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Abstract In this paper, we propose a learning-based real-time method to recognize and
segment anoverheadgroundwire (OGW) froman image,which ismainly applied to themulti-
scale features in a cluttered environment. The recognition and segmentation are implemented
under the frameworkof conditional generative adversarial nets. Thegenerator is an end-to-end
convolutional neural network (CNN)with skip connection. The discriminator is a multi-stage
CNN and learns the loss function to train the generator. The OGW is recognized and shown
in the downsampling visual saliency map. Thus, the location and existence of OGW are
verified, which is crucial for the detection in the cluttered environment with structural lines.
Detailed experiments and comparisons are performed on real-world images to demonstrate
that the proposed method significantly outperforms the traditional method. Additionally, the
optimized network achieves approximately 200 fps on a graphics card (GTX970) and 30 fps
on an embedded platform (Jetson TX1).

Keywords Power line recognition · Conditional generative adversarial nets · Power line
inspection · Hybrid robot

1 Introduction

Regular power line inspection is crucial for the normal operation of a power grid system. It is
generally carried out by specialized workers with great risks and high labor intensity. During
the past decades,many power line inspection robots have been investigated. The improvement
in automation level makes them great potential for large-scale autonomic inspection. The
wires should be robustly and accurately detected, irrespective of the robot type, e.g., climbing
robots [1–3], flying robots [4,5] and hybrid robots [6–8] (see Fig. 1). Traditional line-based
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Fig. 1 The hybrid robot and pylon. a The SKIVE [7]. b The pylon. cOur prototype machine [8]. These aerial
robots move on the power line using wheels most of the time and flies over obstacles when necessary

wire-detection methods have been extensively studied. Other detection methods are available
based on the strip texture. However, none of these methods can handle a significant change
in the wire features when robots approach to them.

A wire in an image is considered to be rectangular area when a robot travels along
the conductors. Clean background (e.g., the sky) facilitates extraction of the wires using
binarization-based segmentation algorithm. Reference [9] utilized the adaptive binarization
process to pre-divide the area of the wires and extract the corresponding lines using Hough
transformation. The lines of the metal structure are eliminated by a prior knowledge of the
robot direction. The requirements for clean background is reduced in [10]. The strip texture
of the wires (see Fig. 1b) is investigated using an edge operator and the wire area is seg-
mented out using a gray-scale distribution feature. However, this process is only suitable for
wires with a specific scale and direction. Moreover, laser range finder (LRF) is employed
to detect the wires. LineScout [11,12] installed a 2D LRF. The wire was extracted by the
gradient-based feature.

The wire is treated as a line when it is detected from a distance. In some cases, various
special sensors are utilized. Such as, the millimeter-wave radar [13] and synthetic aperture
radar [14]. However, the installationmay be costly in terms of weight, space, and power, all of
which present constraints for mobile robots, especially aerial robotics. Vision-based systems
are more suitable for deployment of aerial robot. The applicable methods generally assume
that the lines in the image correspond to thewires to be detected [15–17]. Therefore, extracting
the lines is the first step. The edge extraction using Hough transformation is the basic method
[18]. Furthermore, the line segment detector (LSD) [19] is utilized to process the images with
indefinite number of lines [15]. However, this extracted lines need subsequent processing to
delete the fake wires with additional information. Such as the pylons are detected as context
information [16]. The near-infrared images is used in Ref. [15] because of the obvious
difference between the wire and air in the near-infrared image. However, when the robot
worked close to the wire, the special targets were sparsely captured with a narrow view.
Artificial structures (e.g., roads, buildings, and pylons) in cluttered background can produce
many lines, and the wire could be barely distinguished without additional information.

For the power line inspection robots, a faster detection method is urgently needed. How-
ever, the detection of the thinOGW(8mm) is a challenge. At present, relevant research is very
scarce. Unlike observers at a fixed distance, the scale of the wire gradually becomes larger
when the robot approaches it. Such as, the OGW is more suitable to be considered as a line
when the robot flies from a distance. In another case, the OGW diameter cannot be ignored
when the robot lands on the wire. Instead, the wire should be treated as a quadrilateral region
with spiral strips. Therefore, the algorithms that independently utilize the strip and line-based
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features can not be applied throughout the whole landing stages. Additionally, landing on
the OGW as soon as possible is beneficial to reduce energy consumption. Therefore, the
real-time detection is crucial in landing.

In view of the above shortcomings, in this paper, the OGW is recognized as a linear
object with spiral strips, which combines the line and strip-based features. The recognition is
implemented using an end-to-end inference.An encode-decode networkwith skip connection
is proposed as a generator that creates the OGW visual saliency maps using color images
as input. In this framework, the existence of OGW is combined with the detection of its
location. cGAN has been vigorously studied in the last 2years, and many techniques have
been previously proposed. Nonetheless, this present study focuses on the fast inference and
robustness of the generator in this specific application, especially achieves real-time process
in an embedded platform.

The remainder of this paper is organized as follows. Section 2 describes the network
architecture. The loss functions and and the training samples are discussed in Sect. 3. Section 4
provides the comparison with other methods and multiple variants. Finally, Sect. 5 ends the
paper by drawing the main conclusions.

2 The Structure of the Network

2.1 cGAN Framework

CNN is widely used in object detection, semantic segmentation and visual saliency predic-
tion [20–22]. In general, the OGW passes through the whole image. A slender object is
inappropriately labeled as rectangular, although it is widely used in learning-based object
detection methods [23–25]. We consider the OGW recognition as the prediction of OGW
visual saliency maps. Thus, the pose and the existence of an OGW are clear when the wire
is highlighted in the saliency map.

The network should be processed in real time. The pre-trained networks (e.g., VGG [26]
and RseNet [27]) are inappropriate for fast processing in an embedded platform. Inspired by
the symmetrical neural network architecture in [22] and [28], we propose a compact neural
network under the cGAN framework, which is composed of a generator and a discriminator.
We call this process as OGW recognition network (ORNet) for convenience.

2.2 Generator

As shown in Fig. 2, the generator follows the encoder-decoder architecture and the details
are listed in Table 1 for the input image resolution of 256×256. The generator is responsible
for generating the OGW visual saliency maps for the given images.

The generator input is a three channel color image that is normalized at [−1, 1]. In spite of
the pooling layer, the filter with interval stride implements the downsampling. The filter size
(fs) is 3×3 and stride (s) is 2. Between each convolutional layer and following non-linearity,
we use the batch normalization (BN) [29], which readjusts the distribution of the featuremaps
and accelerates the convergence of the module. The PReLU [30] is applicable for the range
[−1, 1], and responds to both positive and negative values. The dropout layers individually
connect to the BN layers to enrich the extracted features and improve the generalization
ability. The deconvolution layer is the transpose of convolution. The bias are not used in
any layer to reduce processing time. Because the cuDNN [31] uses separate kernels for
convolution and bias addition [21]. The output of the generator is the OGW visual saliency
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Fig. 2 Architecture of ORNet

Table 1 Generator architecture

Name Type Size

Input Color image 256 × 256 × 3

encoder1 conv, fs= (3,3), s=2 128 × 128 × 64

encoder2 PReLU+conv+BN, fs= (3,3), s=2 64 × 64 × 128

encoder3 PReLU+conv+BN, fs= (3,3), s=2 32 × 32 × 256

encoder4 PReLU+conv+BN+dropout, fs= (3,3), s=2 16 × 16 × 256

encoder5 PReLU+conv+BN+dropout, fs= (3,3), s=2 8 × 8 × 256

encoder6 PReLU+conv+BN, fs= (3,3), s=2 4 × 4 × 256

decoder5 ReLU+deconv+BN, fs= (3,3), s=2 8 × 8 × 256

decoder4 ReLU+deconv+BN, fs= (3,3), s=2 16 × 16 × 128

decoder3 ReLU+deconv+BN, fs= (3,3), s=2 32 × 32 × 64

decoder2 ReLU+deconv+BN, fs= (3,3), s=2 64 × 64 × 32

decoder1 ReLU+deconv+ tanh, fs= (3,3), s=2 128 × 128 × 1 (the output)

map with the size of 128× 128, which is less than the original image resolution. Thus, only
the relative position and direction of the wire in the image are considered. The purpose is to
reduce the number of layers to improve the inference speed. This strategy does not appear in
the previous saliency prediction or semantic segmentation methods.

In the absence of skip connection, the generator requires that all information flow passes
through all layers, including the bottleneck. For precise OGW location, the low-level infor-
mation should be considered, and directly shuttling this information across the networkwould
be desirable. Skip connections provide the generator a means to circumvent the bottleneck
of the information. Therefore, skip connections are added between each encoderi–decodei ,
where i = 2, 3, 4, 5, which concatenates all channels at encodei with those at decoderi .

2.3 Discriminator

The discriminator is only utilized in the training stage. Table 2 lists the layer configuration
of the discriminator, which is a full convolution network. The half sampled color image and
the single channel saliency map are concatenated as input of the discriminator. The output
of the discriminator is divided into M×M. Each element corresponds to a small patch in the
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Table 2 The discriminator architecture

Name Type Size

Input Saliency map and color image 128 × 128 × 4

encoder1 LReLU+conv+BN, fs= (3,3), s=2 64 × 64 × 128

encoder2 LReLU+conv+BN, fs= (3,3), s=2 32 × 32 × 256

encoder3 LReLU+conv+BN, fs= (3,3), s=1 32 × 32 × 256

encoder4 LReLU+conv+ sigmoid, fs= (3,3), s=1 32 × 32 × 1 (the output)

input. It tries to classify if each patch is real or fake by inspecting the local texture of the
synthetic image [28]. The discriminator shows how the binary classification between real and
synthetic samples significantly benefits the accuracy without needing to specify a tailored
loss function.

3 Loss Function and Training Samples

3.1 Loss Function

The ORNet is trained by the combination of the content and adversarial losses. The content
loss follows the L1 loss. The predicted OGW visual saliency map is pixel-wise compared
with the ground truth. Combined with the structure of the network, given image I 256×256,
the saliency map S128×128 is represented as a matrix of probabilities, where S j ∈ [0, 1] is
the probability of patch I 2×2

j to belong to the OGW. The content loss Lcont is defined as

Lcont = 1

N

N∑

j=1

(
S j − Ŝ j

)
(1)

where Ŝ j is the output of the generator and the S is the ground-truth saliency map. The
resolutions both are 128 × 128.

An appropriate loss for the discriminator is the average of the binary cross entropies across
the M×M determination.

Ldis = − 1

N

N∑

k=1

[
log(Pk) + log

(
1M×M − P̂k

)]
(2)

where the N=M×M. The Pk is the output of the discriminator that considers a real pair as
input, and the P̂k is calculated by the discriminator using a fake pair as input. To realize the
adversarial training between generator and discriminator, the generator is trained by keeping
the discriminator weights constant and back-propagating the error through the discriminator
to update the generator weights.

LGAN = − 1

N

k=1∑

N

log(P̂k) (3)

Lgen = Lcont ·β + LGAN ·γ (4)
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Fig. 3 The samples for training

The Lgen is the adversarial losses and the β and γ are the coefficients. In practice, the
training of generator and discriminator are carried out at the same time. In the initial training
stage, Lcont is used to train the generator to make the subsequent training more stable.

argmin
WG

{Lcont |batch[I, S]} (5)

where the WG represents the generator weights. Thus, function (5) yields S j = Ŝ j . In the
adversarial training stage

argmin
WG

{Lgen |batch[I, S],WD} (6)

argmin
WD

{Ldis |batch[I, S],WG} (7)

where the WD and WG are respectively the parameters of discriminator and generator in
the previous stage. Therefore, the function (6) yields P̂k = 1M×M , which aims to make the
saliency map more realistic to confuse the discriminator. The function (7) tries to obtain
Pk = 1M×M and P̂k = 0M×M , which aims to improve the ability of identification of the
discriminator.

3.2 Samples

The typical samples are shown in the Fig. 3. Each sample pair is composed of a color image
(input) and theOGWvisual saliencymap (output). TheNormal samples contain thewirewith
the clear strip texture. They are mainly influenced by the lines that correspond to the artificial
structure. The Linear samples are slightly farther than the Normal ones. The strip texture is
illegible but still exhibit special pattern. Moreover, some of the samples only contain a short
segment with other messy lines interference. TheQuadrangular samples emphasize the strip
texture by close observation. TheNoWire samples contain nothing but the background, which
is a challenge to distinguish the wires from cluttered environment. Two types of additional
samples are present. Some of them add Gaussian random noise, and the others randomly
exchange the color channels (see Gaussian Noise and Exchange Channels in Fig. 3).
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Fig. 4 The losses. From left to right: Ldis , LGAN and Lcont

4 Experiments

The proposed ORNet model was assessed and compared from different perspectives. The
generated saliency maps was analyzed in detail, including the intermediate maps at differ-
ent training epoch and the imperfections without the discriminator. The ORNet was also
compared with other methods and the variants.

4.1 Training and Generator Outputs

The network was implemented using TensorFlow and trained using an Adam solver. The
learning rate was l = 2 × 10−3 and decayed 0.85 every epoch. There were 5000 training
samples and 500 testing samples. This testing samples are Test Set1. Moreover, another 500
samples of different lighting conditions are added to form the Test Set2, which focuses on
the generalization of the methods. The generator was trained using the content loss for one
epoch as the initial weight. In 85 min, 15 epochs of adversarial training were implemented
on a graphics card (GTX970) and the CPU (i7-4770k).

The losses are shown in Fig. 4. The content loss (Lcont ) rapidly decreased in the initial
stage. The GAN-loss (LGAN ) of the generator and the discriminator loss (Ldis) were all large
beat. As shown in Fig. 5, a clear saliency map was gradually formed in the initial epochs,
the generator quickly learned the pattern OGW. In the following training, Ldis continued
to decrease, which meant the performance of the discriminator steadily improved until the
Nash equilibrium. Meanwhile, the Lcont was barely reduced, and the generator network was
refined for the unclear samples (see Fig. 5 Linear samples). The No Wire sample in Fig. 5
indicated that the generator attempted to extract the lines in the initial epochs, which was
corrected later.

Compared with the generated saliency maps using only the content loss (γ = 0), the
LGAN sharpened the edges (see L1 and cGAN+L1 in Fig. 5). The generator produces
blurry saliency map [32], which prompts the restriction of the discriminator to model high-
frequency information to sharpen the edges in the saliency map.

4.2 Evaluation Standards

The Intersection over Union (IOU), the basic evaluation standard of image segmentation,
which is used to evaluate the output of different methods. The pixels that are greater than
0.3 in the visual saliency map belong to the wire area. It is worth noting that the higher IOU
is not the purpose of this article, but rather the accuracy rate r of total test samples is more
suitable to reflect the detection effect. Combined with the actual situation of wire inspection,
the output is considered to be correct when the IOU is greater than 0.4.
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Fig. 5 The generator output of some typical samples

4.3 Comparison of Different Methods

The structure-based feature methods, local-feature method and network-feature method are
used for comparison.

The structure-based feature The LSD [19], an effective line extractor, was used in the line-
based method. The HOG feature was used in the strip-based method [10]. Both the outputs
of line-based and strip-based methods are messy. Therefore, image erosion was added as the
post process to filter the noise after lines extraction by LSD, which improved the outputs of
line-based and made the comparison more meaningful.

The local-feature The PCANet [33] is based on the principal components analysis (PCA),
which is an interpretable feature extraction method in mathematics. The parameters of
PCANet are set to L1 = L2 = 8 and k1 = k2 = 7. The block size is 8 × 8. The origi-
nal PCANet can only classify the entire image. The histogram of block size that surrounds
every pixel in the output layer of L2 is calculated. The histograms of the corresponding
positions are concatenated, which is used to determine whether the pixel is the wire.

The network-feature The ENet [21] is a fast segmentation network that has been verified
on the embedded platform (Jetson TX1). In this paper, the final softmax layer of ENet is
replaced by the probability output layer (the visual saliency maps). The processing speed and
generalization ability will be compared in the subsequent experiments.

The outputs of differentmethods are shown in Fig. 6 andTable 3. The traditional structural-
based features are susceptible to the cluttered environments (see Strip-based and Line-based
in Fig. 6). In particular, the strip-based method is only valid for some special scale wires. The
line-based method can not distinguish the real wires when the environment contains many
lines, which is further validated in the NoWire sample (the last row in Fig. 6). In contrast, not
only our method, but also the other methods that based on higher-level features have better
accuracy.

Comparedwith the full-image feature obtainedby themulti-layer convolution, thePCANet
represents a local feature. After careful adjustment of the parameters, the network has a good
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Fig. 6 Qualitative comparison of the different methods

Table 3 The accuracy and IOU
of different method

Method Test Set1 Test Set2

IOU r IOU r

Strip-based 0.157 0.185 0.162 0.202

Line-based 0.278 0.269 0.254 0.235

Improved line-based 0.620 0.705 0.593 0.657

PCANet-based 0.854 0.899 0.739 0.837

ENet-based 0.954 0.976 0.908 0.931

Ours 0.942 0.966 0.897 0.930

detection accuracy on most samples. But there are two issues that can not be ignored. One
problem is the ambiguity of the edge. The observation field of PCANet is limited, which
essentially equivalent to judging whether the patch cropped from the image belongs to the
wire. Thus, the extracted feature is unstable when the observed conductor is at the edge of the
patch. This can be verified from the rough edges in PCANet-based Fig. 6. The second issue is
the limited generalization.As shown inTable 3, The accuracy and IOUof PCANet is declined.
However, the network-feature methods, ENet and ORNet, maintain a good generalization.

The ENet is an effective semantic segmentation network. As shown in Fig. 6 and Table 3,
The output, accuracy and IOU of ENet are close to the method in this paper. However, as
mentioned in the introduction session, thewiremust be detected in real time.Wewill compare
the processing speed of ORNet and ENet in the next session.

4.4 Comparison of Different Architecture

The number of layers and the number of feature maps are the two main factors of the change
in the architecture. For the 12-layer architecture (12-1 and 12-2 in Table 4), a decoder module
(256 × 256 × 64) was added after the decoder1 of the generator, and an encoder module
(256 × 256 × 64) was added before the encoder1 of the discriminator. In addition, skip
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Table 4 Performance of variants Net Time(ms) r Parameters

TX1 GTX970

ORNet 33 5 0.930 4.360M

11-2 119 12 0.932 16.835M

12-1 40 6 0.931 4.313M

12-2 130 14 0.934 16.650M

ENet 49 7 0.931 0.374M

connections between the encoders and decoders in the generator were added, and the training
samples were adjusted to fit the size of the input and output. We set Number-1 to mean the
N-layer architecture with the same feature maps as the ORNet and Number-2 to mean the
double feature maps.

As listed in Table 4, the accuracy r is slightly improved whether to increase the number
of layers and feature maps. However, the time consumed is significantly increased, which
seriously reduced the real time. Because of skip connections, the number of parameters in
11-1,2 was slightly more than that in 12-1,2. Nevertheless, the processing speed of 11-1,2 is
faster than that of 12-1,2, which shows that the consumed time between layers at the code-
level was not negligible in tiny network architecture. It is worth noting that ENet contains
the least parameters, however, consuming more time than ORNet due to the branches in the
structure.

5 Conclusion

In this paper, the OGW is perceived by the end-to-end networks under the cGAN framework.
The low-resolution visual saliency maps accurately show the location and existence of OGW.
The threshold setting and complex treatment scheme in the traditionalmethodswere removed.
Themulti-scale features that fuse the line and strip-based features are learned by the generator
in the adversarial training. At the same time, the discriminator learns the abstract loss function
to sharpen the edges in saliency maps. We are certain that this is the first time the empty
samples (No Wire images) are clearly fitted into the detection framework. The experiments
demonstrated the great advantages of our method. Additionally, the optimal architecture is
verified on embedded processor (Jetson TX1) in real time. Thus, this wire detection method
can be used in various power line inspection robots without much additional labor.
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