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Radiomics signature: a biomarker for the preoperative discrimination
of lung invasive adenocarcinoma manifesting as a ground-glass nodule
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Abstract
Objectives To identify the radiomics signature allowing preoperative discrimination of lung invasive adenocarcinomas from non-
invasive lesions manifesting as ground-glass nodules.
Methods This retrospective primary cohort study included 160 pathologically confirmed lung adenocarcinomas. Radiomics
features were extracted from preoperative non-contrast CT images to build a radiomics signature. The predictive performance
and calibration of the radiomics signature were evaluated using intra-cross (n=76), external non-contrast-enhanced CT (n=75)
and contrast-enhanced CT (n=84) validation cohorts. The performance of radiomics signature and CT morphological and
quantitative indices were compared.
Results 355 three-dimensional radiomics features were extracted, and two features were identified as the best discriminators to
build a radiomics signature. The radiomics signature showed a good ability to discriminate between invasive adenocarcinomas
and non-invasive lesions with an accuracy of 86.3%, 90.8%, 84.0% and 88.1%, respectively, in the primary and validation
cohorts. It remained an independent predictor after adjusting for traditional preoperative factors (odds ratio 1.87, p < 0.001) and
demonstrated good calibration in all cohorts. It was a better independent predictor than CT morphology or mean CT value.
Conclusions The radiomics signature showed good predictive performance in discriminating between invasive adenocarcinomas
and non-invasive lesions. Being a non-invasive biomarker, it could assist in determining therapeutic strategies for lung
adenocarcinoma.
Key Points
• The radiomics signature was a non-invasive biomarker of lung invasive adenocarcinoma.
• The radiomics signature outweighed CT morphological and quantitative indices.
• A three-centre study showed that radiomics signature had good predictive performance.
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Abbreviations
ANNs Artificial neural networks
AUC Area under the curve
CT Computed tomography
DFS Disease-free survival
GGN Ground-glass nodule
GLCM Grey-level co-occurrence matrix
GLRLM Grey-level run-length matrix
IAC Invasive adenocarcinoma
IASLC/ATS/ERS International Association for the Study

of Lung Cancer/American Thoracic
Society/European Respiratory Society

LASSO The least absolute shrinkage and
selection operator

MIA Minimally invasive adenocarcinoma
ROC Receiver-operating characteristic

Introduction

Lung cancer is the leading cause of cancer-related mortal-
ity worldwide. Most early-stage lung cancers are adeno-
carcinomas and manifest as ground-glass nodules (GGNs)
on th in - s l i ce compu ted tomography (CT) [1 ] .
Adenocarcinomas account for nearly 40% of all lung can-
cers [2, 3]. According to the classification system pro-
posed by the International Association for the Study of
Lung Cancer/American Thoracic Society/European
Respiratory Society in 2011 [4], lung adenocarcinoma is
classified into preinvasive adenocarcinoma (i.e., atypical
adenomatous hyperplasia and adenocarcinoma in situ),
minimally invasive adenocarcinoma (MIA) and invasive
adenocarcinoma (IAC). Several studies have validated this
new classification system, and the different subtypes of
lung adenocarcinoma have different 3-year and 5-year
disease-free survival rates [5–8]. The 5-year disease-free
survival in adenocarcinoma in situ and MIA is 100%,
which is significantly higher than that in IAC (range 38–
86%, p<0.001), depending on the predominant histologi-
cal subtype [7]. Some investigators consider adenocarci-
noma in situ and MIA to be low-grade cancers because of
their excellent prognosis and regard IAC as having inter-
mediate or high-grade clinical behaviour [9]. The progno-
sis affects the clinical management of these tumours; for
preinvasive adenocarcinoma or MIA, follow-up CT is rec-
ommended until the nodule diameter is > 1.5 cm or if the
patient is aged older than 70 years [10]. In the future,
patients with preinvasive adenocarcinoma or MIA may
be candidates for limited surgical resection [9, 11].

Non-invasive differentiation of preinvasive adenocarci-
noma or MIA from IAC preoperatively is essential to
guide clinical management. The most common method
used to make the differential diagnosis of lung nodules
is based on morphology, such as lobulation and spicula-
tion. In a previous study we found that morphological
features on CT had high sensitivity (93.4%) and accuracy
(86.6%) in the diagnosis of malignant GGN [12].
However, these GGNs have atypical features, so similar
studies are rare [13]. Since 2011, certain quantitative pa-
rameters (e.g. the mean CT value and CT number histo-
gram) have been helpful in making the differential diag-
nosis [14–16]. However, there is no consensus because
of the variety of quantitative parameters available.
Radiomics is an emerging field that converts imaging data
into a high-dimensional mineable feature space using a
large number of automatically extracted data characterisa-
tion algorithms [17]. Radiomics has been used in the pre-
diction and prognosis of colorectal cancer, head and neck
cancer, and lung cancer [18, 19]. Only few studies have
used the radiomics signature on multiphase CT to dis-
criminate between the subtypes of lung adenocarcinoma,
particularly lung cancer manifesting as GGN. The aim of
this three-centre study was to assess the ability of the
radiomics signature to differentiate IAC of the lung from
non-invasive lesions manifesting as GGNs.

Materials and methods

Patient population

The patient population in this retrospective multicentre
study included a primary cohort and three validation co-
horts (Fig. 1, Supplementary Material 1). The basic inclu-
sion criteria for the primary and validation cohorts were
as follows: a solitary malignant GGN without pleural or
mediastinal adhesion diagnosed on multidetector CT, no
previous treatment, a lesion manifesting as a GGN on
thin-slice (< 1-mm) CT images, availability of complete
thin-slice images reconstructed with a standard algorithm
in Digital Imaging and Communications in Medicine
(DICOM) format, and no marked cavity seen on thin-
slice CT images. The exclusion criteria were multiple
GGNs, pleural or mediastinal adhesions, previous treat-
ment, incomplete thin-slice images reconstructed with a
standard algorithm in DICOM format, and presence of a
marked cavity. Preinvasive adenocarcinoma and MIA
were considered to be non-invasive lesions.
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From November 2011 to October 2014, 209 consecutive
patients with pulmonary adenocarcinoma confirmed by oper-
ative pathology to be manifesting as GGNs were admitted to
hospital 1. Seven patients with GGNs with pleural adhesions,
34 with multiple GGNs, and eight with no raw thin-slice im-
ages available were excluded, leaving 160 patients (59 men,
101 women; age range, 27–80 years) with 160 GGNs for
inclusion in the primary cohort. Seventy-seven patients in
the primary cohort had non-invasive lesions and 83 had
IAC. The demographic characteristics of the primary cohort
and the three validation cohorts are summarised in Table 1.
The study protocol was approved by the institutional review
boards of the three participating hospitals. The need for in-
formed patient consent was waived.

Image acquisition and segmentation

The imaging acquisition and segmentation methods used in
the study are described in Supplementary Material 2. The
reproducibility of intra-observer and inter-observer segmenta-
tion was confirmed by two experienced thoracic radiologists
with 3 years and 13 years of experience.

CT morphology, mean CT value and building
of a clinical model

All the thin-slice CT images were interpreted by two thoracic
radiologists (with 13 years and 10 years of experience in chest
CT) who were blinded to each subject’s identity and clinical
data. Decisions on CT findings were reached by consensus.
The shape of the lesion was classified as ‘irregular’ or ‘round/
oval’. Marginal characteristics included lobulation, spiculation,
cusp angle and spine-like process. The interfaces were classi-
fied into three types, i.e. ill-defined, well-defined and smooth,
and well-defined but coarse. Internal characteristics included
cystic changes, nodule sign, foam-like sign, vacuole sign and
air bronchograms. Air bronchograms were reclassified as nat-
ural, dilated/distorted or cut-off. Findings in adjacent structures
included the pleural indentation sign and vascular convergence
sign. The mean CT value, a commonly used quantitative lung
nodule parameter, was automatically calculated using a post-
processing workstation after manual segmentation of the whole
nodule. Starting with the statistically significant clinical char-
acteristics, multivariable logistic regression analysis was used
to build the clinical model as a simulation of the usual clinical
decision-making process. Backward step-wise selection was

Table 1 Demographic characteristics of the patients in the four cohorts

Characteristic Primary cohort
(N = 160)

Intra-cross validation
cohort (N = 76)

External validation
cohort 1 (N = 75)

External validation
cohort 2 (N = 84)

Sex (N)

Men 59 (36.9%) 24 (31.6%) 29 (38.7%) 28 (33.3%)

Women 101 (63.1%) 52 (68.4%) 46 (61.3%) 56 (66.7%)

Age, y [median (IQR)] 57 (50–62) 56 (46–65) 59 (53–65) 56 (49–64)

Adenocarcinoma group (N)

Noninvasive lesion 77 (48.1%) 36 (47.4%) 30 (40.0%) 49 (58.3%)

IAC 83 (51.9%) 40 (52.6%) 45 (60.0%) 35 (41.7%)

Note. External validation cohort 1 is the non-contrast-enhanced cohort; external validation cohort 2 is the contrast-enhanced cohort. No significant
difference exists between the primary and validation cohorts for all demographic characteristics (p > 0.05)

IQR interquartile range

Fig. 1 The patient populations from the three centres. (A)Primary cohort, (B)validation cohorts, including an intra-cross validation cohort and two
external validations
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applied using the likelihood ratio test with Akaike’s information
criterion as the stopping rule.

Extraction and selection of radiomics features
and building of the radiomics signature

The set of radiomics features used in this study contained 355
three-dimensional descriptors that are described in detail in
Supplementary Material 3. The features were extracted using
MATLAB 2014a (Mathworks, Natick, MA, USA). Selection
of the radiomics features and building of the radiomics signa-
ture were based on the primary cohort. The least absolute
shrinkage and selection operator (LASSO) method, which is
suitable for regression of high-dimensional data, was used to
obtain the most useful predictive combination of features to
build the radiomics signature.

Evaluation of performance and statistical analysis

Unsupervised clustering and radiomic heatmaps were
used to reveal clusters of patients with similar radiomic
expression patterns, in which the association with the ad-
enocarcinoma groups was evaluated. Univariate analysis
was used to assess the relationship between patient char-
acteristics and type of adenocarcinoma. Differences in
variables between the patient groups were assessed using
the independent t-test or Mann-Whitney U test for contin-
uous variables and Fisher’s exact test or chi-square test
for categorical variables. The statistically significant
clinical/morphological characteristics and the radiomic
signature were used as the input variables for multivari-
able logistic regression analysis to identify independent
predictors. Receiver-operating characteristic (ROC)
curves were plotted for the study variables to assess their
predictive performance and were compared using the
Delong test. The area under the curve (AUC) of the
ROC curve was obtained. The point on the ROC curve
in the primary cohort at which the positive likelihood
ratio was maximal was deemed to be the optimal cut-off
threshold value and applied to the three validation co-
horts. The accuracy of each predictor was then assessed
using its sensitivity and specificity values. A curve was
plotted to assess the calibration of the radiomic signature
and accompanied by the Hosmer-Lemeshow test. Kappa
tests were used to determine intra-reader and inter-reader
agreement. Kappa values of 0.81–1.00 indicated very
good agreement, 0.61–0.80 good agreement, and 0.41–
0.60 moderate agreement.

The statistical analysis was performed using R software
(version 3.0.1; R Foundation for Statistical Computing,
Vienna, Austria; http://www.Rproject.org). A two-sided p-val-
ue < 0.05 was considered statistically significant.

Results

Demographic data, CT morphology and mean CT
value

The demographic data, mean CT value and morphological
features in the primary and validation cohorts are listed in
Table 1 and Supplementary Table S1. There was no difference
in sex, age or most morphological features between the group
with non-invasive lesions and the group with IAC in the pri-
mary or validation cohorts (p > 0.05). There were significant
differences in the mean CT value, lobulation, spiculation,
spine-like process, air bronchogram and pleural indentation
rates between the two groups. The cut-off mean CT value
was -516 Hounsfield units (HU).

Backward step-wise selection was used to build the clinical
model and showed that the mean CT value, lobulation, foam-
like sign, vacuole sign and pleural indentation were important
indicators of IAC. The corresponding regression equation was
as follows:

In P=1−Pð Þ ¼ −2:830þ 0:008�mean CT valueþ 1:065

� lobulation−0:756� foam�likesign−0:666

� vacuolesignþ 1:238� pleural indentation

in which P is the probability of IAC. For p≥0.5, the lesion was
expected to be IAC, while the other lesions were categorised
as non-invasive lesions.

Extraction and selection of radiomics features
and building of the radiomics signature

After assessing the reproducibility based on the re-
segmentation data and evaluating the differentiating ability of
the radiomics features in univariate analysis, 254 features with
intraclass correlation coefficients > 0.75 and p-values < 0.05
were selected. Based on the heatmap, two main clusters of
patients were compared and a significant association was
found, demonstrating the potential discriminative power of
these radiomics features (Fig. 2). After removing features that
were strongly correlated (i.e. with a correlation coefficient >
0.6), 28 robust imaging features remained. These features were
reduced to two potential predictors (1_GLCM_correlation and
0_GLCM_cluster_tendency; Supplementary Table S2), that
had non-zero coefficients in the LASSO logistic regression
model in the primary cohort (Supplementary Fig. S1). These
features were included in the calculation formula for the
radiomics signature as follows:

signature score ¼ 2:307þ 4:995

� 1 GLCM correlation–7:660

� 0 GLCM cluster tendency
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Predictive performance and validation
of the radiomics signature

The radiomics signature showed good performance for dis-
criminating between non-invasive lesions and IACs in the
primary and validation cohorts (Table 2, Fig. 3). The optimal
cut-off threshold value for the radiomics signature was 0.519.
There was a significant difference in the radiomics signature
between the two groups (p < 0.001). Furthermore, stratified
analysis showed that the radiomics signature remained statis-
tically significant after adjustment for age and sex
(Supplementary Table S3).

The calibration curve of the radiomics signature for the
predicted risk of IAC demonstrated good agreement between

prediction and observation in all cohorts (Supplementary
Material 4, Fig. S2).

Comparison of the predictive performance
of the radiomics signature with that of the clinical
characteristics

The AUC of the ROC curves (Fig. 3) for the statistically
significant characteristics and the clinical model were calcu-
lated and compared with those of the radiomics signature
using the Delong test (Table 3). There were significant differ-
ences between the AUC for the radiomics signature and those
for all other predictors (p < 0.05). Therefore, the radiomics
signature had the best discriminative performance of all the

Fig. 2 Radiomics heatmap of the significant features. Unsupervised
clustering of patients (n=160) on the y-axis and expression of radiomics
features (n=28) on the x-axis reveal clusters of patients with similar
radiomic expression patterns. There is a significant association of the

radiomics feature expression patterns with the two groups of GGN. The
groups and the AUC of these radiomics features are labelled on the left
side

Table 2 Predictive performance of the radiomics signature in the primary and validation cohorts

Cohorts Signature score [median (IQR)] AUC (95% CI) Accuracy Sensitivity Specificity

Noninvasive lesion IAC

Primary cohort 0.163 (0.065–0.355) 0.929 (0.678–0.985) 0.917 (0.874–0.959) 86.3% 83.1% 89.6%

Intra-cross validation cohort 0.093 (0.054–0.165) 0.957 (0.711–0.994) 0.971 (0.942–1.000) 90.8% 87.5% 94.4%

External validation cohort 1 0.170 (0.063–0.301) 0.849 (0.561–0.966) 0.942 (0.895–0.989) 84.0% 82.2% 86.7%

External validation cohort 2 0.057 (0.027–0.211) 0.869 (0.619–0.969) 0.936 (0.887–0.986) 88.1% 85.7% 89.8%

Note. External validation cohort 1 is the non-contrast-enhanced cohort. External validation cohort 2 is the contrast-enhanced cohort

IQR interquartile range

Eur Radiol (2019) 29:889–897 893



characteristics. Multivariate logistic regression analysis also
revealed that the radiomics signature was the only indepen-
dent predictor (Table 4).

Discussion

We built a radiomics signature based on two radiomics fea-
tures to discriminate non-invasive adenocarcinoma from IAC
and validated this signature in multicentre cohorts. The
radiomics signature had the best discriminative performance
when compared with the most commonly used clinical param-
eters, such as mean CT value and morphological features.

Moreover, the AUC was greater in each of the external vali-
dation cohorts, suggesting that the radiomics signature is a
convenient and non-invasive biomarker of the risk of IAC.

The morphological features on CT and the mean CT value
are the methods most commonly used in routine clinical prac-
tice for the differential diagnosis. A GGN with lobulation, a
well-defined but coarse interface and pleural indentation has a
greater-than-average likelihood of being malignant in view of
the high sensitivity (93.4%) and accuracy (86.6%) of these
features [12]. Accordingly, cancerous lesions were diagnosed
in all our validation cohorts on multidetector CT, and the di-
agnoses were later confirmed pathologically. The features of
early-stage lung cancer are usually atypical, which makes the
differential diagnosis of the adenocarcinoma subtypes more
difficult. Univariate analysis revealed no difference in most
features between IAC and a non-invasive lesion. However,
the clinical model included lobulation, pleural indentation,
the foam-like sign, the vacuole sign and the mean CT value.
Morphology has a prominent role in the clinical setting, but its
worth may depend on the radiologist’s experience and ability
to recognise the signs, which may well explain why the AUC
for morphological characteristics was lower than that for the
radiomics signature in our study.

A number of studies have found that quantitative imaging
can identify the pathological invasiveness of lung adenocarci-
nomas [16, 20, 21]. The most common quantitative indicators
used to date have been the mean CT value and CT number
histogram. Pure GGNs with a maximum diameter of ≤ 10 mm

Fig. 3 Results of the receiver-operating characteristic (ROC) curve analysis. (A) The ROC curves for the radiomics signature in the four cohorts. (B) The
ROC curves for the radiomics signature, clinical model and six clinical characteristics in the primary cohort

Table 3 The areas under the curve for six characteristics and clinical
model and comparison with the radiomics signature

Characteristic AUC (95% CI) p-value

Mean CT value 0.808 (0.741–0.875) < 0.001*

Lobulation 0.641 (0.576–0.705) < 0.001*

Spiculation 0.646 (0.582–0.711) < 0.001*

Spine-like process 0.566 (0.526–0.606) < 0.001*

Air bronchogram 0.639 (0.561–0.717) < 0.001*

Pleural indentation 0.719 (0.649–0.789) < 0.001*

Clinical model 0.857 (0.801–0.914) 0.005*

*Indicates p-value < 0.05.
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and a CT value of -600 HU or lower are nearly always
preinvasive lesions [22]. The cut-off for the mean CT value
in the present study was -516 HU, which is slightly higher
than -600 HU and may reflect use of different classifications.
In our study, MIA and preinvasive lesions were considered to
be non-invasive because of their good prognosis, which can
reflect a high mean CT value. Lim et al [23] demonstrated that
the mean CT value for IAC was -507 HU, which is very
similar to our finding. Table 3 shows that the discriminative
performance of the mean CT value is similar to that of a
clinical model but inferior to the radiomics signature (p <
0.05). Nomori et al [24] and Ikeda et al [15] analysed the
histograms of two-dimensional and three-dimensional CT
pixel numbers, respectively, and found that the CT number-
based histographic pattern was useful in differentiating atypi-
cal adenomatous hyperplasia from bronchioloalveolar carci-
noma. In the present study, a three-dimensional histogramwas
used to discriminate non-invasive lesions from IACs using an
alternative predictor known as ‘first-order statistical features’
and nearly all of them were significantly different between the
two sorts (p < 0.001) and showed excellent inter-
reproducibility and intra-reproducibility agreement (intraclass
correlation coefficient > 0.75).

In recent years, it has been suggested that radiomics
methods are advanced computational methodologies that can
be applied to medical imaging data to convert medical images
into quantitative descriptors of cancerous tissue [25, 26].
Coroller et al [27] evaluated CT radiomic features for their
ability to predict distant metastasis in patients with lung ade-
nocarcinoma and found that 35 radiomic features were prog-
nostic (confidence interval > 0.60; false discovery rate < 5%)
for distant metastasis and 12 for survival. Chae et al [28]
used three-layered artificial neural networks with a back-
propagation algorithm to build a discriminating model and
found that the model had good power for differentiation of
preinvasive lesions from invasive pulmonary adenocarci-
nomas with five input units, which were the first-order statis-
tical features used in our study. However, their study included
only 22 features (few of whichwere texture features) and there
was no comprehensive analysis. Therefore, the role of a large
number of radiomics features in this target has not been inves-
tigated thoroughly in previous studies. In this study, 355

radiomics features were analysed and a large number of robust
radiomics features showed considerable potential for discrim-
inating between IACs and non-invasive lesions manifesting as
GGNs. The artificial neural network is a helpful tool to use for
the problem of binary classification; however, there are al-
ways obstacles to broad application of any given model be-
cause of the complicated structure and parameters involved
and the subsequent potential over-fitting problem.

In our study, the radiomics signature demonstrated excel-
lent discrimination in all three validation cohorts (with respec-
tive AUCs of 0.971, 0.942 and 0.936), which surprisingly
showed improvement when comparedwith the primary cohort
(AUC 0.917). The contrast-enhanced CT images were also set
as the validation cohort. Contrast-enhanced CT would not
affect the display or the evaluation of morphological features,
and only the mean CT value would increase. The mean CT
value for IAC in the contrast-enhanced validation cohort was -
398.1 ± 161.3 HU, which was significantly higher than the
value for the non-contrast-enhanced validations. Most IACs
manifested as mixed GGNs containing solid components with
an increased blood supply. However, an increased CT value
might not have affected the radiomics signature because the
two selected radiomics features were both quantitative indica-
tors measuring the degree of dispersion of the GLCMs from
different aspects. The deviation of the matrix from its mean in
the two indicators could be a process of calibration that re-
duced the effect of the whole increase in image intensity,
thereby implying that the radiomics signature may be inde-
pendent of the injection of a contrast agent. Improved discrim-
ination implies that this signature is robust for prediction and
could be applied directly in the validation cohort, omitting the
process of adjusting the intercept and regression coefficients
with regard to signature building.

The radiomics signature was robust and repeatable. At
present, if a GGN is diagnosed as malignant according to its
morphological features on CT, the nodule is segmented man-
ually. Based on the original CT image and the segmentation
result, the radiomics signature is then calculated as the prob-
ability risk of IAC by our scoring system automatically within
15 s. Our team [29, 30] is developing a method for automatic
segmentation of lung nodules, and the raw CT data and auto-
matic segmentation of a lung nodule will be integrated in the

Table 4 Results of multivariate
logistic regression analysis Variables β Adjusted OR (95% CI) p-value

Mean_CT value (per 100 increase) -0.06 0.94 (0.57-1.54) 0.798

Lobulation (no vs. yes) -0.26 0.77 (0.24-2.52) 0.667

Spiculation (no vs. yes) -0.69 0.50 (0.13-1.99) 0.327

Spine-like process (no vs. yes) 1.37 3.95 (0.10-157.31) 0.465

Air bronchogram (no vs. yes) -0.04 0.96 (0.57-1.61) 0.878

Pleural indentation (no vs. yes) 0.68 1.98 (0.70-5.54) 0.196

Radiomic signature (per 0.1 increase) 0.63 1.87 (1.46-2.40) < 0.001
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near future, allowing the probability risk of an IAC to be
outputted automatically. This method would have great poten-
tial in terms of personalised medicine.

This study has some limitations: First is its retrospective
nature and potential bias. Second, the radiomics features were
derived from the results of manual segmentation. Small inter-
nal vessels and the bronchi could not be excluded, which
would have affected the accuracy of some features. Three-
dimensional tumour segmentation is a complex and time-
consuming process. Therefore, a reliable and robust automatic
boundary extraction method needs to be used to address the
variability issue.

In conclusion, the radiomics signature can provide a robust,
non-invasive, low-cost and repeatable method for preopera-
tive differentiation of IACs from non-invasive lesions. In the
near future, the raw CT data and automatic segmentation of
lung nodules will be able to be integrated, allowing the prob-
ability risk of IAC to be outputted automatically and poten-
tially hasten the development of personalised medicine.
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