
Traffic Flow Prediction with Parallel Data*

Yuanyuan Chen, Yisheng Lv, Xiao Wang and Fei-Yue Wang

Abstract— Traffic prediction is an elemental function of
Intelligent Transportation Systems, and accurate and timely
prediction is of great significance to both traffic management
agencies and individual drivers. With the development of deep
learning and big data, deep neural networks (DNN) achieve
superior performances in traffic prediction. Developing DNN
prediction models needs large scale and diverse data, however,
it is costly to collect large volume of accurate traffic data. In
this paper, we propose to use small volume of real traffic data
and large volume of synthetic traffic data to developing traffic
prediction models. The evolving of parallel system paradigm
for traffic prediction and the algorithm to incrementally train
traffic data generation models and traffic prediction models are
presented. We use an improved generative adversarial networks
to generate traffic data, and a stacked long short-term memory
model for traffic prediction. Experimental results on a real
traffic dataset demonstrate that our method can significantly
improve the performance of traffic flow prediction.

I. INTRODUCTION

As the management of transportation transiting from in-
dustrial technology to information technology, Intelligent
Transportation System (ITS) has made transportation safer
and more efficient [1]–[3]. However ITS has encountered
technology bottlenecks with the development of societies and
transportation systems. Traffic prediction with high accuracy
is one the primary obstacles. Fortunately, with big data and
deep learning, the performances of traffic prediction are
continuously improved. However, it is time-consuming and
expensive to collect large-scale traffic data. And more often,
traffic data collected from physical sensors in the real world
are missing or corrupted due to detector failures. Therefore
we apply the parallel data paradigm that has been proposed
to use synthetic and real data for data mining and data-
driven processes [4]–[6]. The idea of using parallel data,
i.e. synthetic data and real data, to develop a model has
become appealing since the synthetic data can augment data
automatically complementary to the original data, which
provide a way to get big data cheaply and help train robust
and powerful models [7], [8].

Traffic prediction, as a fundamental part in ITS, aims to
estimate target values in the future with observed traffic
data. Many methods have been proposed to solve traffic data
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imputation problem, which can be generally categorized to
data-driven methods and simulation-based methods [9]. The
simulation-based methods apply dynamic traffic assignment
theories to build artificial systems and generate prediction.
In this paper, we focus on reviewing the work of short-term
traffic flow prediction.

The data-driven methods include parametric regression,
nonparametric regression and neural network approaches
[10], [11]. Autoregressive Integrated Moving Average
(ARIMA) and its variants Kohonen ARIMA, subset ARIMA,
ARIMA with explanatory variables and Seasonal ARIMA are
typical parametric regression approaches [12], [13]. These
methods are easily to apply, but they can’t be utilized
to predict traffic flows that vary quickly. Kalman filtering
method is another parametric regression. It is suitable to
model linear system and there exists a decay in prediction
[14]. Nonparametric regression methods, including support
vector regression (SVR) and k-Nearest neighbors (KNN),
have advantages to handle the stochastic and nonlinear char-
acteristics of traffic flow. SVR utilize kernel function to map
the historical traffic flow into feature space, and then apply
linear transformation to feature extracted to obtain the predic-
tion [15]. The KNN approach aims to find closest data points
and take them as the prediction [16]. The nonparametric
method is easy to apply and extend for traffic flow prediction
in different areas. With the development of deep learning
theories and techniques, neural network approaches achieve
better performances than traditional parametric and non-
parametric regression methods. Stacked autoencoder model,
LSTM model and CNN model are proposed to learn the
features of traffic flow series, and these deep neural network
models achieve superior performances [17]–[19].

Deep neural networks show great potentials in traffic
prediction. While to develop traffic prediction models with
high accuracy, traffic data must be large and diverse, and
it is very expensive and even impossible to collect big and
accurate data. Therefore, we investigate the alternative easy-
access artificial data to be used in traffic prediction. In this
paper, we use GANs to generate traffic data and further apply
the synthetic data with real data for traffic prediction.

The rest of this paper is organized as follows. Section II
introduces the basics of GANs and the improved GANs to
generate traffic data. Section III presents our approach to
predict traffic data with parallel data paradigm. Section IV
provides the experimental results to verify the effectiveness
of our approach. Section V concludes this paper.
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Fig. 1. Architecture of Generative Adversarial Networks

II. TRAFFIC DATA GENERATION

A. The Basics of GANs

GANs, trained in an adversarial manner, are a class of gen-
erative models to generate data resembling the distribution
of real data, which have been applied in generating image,
videos and text [20], [21]. The architecture of standard
GAN is illustrated in Fig. 1. GAN comprises two competing
components, named as the generator G and the discriminator
D, respectively. Typical model for G and D are deep neural
networks. The generator G learns to map the given samples
from a standard random distribution to the samples whose
distribution is resembling the distribution of real data. The
discriminator D takes in samples both drawn from the real
data distribution Pdata and generated by the generator G.
The generator G tries to fool the discriminator D that the
generated samples are the same as real data samples, while
the discriminator D tries to distinguish the generated samples
from the real data samples. With well adversarial training,
ideally, the generator generate samples that can not be
recognised by the discriminator D.

The generator G and the discriminator D are simultane-
ously trained as a minimax two-player game. In practice,
G and D are trained in an alternating manner. Formally, let
Pdata(x) as the input standard distribution and Pz(z) as the
training data distribution, the minimax objective of GANs is
defined as

min
G

max
D

Ex∼Pdata(x)[lnD(x)]+Ez∼Pz(z)[ln(1−D(G(z)))] (1)

B. Improved GANs to Generate Traffic Data

The GANs framework enables the generator to generate
samples that are likely drawn from a certain distribution
[22], thus a generator is well trained once the distribution
of synthetic data is similar to or same with the distribution
of real data regardless of the dependance on the data points
within a sample. However traffic flow series is time-serial
dependency, it is not a proper way to directly apply standard
GANs in traffic data generation, especially based on a small-
scale dataset. Intuitively, due to the time-serial dependence
in traffic flow data, the latent code fed into the generator
should also embed such dependence. Inspired by this idea, it
is convenient to use the original real data as the latent code.
As shown in Fig. 2, the real data are fed into generator G.
The discriminator D takes real data and synthetic data, and
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Fig. 2. Architecture of the Improved GANs to Generate Traffic Data

assigns a label to indicate its input coming from real data
or synthetic data. The probability of assigning the correct
label is defined as LA, which is adversarial loss same with
the loss function of standard GANs and used to optimize the
generator G and the discriminator D. Besides, as the purpose
of traffic data generation is to augment the real traffic data
so that it is necessary to generate samples slightly differing
from the corresponding real samples. We proposed to apply
a representation loss LR, as illustrated in the bottom of Fig.
2, to decrease the reconstruction error between real data
samples and synthetic data samples. And the representation
loss, only utilized to optimize the generator G, is defined as

LR =V (G(x),x) (2)

where V is a function to map the difference between the input
sample x and the generated sample G(x). In our experiments,
we use the `1 norm, and the representation loss becomes

LR = ‖G(x)− x‖1 (3)

III. PARALLEL TRAFFIC PREDICTION

A. The Evolving of Parallel Paradigm for Traffic Prediction

Parallel transportation management systems (PtMS) is a
new mechanism for conducting operations of transportation
systems [1], [23], [24]. In parallel transportation system,
there exist one or more artificial transportation systems
(AT S), which are developed according to different purposes.
In the paper, we propose to improve traffic prediction by
developing ATS or generative models that are designed to
generate artificial traffic data [25], [26].

In parallel traffic prediction, the real transportation system
(RT S), the AT S and the traffic prediction (T P) models are
evolving over time as shown in Fig. 3. At the initial phase,
the data in RTS is low-volume, so the AT S is trained with
limited data and generate artificial data to augment the real
data. Then the T P is trained based on the real data and the
synthetic data. As time goes by, there are more data archived
and the AT S the T P are incrementally refined. The process
of training traffic prediction model based on parallel data is
summarized in Algorithm 1.
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Fig. 3. Traffic Prediction based on Parallel Transportation Systems

Algorithm 1 Incremental Training of Traffic Prediction
Model based on Parallel Transportation Systems
Input: real traffic dataset Xτ,n = {xn}, GANs (generator

G(t − τ) and discriminator D(t − τ)), traffic prediction
model T P(t−τ), Historical Steps H, Predictive Steps P

Output: traffic prediction model T P(t)
1: //refine GANs
2: training discriminator with objective function LA
3: training generator with objective function LA +λLR
4: //refine traffic prediction model
5: generating serial data SamplesRT ,TargetRT =

TIMEGENERATOR(Xτ,n,H,P)
6: for i = 1 to T do
7: if i = 1 then
8: XG = G(Xτ,n)
9: else

10: XG = G(XG)
11: end if
12: generating serial data SamplesG, TargetG =

TIMEGENERATOR(XG,H,P)
13: combing SamplesRT , TargetRT and SamplesG,

TargetG into SamplesTrain, TargetTrain

14: batch-training T P with SamplesTrain, TargetTrain

15: end for
16: //preprocessing
17: function TIMEGENERATOR(X ,H,P)
18: Reshape Xτ,n into X1,τn
19: for j = 1 to τ×n−H−P do
20: Targets[ j]← X1,τ×n[ j+H +P−1]
21: Samples[ j]← X1,τ×n[ j : j+H−1]
22: end for
23: return Samples, Targets,
24: end function

B. Traffic Prediction Model based on LSTM Recurrent Net-
work

Traffic prediction can be transformed into the task of time
series prediction, which can be tackled by LSTM recurrent
network. The LSTM block consists of cell, input gate, forget
gate and output gate [27], [28]. The gate architecture is for
removing information from or adding information to cell
state and the cell state is only changed by linear interactions.
This design helps to tackle the vanishing gradient problem

in standard recurrent neural network as it enables the cell
to store and read long range contextual information [29].
To obtain cell state Ct and hidden state ht , we should
successively compute the output of the forget gate:

ft = φ(Wf [ht−1,v(wt)]+b f ) (4)

the output of the input gate:

it = φ(Wi[ht−1,v(wt)]+bi) (5)

and output of the output gate

ot = φ(Wo[ht−1,v(wt)]+bo) (6)

where Wf , Wi and Wo are weight matrices of the forget gate,
the input gate and the output gate respectively, and b f , bi
and bo are their bias vectors. φ is the gate activation function
and is usually the sigmoid function. Then compute the cell
state:

Ct = ft ⊗Ct−1 + it ⊗µ(WC[ht−1,v(wt)]+bC) (7)

and the hidden output:

ht = ot ⊗σ(Ct) (8)

where µ and σ are activation functions, and they are usu-
ally tanh, and ⊗ represents point-wise multiplication. The
complete sequence of cell states and hidden outputs can be
computed by applying (4), (5), (6), (7) and (8) recursively
from t = 1 to t = T .

As the features of traffic data series are complicated, we
apply stacked LSTM layers to extract deep and abstract
features. Historical series xt−H+1,xt−H+2, ...,xt are fed into
the first LSTM layer and the returned sequences are fed into
next LSTM layer. The returned sequences of top LSTM layer
are flattened into a 1D tensors that are fed into a FCN. And
the output of top FCL is the prediction.

IV. EXPERIMENTS

A. Dataset and Experiments Settings

1) Dataset Description: In this paper, we evaluate the
proposed method on traffic flow datasets obtained from Cal-
trans Performance Measurements Systems (PeMS). Caltrans
PeMS has placed over 39,000 individual detectors spanning
the freeway system across all major metropolitan areas
of the State of California and their data are widely used
for researcher to develop and evaluate traffic models. The
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Fig. 4. An Implementation of GANs for Generating Traffic Flow

proposed method is applied to the 5-min traffic flow data of
District 5 in the whole year of 2013 except two days due
to missing points. There are 153 vehicle detector stations
(VDSs) in this district, and we use the data of 147 VDSs
among them as there exist null numbers in the data of the
other 6 ones.

TABLE I
PERFORMANCES OF INCREMENTALLY TRAINING PREDICTION MODELS

Taska MAE RMSE MRE

300-330b real data 15.1790 21.4139 0.3507

parallel data 12.1010 17.1039 0.2592

270-330c real data 11.5343 16.3350 0.2644

parallel data 10.9429 15.6154 0.2495
a data between 331-th and 363-th days used as test dataset
b data between 300-th and 330-th days used as training

dataset
c data between 270-th and 330-th days used as training

dataset

2) Model Configurations: Tensorflow, an open source
software library for numerical computation, is used to build
the proposed models. As shown in Fig. 4 (a), the generator
network comprises one input layer and three fully connected
layers (FCL). The activation function for the former two
FCL is tanh, and the activation function of output FCL is
sigmoid. The Adam algorithm is used to optimize gradient
descent of generator and the learning rate is set to 0.0001.
The discriminator network is built by stacking one input
layer and three FCL, as illustrated in Fig. 4 (b). The hidden
two FCL apply tanh activation function, and the output FCL
utilizes sigmoid as activation function. Adam optimizer is
also used to train discriminator, and the learning rate is set
to 0.0002.

The implementation of traffic flow prediction model
based on LSTM is shown in Fig. 5. The input layer
takes in 3D tensor with shape (batch size,history steps,1),
and the history steps in this paper is selected from
{6,12,24,36,48,60}. The following five hidden layers are

LSTM Layer, 36 units, return sequence

Fully Connected Layer, 1 units

Sigmoid

Flatten Layer

LSTM Layer, 12 units, return sequence

LSTM Layer, 6 units, return sequence

LSTM Layer, 12 units, return sequence

LSTM Layer, 6 units, return sequence

Input Layer

Fig. 5. An Implementation of Traffic Flow Prediction Model based on
LSTM recurrent network

built based on LSTM recurrent network. The output acti-
vation function of LSTM layer is tanh and the recurrent
activation function is hard sigmoid. The next layer flattens
the returned sequence into a 1D tensor. And the output layer
is a FCL with sigmoid activation. RMSprop optimizer is
used to train prediction model and the learning rate is set
to 0.0025.

B. Evaluation Metrics

To evaluate the performances of the proposed traffic flow
prediction based on parallel data paradigm, we employ three
statistical metrics, which are Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Mean Relative Error
(MRE). These indexes are commonly used in evaluating the
prediction models and defined as in [10].

C. Performances of Traffic Flow Prediction

To evaluate the improvement achieved by parallel data
paradigm, we compare the performances of traffic flow
prediction with parallel data and with real data only. We
firstly conduct experiments that incrementally train models.
The initial GANs model and traffic prediction model are
trained with the data between 300-th and 330-th days, and
the data between 331-th and 363-th dyas are used as test
dataset. Due to the limitation of computational resources,
we randomly choose 50 VDSs among all the 147 VDSs. In
the experiments, we use 30 minute historical traffic flow data
to make up the samples. The experimental results are listed
in Table I. In the first task, data between 300-th and 330-th is
used to train GANs and traffic prediction model. The parallel
data approach improves the MAE value from 15.1790 to
12.1010, the RMSE value from 21.4139 to 17.1039, and the
MRE value from 0.3507 to 0.2592. For the second task, data
between 270-th and 299-th are used to incrementally refine
the models in the first task. The performances of this task
are improved at the grounds of the first task. To conclusion,
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TABLE II
PERFORMANCES ON USING DIFFERENT HISTORICAL STEPS

Task
MAE RMSE MRE

parallel data real data parallel data real data parallel data real data

30 mins 11.6811 13.1586 16.7114 18.8609 0.2469 0.2976

60 mins 11.1001 11.8192 15.8398 16.743 0.2445 0.2513

120 mins 11.3911 12.3856 16.3966 18.0604 0.2376 0.2589

180 mins 10.7314 11.7505 15.3652 17.0285 0.2336 0.2376

240 mins 10.9049 11.6952 15.7877 17.0257 0.2213 0.2406

360 mins 10.963 11.6632 15.894 16.9184 0.2208 0.2288

Fig. 6. Performances of Traffic Flow Prediction on Dimension of Vehicle Detector Stations (VDSs)

Fig. 7. Performances of Traffic Flow Prediction on Dimension of Time Intervals
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parallel data paradigm work well to improve the performance
of traffic flow prediction.

To further investigate the effects of historical steps used
on prediction performances, we conduct experiments with
different historical steps on randomly chosen 10 VDSs. The
overall performances is give in Table II. In the experiments,
we use data of the first 311 days as training set and data of the
last 52 days as test set. For all the tasks, the predictions based
on parallel data achieve superior performances. Next we give
more details on performances at VDSs and time interval
dimension. For different VDSs, the performances are shown
in Fig. 6. The parallel data approaches achieve lower MAE
and RMSE for all the VDSs in test, and get higher MRE
for fifth sixth and ninth VDSs due to the worse prediction
at lower traffic flow points, e.g. the traffic flow between
22 o’clock and 24 o’clock. For different time intervals, the
performances are shown in Fig. 7. The MAE and RMSE
between 7 o’clock and 19 o’clock is relatively high than that
of other periods, while MRE is contrary. And the parallel
approaches achieve better performances at most intervals.

V. CONCLUSION

In this paper, we proposed applying parallel data paradigm
to improve traffic prediction, especially with small volume
data. To reach this goal, real transportation systems, artificial
transportation systems for a certain purpose, and traffic
prediction models operate and interact in a parallel manner.
For traffic prediction, the purpose of artificial transportation
system is to generate traffic flow, and we used an improved
GANs model. We evaluated the performances of the pro-
posed approach on traffic flow data from Caltrans PeMS.
Experimental results showed that the proposed method leads
to an improvement in traffic flow data prediction.

In the future, we plan to explore more methods of synthetic
traffic data generation like variational autoencoders (VAE),
and apply our approach to more tasks in this field, such as
travel time prediction.
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