6 66.9 794 913 37.6 38.7 65.9 78.4 90.8 36.5 371 64.9 76.8 89.4 34.8
DML-eig 35.2 58.9 70.5 82.8 29.1 304 54.8 66.6 79.6 24.6 27.6 50.3 63.2 777 21.6
RNCA 43.5 68.3 791 90.2 39.2 434 68.6 79.4 90.3 39.2 411 67.4 777 88.7 372
KISSME 42.5 70.8 81.6 91.7 40.6 331 62.5 751 874 317 22,5 534 68.8 84.2 239
Re-KISSME 51.8 76.6 85.6 93.8 481 51.3 751 84.1 92.8 46.6 50.3 734 822 914 449
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CMC at r=1, 5, 10, 20 and PUR scores (%) on iLIDS with 15%-25% label noise.

r

Noise rate=15%

Noise rate=20%

Noise rate=25%

147

1 5 10 20 PUR 1 5 10 20 PUR 1 5 10 20 PUR
XQDA 38.6 64.3 75.7 86.8 34.2 36.8 61.8 739 85.5 31.8 349 61.0 72.6 84.3 30.3
PCCA 26.3 51.0 64.8 79.9 221 24.0 49.5 64.0 79.2 20.9 23.6 49.6 63.7 79.2 20.6
LFDA 34.7 61.4 73.8 853 30.7 343 59.8 72.6 85.0 29.8 324 57.2 69.2 829 274
SVMML 20.0 48.7 65.2 82.8 21.2 17.8 45.0 61.9 80.5 18.7 14.9 40.8 58.1 76.8 15.6
MFA 321 579 71.0 84.7 28.5 33.0 59.6 733 86.7 30.2 32.7 60.5 74.5 874 30.6
rPCCA 26.4 51.2 64.9 80.0 223 241 49.7 64.1 79.2 21.0 23.7 49.7 63.8 79.3 20.7
KLFDA 374 63.8 76.8 88.5 343 354 62.2 75.0 87.9 324 343 61.3 74.8 87.1 314
DML-eig 254 474 60.0 75.1 19.3 25.1 47.2 60.7 75.8 193 22.8 442 571 733 16.9
RNCA 377 63.9 74.7 86.7 334 384 63.7 75.0 86.9 337 34.8 61.5 733 85.5 31.0
KISSME 150 455 631 81.1 186 8.0 321 51.2 730 114 43 231 410 650 71
Re-KISSME  49.1 725 81.0 90.8 436 488 721 814 90.8 431 47.7 71.6 80.8 90.0 421

Table 12
CMC at r=1, 5, 10, 20 and PUR scores (%) on iLIDS with 30%-40% label noise.

r Noise rate=30% Noise rate=35% Noise rate=40%

1 5 10 20 PUR 1 5 10 20 PUR 1 5 10 20 PUR
XQDA 34.7 59.8 71.6 84.4 29.9 311 55.6 68.2 81.7 25.7 327 574 69.8 82.5 27.5
PCCA 22.8 473 61.2 776 193 229 471 61.5 78.1 19.4 218 459 59.9 76.4 18.2
LFDA 319 56.8 69.5 82.7 270 30.1 54.0 66.3 80.4 245 274 51.2 64.4 78.5 221
SVMML 11.5 343 513 72.0 117 10.2 30.5 45.5 66.1 8.8 7.7 258 40.8 61.1 6.2
MFA 328 60.9 74.5 874 31.0 331 60.8 74.6 87.0 309 329 60.9 741 86.6 304
rPCCA 22.8 474 61.2 77.6 194 22.8 472 61.5 78.1 19.5 219 46.0 59.9 76.4 18.2
KLFDA 336 58.6 71.2 84.2 28.8 334 58.7 70.5 83.6 283 314 56.6 69.6 83.2 26.9
DML-eig 219 441 57.2 72.6 16.4 20.8 42.2 55.2 71.2 15.0 223 443 57.2 73.0 16.6
RNCA 335 602 732 863 303 329 593 719 861 297 305 564 690 819 262
KISSME 24 16.7 334 58.9 51 1.8 11.5 254 50.0 3.0 12 8.5 194 435 2.0
Re-KISSME 47.7 71.6 81.1 90.1 421 471 71.2 80.5 89.9 414 46.0 70.3 791 88.9 40.3
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Fig. 4. The degeneration of each method on camera pair 2-4 of RAID with 5%-40% label noise.

For this dataset, the ps is set as 21 in the RAiD, which also
means that one half of persons are used for training, and the other
half for testing. This partition is repeated 10 times. The single-
shot evaluation approach is adopted, one image of each person is
randomly selected to construct the gallery set and other images
construct the probe set in the test set. This process is repeated
10 times. Figure 4 plots the average accuracies of rank-1 and PUR
scores of different noise levels for each methods, and details are
shown in Table 13 and Table 14.

Considering the high time cost and discarding PCCA and rPCCA,
Re-KISSME is evaluated by comparison with nine popular metric

learning methods, XQDA, SVMML, KISSME, DML-eig, RNCA, LFDA,
KLFDA, MFA, ITML. The parameter setting of comparable methods
is as mentioned before. The observations on this dataset are fol-
lows: (1) It is shown that the Re-KISSME outperforms other meth-
ods at rank-1 and PUR score in most cases from Tables 13 and 14.
The performance of Re-KISSME defeats other methods at rank-1
when label noise rate is higher than 15%, although the accuracy
of Re-KISSME at rank-1 score is little smaller than MFA and XQDA
with 10% noise. Similar results are also found for the PUR. (2)
The scores of Re-KISSME are about 77% at rank-1 and 62% at PUR
score when noise rate is higher than 15%, there is little difference.
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Table 13
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CMC at r=1 and PUR scores (%) on camera pair 2-4 of RAiD with 5%-20% label noise.

r Noise rate=5%

Noise rate=10%

Noise rate=15%  Noise rate=20%

1 PUR 1 PUR 1 PUR 1 PUR
XQDA 81.7 74.0 76.5  66.9 74.1 63.0 713 58.7
LFDA 69.2 534 65.1 48.6 622 456 579 405
SVMML 69.7 646 643 583 55.1 49.9 513 45.3
MFA 829 752 80.0 716 762  66.4 739 63.7
KLFDA 57.7 36.5 56.8 364 56.2 358 555 354
ITML 70.5 559 68.7 53.8 62.1 46.2 623 453
DML-eig 433 247 46.6 276 499 307 523 334
RNCA 51.2 29.6 51.2 29.7 554 388 67.2 52.5
KISSME 359 306 19.2 17.5 12.7 12.4 6.2 6.5
Re-KISSME 837 75.6 758 624 774 633 769 618

Table 14

CMC at r=1 and PUR scores (%) on cameras pair 2-4

of RAID with 25%-40% label noise.

r Noise rate=25%

Noise rate=30%

Noise rate=35%  Noise rate=40%

1 PUR 1 PUR 1 PUR 1 PUR

XQDA 679 54.8 64.6  50.2 62.5 482 60.1 45.9

LFDA 544  36.6 51.0 332 491 31.0 448 268

SVMML 43.7 376 396 324 348  26.0 279 19.8

MFA 716 609 69.1 576 684  56.8 669 55.0

KLFDA 55.5 353 549 344 544  33.8 528 321

ITML 61.2 450 633  46.8 63.1 489 603  43.8

DML-eig 523 335 521 33.0 53.8 349 522 336

RNCA 58,5 413 539 357 53,5 325 573 37.0

KISSME 6.4 6.3 33 4.7 2.4 2.8 2.6 2.8

Re-KISSME 777  62.7 779 628 778 627 779 628

Table 15
Training time (seconds) of each method on UCI-dataset iris with 5% label noise.
Eucli LMNN ITML DML-eig RNCA KISSME Re-KISSME
Time 3.40E-06 09014258 19182508  0.0942964  0.9727386  0.000559 0.0261398
Solving method  Non-iterative Iterative Iterative Iterative Iterative Non-iterative Iterative
Table 16
Training time (seconds) of each method on cameras pair 2-4 of RAID with 5% label noise.
XQDA LFDA SVMML KISSME KLFDA ITML DML-eig  RNCA MFA Re-KISSME
Time 0.0158 229.2761 2277476  0.0030 23.1695 564.3897  5.5920 911.9961  87.0308 13.0250
Solving method Non-iterative Iterative Iterative Non-iterative  Iterative  Iterative Iterative Iterative Iterative Iterative

However, the score of KISSME degenerates to 2.6% at rank-1 at the
same time. When the noise rate increases to 40%, our proposal
achieves an improvement of 20.6% on RNCA.

5.4. Computational cost

Finally we compare the computational cost of the proposed
method, so the training time of each method is recorded. We
choose the experiments on UCI data set iris and person re-
identification dataset RAiD2-4 at noise level of 5% as analysis ex-
amples. The averaging time of one trial in each case is recorded,
and the results are shown in Tables 15 and 16 for two datasets,
respectively.

From Table 15, the computational cost of KISSME and Re-
KISSME are less than LMNN, ITML, DML-eig and RNCA. As these
methods on general classification are iterative methods except
KISSME, it is natural that Re-KISSME is of a little higher time
cost than KISSME. From Table 16, XQDA, KISSME, DML-eig and Re-
KISSME are faster than LFDA, SVMML, kLFDA, MFA, ITML and RNCA.
From these two tables, the proposal is of low computational cost
compared to most of comparable DML methods.

6. Conclusion

To address the problem of label noise for the DML with pair-
wise constraints, this paper proposes a method Re-KISSME. This
method reasons the true similarity of each pair and resample each
pair to optimize the metric matrix. First, the resampling scheme
is based on two factors: (1) the structure of sample pairs; (2) the
priors of label. Second, the covariance matrices are iteratively com-
puted according to the resampling scheme. Introducing the true
constraint as a latent variable, a maximum likelihood estimation
model is constructed to solve the parameters. As a result, Re-
KISSME can learn the underlying distribution in the presence of
label noise.

We conduct experiments on UCI datasets and two person re-
identification datasets with synthetic label noise. First, with dif-
ferent level of noise on these three datasets, the result of per-
formance and Friedman test validate that Re-KISSME outperforms
other methods on seven UCI datasets. Second the experiments
show that our proposal improves KISSME and reduces the negative
influence of label noise on two person re-identification datasets.
Finally, further work should take DML methods based on triplet
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constraints into account as Re-KISSME only considers the pairwise
constraints.
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