Pattern Recognition 94 (2019) 218-229

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Towards fast and kernelized orthogonal discriminant analysis on )

person re-identification

Check for
updates

Min Cao®P, Chen Chen®"* Xiyuan Hu®", Silong Peng®P<

2 Institute of Automation Chinese Academy of Sciences Beijing, China
b University of Chinese Academy of Sciences, Beijing, China

¢ Beijing ViSystem Corporation Limited China

ARTICLE INFO

Article history:

Received 6 May 2018

Revised 1 April 2019
Accepted 26 May 2019
Available online 28 May 2019

Keywords:

Person re-identification

Metric learning

Singularity problem

Orthogonal discriminant analysis

ABSTRACT

Recognizing a person across different non-overlapping camera views, is the task of person re-
identification. For achieving the task, an effective way is to learn a discriminative metric by minimiz-
ing the within-class variance and maximizing the between-class variance simultaneously. However, the
dimension of sample feature vector is usually greater than the number of training samples, as a result,
the within-class scatter matrix is singular and the metric cannot be learned. In this paper, we propose
to solve the singularity problem by employing the pseudo-inverse of the within-class scatter matrix and
learning an orthogonal transformation for the metric. The proposed method can be effectively solved
with a closed-form solution and no parameters required to tune. In addition, we develop a kernel ver-
sion against non-linearity in person re-identification, and a fast version for more efficient solution. In
experiments, we prove the validity and advantage of the proposed method for solving the singularity
problem in person re-identification, and analyze the effectiveness of both kernel version and fast version.
Extensively comparative experiments on VIPeR, PRID2011, CUHKO1 and CUHKO3 person re-identification

benchmark datasets, show the state-of-the-art results of the proposed method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of person re-identification (re-id) is to identify the
same person, captured from different non-overlapping camera
views. Because of its abroad application in video surveillance sys-
tem such as tracking criminals and behavior analysis, person re-id
is favored by the academe in recent years. Despite of years of ef-
forts by researchers, it is still a challenging problem due to the
large intra-class variations caused by the change in illumination,
person pose and occlusion across views. In addition, the imperfect
pedestrian detection result and the similarity in appearance among
different people further increase its difficulty in real applications.

Existing research on this topic has mainly concentrated on two
aspects: feature representation and metric learning. Researchers fo-
cus on developing an effective feature representation [1,2] against
the variation in appearance of people across different camera
views. The feature dimensionality is usually large for a more-
refined representation, which leads to curse of dimensionality.
Moreover, in most cases, features are extracted in the unsuper-
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vised setting so that the identification ability is weak. Whereas,
the metric learning based method mainly concentrates on learning
a proper distance function (or a discriminative low-dimensional
space) in the supervised setting. Out of the many metric learn-
ing approaches, Linear Discriminant Analysis (LDA) is the most
classical and popular approach due to its characteristics of no-
parameters tuning required and closed-form solution. LDA aims
to learn an optimal linear transformation by which the new low-
dimensional feature space is obtained. In this space, the within-
class variance is minimized and the between-class variance is max-
imized simultaneously. The within-class scatter matrix to be non-
singular is a requirement in the classical LDA. However, in person
re-id, the dimension of sample feature vector is generally greater
than the sample size, as a result, all scatter matrices are singu-
lar. This means that person re-id is a singularity (or undersam-
pled) problem and classical LDA cannot be directly applied. To ad-
dress this limitation, several efforts have been devoted to handling
the singularity problem in person re-id. Regularized LDA (RLDA)
in which a scalar multiple of the identity matrix is added to the
within-class scatter matrix has been applied to person re-id [2,3],
with parameters required to tune. However, the solutions may
not be optimal since they suffer from the degenerate eigenvalue
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Table 1

The objective function of various variants of LDA. S,, and S, denote the within-class
scatter matrix and the between-class scatter matrix, respectively. (S)™ denotes the
pseudo-inverse of the matrix S. L* denotes the optimal transformation.

Method Objective function

LDA L* = arg maxtrace{(LTSyL)~'LTS,L}
Regularized LDA L* = arg maxtrace{(L" (Sw + AI)L)~'LTS,L}
Null space LDA L* = argmaxrs, ;_otrace{LTSpL}
Pseudo-inverse LDA L* = argmaxtrace{ (LTS, L)*LTS,L}

problem, i.e several eigenvectors share the same eigenvalue. Zhang
et al. [4] proposed to apply Null Space LDA (NLDA) to person re-id.
NLDA aims to compute the discriminant vectors in the null space
of the within-class scatter matrix, but it may not be applicable for
low-dimensional data since the null space of the within-class scat-
ter matrix is empty in the low-dimensional data.

In this context, we propose Pseudo-inverse LDA (PLDA) to deal
with the singularity problem in person re-id. PLDA employs the
pseudo-inverse of the within-class scatter matrix to overcome the
singularity problem, and is equivalent to approximating the so-
lution using a least-squares solution method. Compared with the
variants of LDA mentioned above, PLDA not only solves the sin-
gularity problem, but also avoids the above shortcomings. Table 1
shows the objective functions of these variants of LDA. For the
solution of PLDA, the traditional solution is to apply Generalized
Singular Value Decomposition (GSVD) [5], yet with the high com-
putational cost. Instead, we solve PLDA based on the simultane-
ous diagonalization of within-class matrix, between-class matrix
and total scatter matrix [6]. The resulting optimal discriminant
vectors are orthogonal to each other, known as Orthogonal LDA
(OLDA). OLDA is specifically designed for the singularity problem,
with complete theoretical analysis [6]. Besides, there are some im-
portant characteristics about OLDA: 1) closed-form solution, 2) no-
parameters tuning required and 3) better robustness for the noise
in the data, which are advantageous for person re-id.

Furthermore, in consideration of the non-linear distribution of
data in person re-id, we develop a non-linear version via the ker-
nel trick, which combines the strengths of both OLDA and kernel-
based learning techniques, to boost the performance of person
re-id. In addition, it is imperative to note here that the eigen-
decomposition is involved in solving the model. Compared with
the QR decomposition, the eigen-decomposition is computationally
expensive for the high-dimensional data. Hence, we present a fast
OLDA algorithm [7] for solving the singularity problem in person
re-id. The fast version is implemented by using the QR decomposi-
tion rather than the eigen-decomposition. Its computational com-
plexity, run time and performance will be analyzed in detail in the
experiment section.

In summary, the contributions of this paper are the follow-
ing three-folds: 1) For the singularity problem in person re-id, we
propose to learn an orthogonal transformation with the pseudo-
inverse of the within-class scatter matrix for the first time. 2)
Against the non-linear distribution of data in person re-id, we de-
velop a kernel version for learning the orthogonal transformation,
thereby boosting the performance of person re-id. 3) In order to
improve the solving efficiency, we present a fast version with the
unchanged performance of person re-id.

The rest of this paper is organized as follows. Section 2 reviews
the related works. In section 3, the proposed method, and the cor-
responding kernel version and fast version are described in detail,
respectively. In Section 4, we present a thorough comparative eval-
uation of the proposed method with respect to the state-of-the-art
methods on four benchmark datasets, and a detail analysis of ker-
nel version and fast version for the proposed method. Finally, in
Section 5, we conclude this paper.

2. Related works

In this paper, we explore a novel way to solve the singularity
problem in person re-id, which is closely pertinent to LDA ap-
proach. In the following, we will discuss the relevant works on
LDA, person re-id and LDA based person re-id.

2.1. Linear discriminant analysis

LDA is a classical supervised metric learning method, aiming to
seek a linear transformation in the training data that maximizes
the between-class variance and minimizes the within-class vari-
ance, simultaneously. It has been applied successfully in many ap-
plication areas for decades. However, there is a main disadvan-
tage for LDA: the within-class scatter matrix must be nonsingu-
lar, which is not met in many applications. In order to overcome
the limitation and make LDA applicable in a wider range of ap-
plications, researchers have proposed many methods to extend the
classical LDA. Specifically, a kind of methods to overcome the limi-
tation are to project the original data to a lower-dimensional space
by Principal Component Analysis (PCA) approach resulting in a full-
rank within-class scatter matrix before LDA, known as PCA+LDA
(or two-stage LDA) [8]. Another kind of methods are to modify the
within-class scatter matrix by adding a perturbation term, known
as RLDA [9]. In addition, Chen et al. [10] proposed to compute the
most discriminant transformation by modifying the Fisher’s crite-
rion of the classical LDA: the within-class variance equals zero and
the between-class variance is maximized, so that the singularity
problem is implicitly avoided, known as NLDA. Furthermore, there
are a kind of approaches to avoid the singularity problem: PLDA in
which the inverse of within-class scatter matrix is replaced with
the pseudo-inverse of the one in the Fisher’s criterion. The meth-
ods based on this approach include LDA/GSVD [5], Uncorrelated
LDA (ULDA) [6] and OLDA [G]. The LDA/GSVD applies the GSVD to
compute the optimal transformation. For ULDA, the solution is ob-
tained by diagonalizing the three scatter matrices simultaneously
and the resulting features in the reduced space are uncorrelated
to each other. After ULDA, an orthogonalization step is applied to
the transformation, deducing the OLDA. The discriminant vectors
in OLDA are orthogonal to each other. Some methods mentioned
above are closely related, for example, NLDA is a special OLDA un-
der some condition [7].

2.2. Person re-identification

In the current field of person re-id, researchers usually assume
that pedestrian detection has been completed and the cropped per-
son image is taken as input of person re-id system. In this system,
feature extraction and metric learning are the essential steps. The
discriminative ability through extracting features in person image
is limited, therefore learning a discriminative distance metric is
important for closing the gap between different features of same
person and is the focus of this paper. The metric learning based
method can be divided into two groups: iterative-learning based
[11,12] and closed-form solution based [2-4]. In the iterative-
learning based method, the objective function is constructed based
on criteria that a pair of true match should have a smaller distance
than that of a wrongly matched pair, and the optimal metric func-
tion is obtained by using the iterative optimization method such
as gradient descent method. Compared with the iterative-learning
based method, the closed-form solution based method is simple
and efficient, which is usually related to LDA technology, such as
cross-view quadratic discriminant analysis (XQDA) [2]. In this pa-
per, we propose to learn an optimal transformation based on the
LDA technology and the closed-form solution can be derived. Re-
cently, various deep learning architectures [13,14] have also been
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proposed to either address visual ambiguity of people across views,
or learn better metric function. However, convolution neural net-
work (CNN) architectures used in person re-id are not competitive
on public datasets with small size.

2.3. Linear discriminant analysis based person re-identification

Because of a large number of theoretical researches on LDA and
its characteristics of non-parameter tuning required and closed-
form solution, some metric learning based person re-id methods
have been proposed to learn an optimal metric distance function
based on LDA. Pedagadi et al. [3] adopt two-steps to learn the
low-dimensional discriminative feature space: PCA and then Reg-
ularized Local Fisher Discriminant Analysis (RLFDA), which is the
graph-based LDA approach with regularization. Since the feature
dimensionality is large compared to the number of samples af-
ter the first-step PCA, the singularity problem still exists in the
second-step and RLFDA is therefore applied to solve the problem.
Liao et al. [2] proposed to learn a subspace with the training data,
and at the same time learn a distance function in the subspace by
applying RLDA. For RLDA, choosing an appropriate perturbation is
critical, since a large perturbation results in the loss of informa-
tion in the scatter matrix and a small perturbation may not be ef-
fective in solving the singularity problem. The main disadvantage
of RLDA is that the optimal amount of the perturbation is difficult
to determine. To this end, NLDA has been developed to learn the
optimal metric distance function in person re-id [4]. However, one
limitation is that NLDA may not be applicable for low-dimensional
data. In this paper, we propose to solve the singularity problem
in person re-id with the aid of OLDA, which is applicable for both
low-dimensional data and high-dimensional data.

3. Methodology
3.1. Problem description

Given a probe person captured from one camera view and a
candidate set in which people are captured from another camera
view, we aim to obtain an ordered list of candidate IDs for the
probe person, based on the distances between the probe person
and the candidates in ascending order. In the training phase, an
optimal feature transformation is learned based on the proposed
method. In the test phase, the distance between the probe person
and the candidate is computed by the Euclidean distance in the
new feature space obtained based on the learned transformation.

In consideration of many notations used in the rest of the pa-
per, we present some important notations in Table 2 for conve-
nience.

3.2. Classical linear discriminant analysis

We start with briefly introducing the LDA before describing the
proposed person re-id method.

Given a feature matrix X =[xy, ..., ¥] € R™" with n peo-
ple in the training set and m-dimensional feature vector for each
person, classical LDA computes a linear transformation L € R™xd

Table 2

(m>d) that maps the feature vector x; of i-th person to a new
feature vector y; in the d-dimensional space:

yi=Lx;. (1)
Define the matrices
1
— —_cM(eMT —_ c® (e\T
Hw—ﬁ[xl c (e )7~~~7Xk c (e )],
1
— m _ (k) _
Hy, = ﬁ[«/ﬂ(c ©), ..., /m(c C)]’
1 T
Ht:ﬁ(X—ce )- (2)
where X; e R™" (i=1,...,k) is the feature matrix of i-th
class sample and Y¥ ny=n, e® =[1, ..., 1]T eR" and e=

(1, ..., 1]"eR", ¢® = 1xe® and c= lXe are the centroid of
1
the i-th class sample and the global centroid, respectively.
Then, the within-class scatter matrix S,, the between-class
scatter matrix S, and the total scatter matrix S; are expressed as
Sw = HwHL,

Sp=HyH], St =HH/, (3)

where it is easy to verify that S; = S, + Sw.

The goal of LDA is to find an optimal transformation L* such
that the within-class samples are much closer while the between-
class samples farther apart in the reduced-dimensional space:

L* = arg max trace{(L"S,,L)~'LTS,L}. (4)
L

The optimization problem is equivalent to solve the generalized
eigen-problem Syl = ASyl. The transformation L* can be obtained
as the eigenvectors corresponding to the k — 1 largest eigenvalues
of s;ﬂs,,, if Sy is nonsingular. However, in person re-id, it is usu-
ally the case that m > n resulting in a singular Sy, and the classical
LDA cannot be directly applied. Therefore, we propose to solve the
singularity problem by considering the pseudo-inverse instead of
the inverse of S,. The optimal solution is computed based on the
simultaneous diagonalization of the three scatter matrices, and re-
sulting in an orthogonal transformation.

3.3. Learning an orthogonal transformation based on pseudo-inverse
LDA

The new optimization problem is defined as

L* = argmax trace{(LTS,L)*LTS,L}, (5)
L

where (LTS;L)* denotes the pseudo-inverse and is equivalent to
(LTSywL)* due to Sy = S, + Sw.

We solve the above maximization problem based on the simul-
taneous diagonalization of the three scatter matrices.

Theorem 1. Let the SVD of H; as H; =UXVT, where ¥ =

[E(:)[ 8:| and X; e R't*t with r, = rank(S;). Divide U into U =

[Ur. U] with Uy e R™<" and U, € R™*(M-T0). Denote T = £ 'UTH,
and compute its SVD as T = PXQT. The simultaneous diagonalization
of the three scatter matrices is achieved by the matrix G = U; X 1p,

The description of important notations used in the paper.

Notations Descriptions Notations Descriptions

m Feature dimension in the original space n Sample size in the training set

d Feature dimension in the reduced space X Feature matrix in the training set
k Number of classes Sw Within-class scatter matrix

S Between-class scatter matrix St Total scatter matrix

Ty Rank of the matrix S, T Rank of the matrix S;

L Transformation matrix
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Proof. According to the SVD of H;, we have

2
S = HH =USV' USV')T —USV'VETUT = U[Zr O}Ur,

0 0
T Ui 2 0
= UTSU= [Uz}st[m Uz] - [ Of ol

= UlSU =22,

= TUISUE ! =1L (6)
Since St = Sw + Sp,, we have
TS UL ST + 20U S U B = I (7)

Let T = ;'UTH, and compute the SVD as T = P£Q”. Then

2UTS U S = S WUTHHIU S = PEQTQETPT = PRy,
(8)
where X, = 52, Since P is an orthogonal matrix, it follows that
PTE UTS, U 271P = 3. (9)
Accordingly, from Egs. (7) and (8), we have
SIS U s = I — PE,PT,
= PIE WIS WUiE'P=1 - %,=%,. (10)

Considering the orthogonal matrix P, the last line in Eq. (6) can be
rewritten as

PTE WU U E TP = I (11)

Now, combining Eqgs. (9), (10) and (11) together, we define G =
U; =P and it follows that

G'S,G=3%, G'SWG=X,. (12)

Then all three scatter matrices are diagonalized by the matrix
G=UzP.O

G'S,G=1,

According to Theorem 1, we rewrite LTS,L and LTS,L as

I'SL = I"(G Y (G"S,G)G'L=T",L =I"L,

L'S,L = LT(G )T (GTS,G)G 'L = LTS, L, (13)
where
I=GL (14)

Then, the following equation holds:
F = trace{ (L"S;L)*LS,L} = trace{(iTZ)+ZTbe}

= trace{ (IT*)" 5, (IL%) }. (15)
We compute the SVD of I as:
Tl 2 Oy
L_M|:O 0i|N. (16)

where X, e R with r; = rank(L). Since both M and N are or-
thogonal matrices and X; is a diagonal matrix, so

~ 2 0 =1 0 I, 0
+ _ l T I T _ I T
LL _M|:O Oi|N N|: 0 O]M _M|:0 0i|M . (17)
Then, Eq. (15) can be rewritten as:
_ I Oy r I Oy r
F = trace{M|:O 0:|M EbM|:0 0 M
_ L Of,,r I, 0
= trace{ |:0 0i|M EbM|:0 0i| }
= trace{M] Z,M,}, (18)

where M is generated by the first r; columns of M.

Now, the optimization problem in Eq. (5) becomes the maxi-
mization of trace{M] X,M;}. Next, we introduce a lemma [15] for
solving the maximization problem.

Lemma 1. For any matrix A € R™4 (q<m) with ATA=1, and the
positive semi-definite matrix | ¢ R™™ with h; be the eigenvector of |
corresponding to the i-th largest eigenvalue A;, we have trace(ATJA) <
A1+ -+ Aq. The equation holds when A=[hy, ..., hq]E, where
E € R9<Y is an arbitrary orthogonal matrix.

The proof of the lemma 1 is not provided here for the sake of
space and interested readers can refer to [15].

According to Lemma 1, we have F = trace{M]E,M} <A+
.-+ Ar, with r, =rank(S,). The maximization of F is reached if

M, = [g] where E € R™*™ is an arbitrary matrix with ETE = 1. We

. Since

~ T
fed M, into Eq. (16) with r, =1, and obtain L = EE(SN

both E and N are the orthogonal matrices and X, is the diagonal
matrix, we denote A = EX;NT as an arbitrary nonsingular matrix.

Now, with Eq. (14), we solve the optimization problem in
Eq. (5) by L* = GA.

There is a problem for selection of the arbitrary nonsingular
matrix A. The simplest choice is A =1 and correspondingly L* = G.
With Eq. (12), we can find that I*TS;L* = I;. It means that the dis-
criminant vectors are S;-orthogonal to each other. As a result, the
new features obtained by the optimal transformation L* are uncor-
related to each other, which is named as ULDA. However, ULDA
involves the minimal redundant information in the new feature
space, so that it is likely to lead to overfitting and be sensitive to
the noise in the data.

Therefore, we make the QR decomposition of G as G = QgRg and
choose A =R;!. Correspondingly, L* = Qg with L*"L* =1, which is
named as OLDA. Compared with ULDA, the redundancy is intro-
duced into the transformed space and the overfitting problem can
be effectively avoided in OLDA.

In summary, in the training set, an optimal transformation L* is
learned in which the discriminant vectors are orthogonal to each
other, based on the pseudo-inverse LDA. The learned transforma-
tion L* works on the feature vectors in the test set by Eq. (1), re-
sulting in the new discriminative feature vectors. Algorithm 1 for-
malizes the proposed person re-id method.

Algorithm 1 Learning the Orthogonal Transformation for Person
Re-Identification.
Input:
The feature matrix X and its label information in the training
set.
The feature vectors x£* and x;es‘ in the test set.
Output:
The distance D(xl?“‘,xs.e“) between x{** and x;.“‘.

1: Construct the matrices H, and H; by Eq. 2.
2: Compute SVD of H; as H; = U[Et O]VT.

0 0

3: Denote T = E;1U1Hb. where U; is generated by the first r;
columns of U with ry = rank(HtH[T), and compute SVD as T =
PEQT.

4: Denote G =U; & !P.

5: Compute the QR decomposition of G as G = QgRy.

6: Denote L* = Qg, which is the optimal solution of Eq.5.

2
7: return D(xlfe“,xj.es‘) = ||L¥Tatest — [T xtest
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3.4. Kernel version for learning the orthogonal transformation

An optimal linear transformation is learned in Algorithm 1,
which however is limited to solve the linear problem. However, in
most cases person re-id is a non-linear problem due to the non-
linearity in person’s appearance. In this section, a non-linear or-
thogonal discriminant analysis based on the kernel technique is
developed, to better fit the person re-id problem.

Let the original feature space be mapped into a new high-
dimensional kernel space through a non-linear mapping function
®: xc R™ — ®(x) € R" (r>>»>m). The new feature matrix is denoted
as (X) = [P(x1), ..., P(xp)] € R

Denote the three scatter matrices in the kernel space by S, Sl‘f
and Sfb , respectively. Then, we can obtain

ko n
s2= 133 [0 - @)][0cx) - @]
j=1 i=1
k
s = %Zni[<1>(c(j)) ~o(0)][@?) - o]
j=1
1 n
S = E;pb(x,-)—<1><c)1[<1>(x.—)—<1>(c)11 (19)

where ®(c0)) and ®(c) are the centroid of the j-th class sample
and the global centroid in the kernel space, respectively.

Explicitly computing the mapping ®(x) and then performing
Algorithm 1 is intractable and computationally expensive. Instead,
the data can be implicitly embedded by rewriting the algorithm in
terms of dot products, i.e. the kernel trick is replaced by the kernel
function k(x;, xj) = ®(x;) - ®(x;).

First we notice that the discriminant vector I? satisfies I1® =

>h,a;®(x;), where the coefficient vector o =[cy, ..., an]'.
Then, we have

(I®)TS2I® = o"[K(B - 0)(B—0)"K]e

I®)SP1® = «"[K(I - 0)(I — 0)"K]et. (20)
where K = ®(X)T®(X), B = diag(B;, - -- , By) € R™™ and B; € R%*™
i=1,..., k) with all terms equal to 1, 0 € R™" with all terms

'Ti’
equal to 1 and I is a n x n identity matrix’.
Accordingly, the three scatter matrix can be kernelized as

Ky =K(I-B)(I-B)TK, K,=K(B-0)B-0)TK,

K =KI-0)I-0)"K. (21)
We now can rewrite the optimization problem in Eq. (5) as
A* = arg max trace{ (ATK[A)JrATKbA} (22)
A
where A = [aq, ..., oq].

Then the d orthogonal discriminant vectors in kernel space are
obtained according to Algorithm 1, which need not be repeated
here. In particular, in the test phase, the new discriminative fea-
ture is obtained as yest = (L?)T . ®(xtest) = ATk(X, xfest),

3.5. Fast version for learning the orthogonal transformation

In this section, we present a fast version for solving the op-
timization problem in Eq. (5) with QR decomposition replacing
eigen-decomposition in the computation.

The feature matrix X is rewritten as X =[X;, Xz, ..., Xi|,
where X; e R™M (i=1,..., k) denotes the feature matrix of i-th
class sample.

! Detailed derivation of Eq. (20) is given in Appendix.

We firstly compute the economy-size QR decomposition of X
as X = QxR with Qx € R™™ and Ry € R™". Compared with the
full QR decomposition X = QR with Q e R™™ and R € R™*"  the
economy-size one only computes the first n columns of Q and the
first n rows of R.

Denote Z as a permutation matrix generated by exchanging the
i-th column and the (Z’j’:]l nj+ 1)-th column of the identity ma-
trix [e R™" H; (i=1,...,k) and H as the Householder trans-

formations of vectors [1, ..., 1]7 e R% and [ /77, ..., M]T, re-
spectively. Then, we express
H,
H
Ry Z|" || =I[Ri. R Rs]. (23)

Hy

where Ry € R™!, Ry e R™*k=1) and Ry e R (1K),
We compute the rank-revealing QR decomposition (also called
economic QR decomposition with column pivoting) of [R,, R3] as

e _ |Rn R
[Ry, R3]y =QR=[Q:, Q. Q]| 0 Ry | (24)
where Pgr is a permutation matrix, ﬁn is an upper triangular ma-
trix and Egz ~ 0 is numerically negligible. 61 € R™72, (52 € RT3
and Q3 € R" with r, = rank(Ry) and rs3 = rank(R3). Ry; € Ri2x(k=1
and ﬁ]z € R2x(-K) et

Ri  Rn Ru En
0 Rp|=|0 Rylh (25)
0 0 0 Ry

Then we obtain the QR decomposition of [Ry, R3].

Accordingly, the QR decomposition of [212}@2 is computed as
22

[ﬁﬂREz . Q[ﬁ]. (26)

The optimization problem of Eq. (5) is solved by L*=
QX[Q1, Qz]Q. For the detailed proof, the interested reader can refer
to [7].

As stated above, QR decomposition is used for solving
Eq. (5) instead of eigen-decomposition. Algorithm 2 formalizes the

Algorithm 2 Fast Version for Learning the Orthogonal Transforma-

tion.

Input:
The feature matrix X and its label information in the training
set.
The feature vectors x£s* and xs.”‘ in the test set.

Output:
The distance D(xlfes‘,xj.es‘) between x{** and x;““.

1: Compute the economy-size QR decomposition of X as X = QxRx.

2: Construct the matrices Z, H and H; (i=1,...,k) and compute
[R1, Ry, R3] according to Eq.2.

3: Compute the rank-revealing QR decomposition of [R,, R3]
and obtain the corresponding QR decomposition [R,, R3] =

_ _ _ [Rn R
[Q, Q. Q]| 0 Ryl
0 0

0

5: Denote L* =QX[@1, @]Q which is the optimal solution of
Eq.5.

4: Compute the QR decomposition of [212]@2 = Q[R}.
22

2
6: return D(xlf"s‘,x;"s‘) = ||L¥Tatest — [T xtest
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fast version for our method, and has lower computational com-
plexity than Algorithm 1. The detailed analysis about the compu-
tational complexity will be shown in the experiment section.

4. Experiments
4.1. Datasets and settings

We carry out experiments on four widely used benchmark
datasets: VIPeR [16], PRID2011 [17], CUHKO1 [18] and CUHKO3
[19].

VIPeR contains 632 image pairs of pedestrians from two dis-
joint outdoor cameras, with large variations in viewpoint, illumi-
nation and poses. Following the standard settings, we normalize all
the images as 128 x 48 pixels and randomly partition the dataset
into training and test sets using the ration 1: 1.

PRID2011 is collected from two disjoint surveillance cameras,
containing 385 and 749 identities, respectively, with only 200 iden-
tities appearing in both cameras. All the images have been nor-
malized to 128 x 64 pixels. We use the single shot version of the
dataset. For the training set, 100 image pairs are randomly chosen
from the 200 identities in both cameras. For the test set, the probe
set is formed by the remaining 100 identities appearing in both
cameras and the gallery set is formed by the remaining ones and
649 single images. This dataset is very challenging since there are
many disturbed images in the gallery set for test data.

CUHKO1 is a larger dataset in person re-id, including 3,884
images of 971 identities captured by two disjoint cameras in a
campus environment, with each identity having two images under
each camera. All the images have been normalized to 160 x 60 pix-
els. In the one camera, the side view of identities is captured. And
in the another camera, the front or back view is captured. We use
the same protocol with [4]: the 485/486 training/test with multi-
shot setting.

CUHKO3 is one of the largest person re-id datasets. It consists
of 13,164 images of 1,360 identities under six surveillance cameras
in campus, with each identity captured by two cameras and hav-
ing 4.8 images at each viewpoint. The dataset provides both manu-
ally annotated bounding boxes and bounding boxes detected by the
Deformable-Part-Model (DPM) [20], denoted as CUHKO3(manual)
and CUHKO3(detected) dataset, respectively. The latter type of an-
notation is more approach to the real-world person re-id system.
1,260 identities and 100 ones are used for training and testing un-
der the single-shot setting, respectively. And all the images are nor-
malized as 128 x 48 pixels.

Evaluation protocol. We use Cumulative Matching Characteris-
tics (CMC) for evaluation where Rank k matching rate is the expec-
tation of correct match at rank k. The splitting of training set and
test set is repeated 10 times for all datasets except for CUHKO3
dataset, in which the procedure is repeated 20 times as provided
in [19]. Rank 1, Rank 5 and Rank 10 in the average CMC curve are
reported.

Parameter setting. There is not any parameter required to
tuned in our method. However, due to the kernelisation of our
method, it is necessary to select the proper parameter for the ker-
nel function. We set these parameters via 2-fold cross validation.
Specifically, for each splitting of training set and test set, we ran-
domly select 90% samples in the training set as the new training
set and the other 10% in the training set are used as the validation
set. Moreover, there are PCA technology involved for the compari-
son purpose in the experiment and we perform PCA with holding
90% energy.

Feature descriptor. In order to perform an overall evaluation
for our method, we use three feature descriptors in the experi-
ment: Histogram of Intensity Pattern & Histogram of Ordinal Pat-

tern (HIPHOP) [21], Local Maximal Occurrence (LOMO) [2] and
Gaussian Of Gaussian (GOG) [1]. The HIPHOP descriptor? is deep
person appearance representation by exploit the AlexNet [22]. The
LOMO descriptor analyzes the horizontal occurrence of local fea-
tures with robustness to viewpoint changes. The GOG descrip-
tor represents the pedestrian by hierarchical Gaussian distribution
with both means and covariances, and is extracted from the al-
ternative color channels as GOGggg, GOGy,,, GOGysy and GOGgyg.
Fig. 1 summarizes the statistics of dimensionality of feature and
sample size. For all feature descriptors mentioned above on all
datasets, the dimension of feature vector is greater than the sam-
ple size, and the singularity problem does exist in person re-id.
In order to further verify the performance of our method in the
case that there is no singularity problem in person re-id, and the
performance of NLDA in low-dimensional data, PCA dimensional-
ity reduction is performed in GOG feature descriptor, denoted as
GOGpca, also used as the feature descriptor and compared in the
experiment. We can see from Fig. 1 that the dimension of feature
vector is less than the sample size only for GOGpc4 on all datasets,
representing the non-singularity case; while the rest resulting in
the singularity problem usually met in person re-id context.

4.2. Performance comparison

4.2.1. Comparison with variants of LDA

We compare ours with various variants of LDA on VIPeR,
PRID2011, CUHKO1 and CUHKO3(manual) datasets. The compared
methods include PCA+LDA [8], RLDA [9], ULDA [6] and NLDA [10].
For an overall comparison, HIPHOP, LOMO, GOG and GOGggp fea-
ture descriptors are used to represent the pedestrian in the ex-
periment, respectively. In these cases, person re-id is a singularity
problem. Moreover, we also use GOGpc4 as the feature descriptor in
the experiment, to demonstrate the non-singularity case for NLDA
in person re-id.

Fig. 2 and Table 3 summarize the comparison results. We can
see that: 1) Our method beats PCA+LDA and ULDA for all feature
descriptors on all four datasets. It shows that the ability of our
method in solving person re-id is superior to these two methods.
2) Our method is obvious better than RLDA in most cases except
for low-dimensional data such as GOGggp. Nevertheless, in RLDA,
the parameter has to be tuned carefully to obtain the highest re-
sults. Conversely, there is not any parameter required to tuned
in our method. 3) NLDA achieves almost the same performance
with our method in the vast majority of cases. However, for low-
dimensional data such as GOGpcs, the performance of NLDA is in-
ferior to our method. In particular, NLDA performs poorly in the
large dataset CUHKO1 and CUHKO3(manual) with 0.2% and 1.0% at
Rank 1, respectively. It verifies the NLDA’s inapplicability to low-
dimensional data. 4) Our method achieves the best performance
in three datasets VIPeR, CUHKO1 and CUHKO3(manual) for GOGpca
descriptor, which indicates the advantage of our method in the
non-singularity case in person re-id. 5) The performance of our
method is variable for different features. This is reasonable because
different features have different discrimination properties, and as a
result the performance of the method based on these features may
be affected.

4.2.2. Comparison with kernel version

We investigate the performances of different kernel func-
tions applying to our method on VIPeR, PRID2011, CUHKO1 and
CUHKO3(manual) datasets. HIPHOP, LOMO and GOG feature de-
scriptors are used to represent the pedestrian in the experiment,

2 Following the standard protocol [21], all the images are normalized to 227 x 227
pixels when extracting HIPHOP descriptor in the experiment.
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Fig. 1. The statistics of dimensionality of feature and sample size on four datasets. Better viewed in colour.

Table 3
Comparison with various variants of LDA. The best results are shown in boldface.

Methods VIPeR PRID2011 CUHKO1 CUHKO3(manual)
r=1 r=>5 r=10 r=1 r=>5 r=10 r=1 r=>5 r=10 r=1 r=5 r=10
HIPHOP  PCA+LDA 313 54.9 65.7 9.6 232 30.0 441 619 69.5 7.9 23.0 32.0

RLDA 314 550 658 9.5 233 308 449 629 705 7.8 229 322
ULDA 325 566 671 9.9 249 325 431 610 69.0 91 225 331
NLDA 415 697 806 125 279 384 60.7 812 870 283 526 640
Ours 415 697 806 125 279 384 609 811 87.1 283 526 640
LOMO PCA+LDA 257 500 612 223 418 50.3 332 512 59.8 5.4 174 28.9
RLDA 257 504 618 226 413 50.7 337 520 605 5.6 172 29.2
ULDA 258 495 610 234 414 50.7 292 482 561 49 160 261
NLDA 385 683 793 269 500 617 569 780 837 209 477 619
Ours 385 683 793 267 502 617 568 781 83.8 208 477 618
GOG PCA+LDA 304 550 647 303 503 605 226 396 491 71 172 26.9
RLDA 309 558 652 305 503 605 23.1 399 498 71 173 27.0
ULDA 311 553 657 300 507 599 19.1 343 439 6.6 166 249
NLDA 478 786 884 356 578 69.0 532 743 816 267 547 698
Ours 478 786 884 356 578 69.0 533 745 818 267 547  69.8
GOGres  PCA+LDA 183 378 485 247 456 554 129 258 344 3.8 114 19.4
RLDA 394 721 83.4 300 517 618 484 706 789 160 358 505
ULDA 184 368 465 265 438 533 7.7 17.2 247 25 9.8 16.5
NLDA 386 707 821 303 523 619 345 565 666 102 271 38.8
Ours 386 707 821 303 523 619 346 569 667 102 271 388
GOGpn  PCA+LDA 203 403 505 265 461 56.1 392 609 704 7.9 198 305
RLDA 365 677 801 320 554 649 440 655 739 122 290 404
ULDA 242 447 547 271 456 565 228 389 485 6.4 156 250
NLDA 337 646 774 259 488 601 0.2 1.0 21 1.0 5.0 10.0
Ours 379 688 805 300 499 617 572 781 85.1 160 399 534
respectively. Moreover, for verifying our method’s ability of score- e Gaussian: A classical radial basis kernel with good anti-
level fusion with different feature descriptors, we present the re- interference for the nzoise in the data and the mathematical
i i i i 2=y
sult of our method with fusion pattern in which we add up form k(x,y) = e 27 .

the distance values obtained by three different feature descriptors
HIPHOP, LOMO and GOG as the final distance value. The related
kernel functions are introduced as follows:

e Sigmoid: An “S” shape kernel function widely applied in
the field of deep learning now, with the mathematical form
k(x,y) = tanh(a (x,y) + B).
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e Cauchy: a kernel function coming from Cauchy distribution
that can be applied in very high-dimensional data due to
the wide domain of definition, with the mathematical form

1

K&9) = o

o ANOVA: A radial basis kernel, with the mathematical form

k(x’y) — e(—a (K—Y>2)y
e Multiquadric (MQ):

A rational quadratic kernel, with the

mathematical form k(x,y) = v/||x — y||* + c2.

&

(d) comparison with NLDA

Fig. 2. Comparison of Rank 1 with various variants of LDA. Better viewed in colour.

VIx-y|? +c2

~I~‘

o Inverse Multiquadric (IM): An inverse multi quadric kernel
in which the kernel matrix is full rank, with the mathemat-
ical form k(x,y) = 1

The results are given in Table 4. We have the following observa-

tion: 1) The performance can be boosted by introducing kernelisa-

tion into our method in most cases. Among them, our method with
Gaussian kernel function and fusion pattern achieves the largest
increase 33.7% at Rank 1 on CUHKO3(manual) dataset. However, on
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Table 4

Comparison of our methods for non-kernel version and kernel version with different kernel functions.

Methods VIPeR PRID2011 CUHKO1 CUHKO3(manual)
r=1 r=5 r=10 r=1 r=>5 r=10 r=1 r=>5 r=10 r=1 r=>5 r=10
GOG Ours(w/o) 47.8 78.6 88.4 35.6 57.8 69.0 53.3 74.5 81.8 26.7 54.7 69.8
Ours(kernel)  Gaussian ~ 49.1 80.6 89.3 333 579 67.1 70.8 88.3 92.8 59.8 87.7 94.5
Sigmoid 47.2 80.2 88.9 349 58.4 67.7 70.8 88.4 929 58.0 86.6 94.0
Cauchy 49.2 80.8 89.4 327 56.7 66.2 713 88.7 93.0 58.8 86.9 94.8
ANOVA 48.6 79.9 89.2 34.7 58.0 67.7 711 88.6 929 57.8 86.6 93.8
MQ 48.9 80.1 89.3 334 57.8 67.7 71.2 88.6 93.0 59.2 871 94.4
IM 48.8 80.0 89.4 333 58.1 67.1 71.2 88.8 93.0 59.4 86.9 94.8
LOMO Ours(w/o) 385 68.3 79.3 26.7 50.2 61.7 56.8 781 83.8 20.8 47.7 61.8
Ours(kernel)  Gaussian  41.7 71.2 83.3 273 50.2 62.0 68.0 88.1 93.1 48.4 80.4 89.6
Sigmoid 42,5 73.5 85.2 272 50.4 61.1 68.1 88.7 933 49.3 81.7 91.6
Cauchy 414 711 833 26.6 49.7 615 67.6 87.7 92.7 479 80.2 90.2
ANOVA 41.5 714 83.5 272 50.3 61.4 67.9 87.8 92.7 49.3 81.8 914
MQ 411 70.8 82.6 26.9 50.6 61.8 66.8 86.3 91.5 45.2 77.5 87.3
IM 41.5 711 82.7 272 50.4 61.1 67.7 87.5 92.4 49.3 80.8 911
HIPHOP Ours(w/o) 41.5 69.7 80.6 12.5 279 384 60.9 811 871 283 52.6 64.0
Ours(kernel)  Gaussian  44.2 73.2 833 123 274 371 65.4 849 90.8 448 75.8 86.1
Sigmoid 444 72.9 829 13.0 293 38.6 64.9 83.9 90.0 43.5 72.8 83.5
Cauchy 442 733 83.1 13.0 283 374 65.3 84.7 90.6 43.0 75.7 86.9
ANOVA 44.0 73.4 83.2 13.6 28.6 37.8 65.0 84.1 90.2 46.2 76.8 85.6
MQ 441 72.8 829 12.7 28.5 371 64.9 84.0 90.1 44.2 74.6 84.4
IM 44.2 73.0 83.0 12.7 28.5 371 63.8 85.0 90.7 46.2 78.2 86.4
Fusion Ours(w/o) 52.0 82.0 90.5 40.6 65.6 76.7 55.0 81.6 90.3 34.8 70.4 82.2
Ours(kernel)  Gaussian ~ 52.8 82.8 913 378 63.2 73.4 79.7 94.7 97.3 68.5 92.7 97.0
Sigmoid 44.2 74.6 85.9 36.0 59.0 68.6 76.1 93.0 96.8 57.8 871 94.2
Cauchy 529 82.0 91.2 36.9 62.3 73.0 79.8 94.7 97.6 64.4 91.0 95.9
ANOVA 50.9 80.4 89.6 35.5 60.6 69.2 80.0 94.5 97.4 66.4 91.7 85.6
MQ 53.6 82.7 91.8 383 63.1 731 78.1 93.6 97.0 65.1 89.6 95.7
IM 49.3 77.8 874 32.8 57.6 67.1 73.4 91.3 95.3 62.1 88.2 94.2
Table 5

VIPeR and PRID2011 datesets, there is the case of performance re-
duction when introducing kernelisation into our method, for ex-
ample, our method with Sigmoid kernel function and GOG fea-
ture descriptor decreases the Rank 1 by 0.7% on PRID2011 dataset.
It might be due to the influence of different description for non-
linearity on datasets of different sizes. For large dataset, there are
very large number of pedestrians resulting in a more accurate de-
scription for non-linearity in person re-id, so that the performance
is improved by learning model in kernel space; in contrast, the de-
scription for non-linearity may be inaccurate on the small dataset,
so that kernelisation has no effect on performance. 2) Our method
with each kernel function is roughly equal on performance for
GOG, LOMO and HIPHOP feature descriptors on all datasets, indi-
cating the robustness of the proposed method against kernel func-
tions. 3) Compared with our method with single feature descrip-
tor, the one with the fusion of these descriptors can significantly
improve performance. The increases are 4.4%, 5.0%, 8.7% and 8.0%
for the best results from single descriptor to the fusion of descrip-
tors on VIPeR, PRID2011, CUHKO1, CUHKO03(manual) datasets, re-
spectively.

4.2.3. Comparison with state-of-the-art methods

We compare the performance of ours against state-of-the-art
person re-id methods. For comparison against metric learning
based person re-id methods, since most of methods with LOMO
feature are reported in papers, the same feature descriptor LOMO
is used in the proposed method for a fair comparison. For com-
parison against other state-of-the-art methods, the results of our
method with fusion pattern (ours(fusion) for short in the follow-
ing) are presented. Gaussian kernel is utilized for our method in
all the comparison experiments>

3 By 2-fold cross validation, the parameter o in Gaussian kernel is set as 1 for
VIPeR dataset, 2 for PRID2011 dataset and 0.5 for CUHKO1 and CUHKO3 datasets,
respectively.

Comparison with state-of-the-art methods on VIPeR dataset. The best results are
shown in boldface.

Methods r=1 r=>5 r=10
LOMO ITML [23] 247 4938 63.0
LMNN [24] 294 59.8 73.5
KISSME [25] 34.8 60.4 772
KCCA [26] 30.2 62.7 76.0
MFA [27] 38.7 69.2 80.5
KLFDA [27] 38.6 69.2 80.4
XQDA [2] 40.0 68.1 80.5
MLAPG [28] 40.7 - 823
CRAFT [21] 423 74.7 86.5
Ours 41.7 71.2 833
DMLLV [29] 50.4 80.5 88.7
PML&LSL [30] 465 69.3 80.7
PDC [31] 51.3 741 84.2
MuDeep [14] 43,0 74.4 85.8
DM3 [32] 42.7 743 85.1
CSPL [33] 513 81.7 90.2
Ours(Fusion) 52.8 82.8 91.3

VIPeR. For VIPeR dataset, we first compare our method with
the classical and state-of-the-art metric learning based methods.
As shown in Table 5, our method obtains the second best accu-
racy and performs slightly worse than CRAFT [21] approach that
focuses on learning view-specific feature transformations. How-
ever, in comparison to other state-of-the-art methods, our method
achieves the best accuracy at Rank 1, Rank 5 and Rank 10.

PRID2011. Similarly, we compared our method to metric learn-
ing based person re-id methods and other state-of-the-art meth-
ods, respectively, on PRID2011 dataset. The results are reported in
Table 6. Our method performs the best among all compared meth-
ods. Specifically, our method achieves 15.8% gain at Rank 1 com-
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Table 6
Comparison with state-of-the-art methods on PRID2011 dataset. The best results are
shown in boldface.

Table 8
Comparison with state-of-the-art methods on CUHKO3 dataset. The best results are
shown in boldface.

Methods r=1 r=>5 r=10
LOMO kCCA [26] 14.3 374 476
MFA [27] 223 45.6 57.2
KLFDA [27] 224 46.5 58.1
XQDA [2] 26.7 499 619
Ours 273 50.2 62.0
Metric Ensembles [35] 179 39.0 50.0
M3TCP [34] 22.0 - 47.0
CrowdPSE [36] 211 46.7 60.0
DMLLV [29] 278 48.4 59.5
Ours(Fusion) 37.8 63.2 734
Table 7

Comparison with state-of-the-art methods on CUHKO1 dataset. The best results are
shown in boldface.

Methods r=1 r=>5 r=10
LOMO kCCA [26] 56.3 80.7 879
MFA [27] 54.8 80.1 873
KLFDA [27] 54.6 80.5 86.9
XQDA [2] 63.2 83.9 90.0
MLAPG [28] 64.2 - 90.8
CRAFT [21] 65.4 85.3 90.5
Ours 68.0 88.1 931
Metric Ensembles [35] 534 76.4 844
M3TCP [34] 53.7 843 91.0
DMLLV [29] 65.0 85.6 91.1
PML&LSL [30] 53.5 82.5 91.2
DM3 [32] 49.7 773 86.1
CSPL [33] 72.0 88.6 92.8
SGLE [11] 70.9 89.8 93.5
Ours(Fusion) 79.7 94.7 973

pared with M3TCP* [34] that learns both the global full-body and
local body-parts features via CNN. It verifies the fact that currently
the deep learning based method cannot work well on small dataset
for person re-id.

CUHKO1. Compared with the above two datasets, there are
more number of identities on CUHKO1 dataset. Nevertheless, the
singularity problem still exists in the dataset (refer to Fig. 1). We
compare the classical and state-of-the-art results shown in Table 7.
The results show clearly that both for metric learning based meth-
ods and state-of-the-art methods, our method achieves the best
results at Rank 1, Rank 5 and Rank 10. Specifically, our method
outperforms deep learning based method M3TCP [34] with a large
margin of 26.0% at Rank 1.

CUHKO3. It is one of the largest datasets in person re-id but
there still exists the singularity problem in this dataset (refer to
Fig. 1). We conduct experiments on both CUHKO3(manual) and
CUHKO3(detected) datasets, with comparison to several traditional
and deep learning based state-of-the-art methods. The experimen-
tal results are shown in Table 8. Compared with the traditional
methods, our method achieves the best accuracy at all Rank on
CUHKO3(manual) dataset and the best accuracy at Rank 10 on
CUHKO3(detected) datasets. However, deep learning based meth-
ods show better performance than traditional methods. In deep
learning models, almost ten millions of parameters are learned and
more information from data can be obtained so that the model has
better generalization ability. Without doubt, it is coming from a
premise that the model is trained on the large dataset. In addition,

4 In M3TCP, more than one million of parameters are learned and three hype-
parameters require to be set, in contrast, there is only about 0.06 million parame-
ters for learning and one kernel parameter for setting in the proposed method with
fusion pattern.

Methods CUHKO3(manual) CUHKO3(detected)
r=1 r=5 r=10 r=1 r=5 r=10
Deep learning IDLA [37] 547 876 94.0 547 865 939
EDM [13] 61.3 88.9 96.4 521 829 918
LSTM S-CNN [38] - - - 573 80.1 88.3
MSCAN [39] 74.2 94.3 97.5 68.0 910 95.4
DSPL [12] 7316 9226 9654 - - -
MuDeep [14] 76.9 96.1 984 75.6 944 975
Traditional KLFDA [27] 48.2 59.3 66.4 - - -
XQDA [2] 522 822 921 46.3 789  88.6
MLAPG (28] 580 871 94.7 51.2 836 921
SSSVM [40] 570 844 909 - - -
GOG [1] 673 91.0 96.0 65.5 88.4 93.7
Ours 685 927 970 60.8 86.6 94.2
Table 9
Comparison with fast version for our method in computational complexity.
Algorithm1 Algorithm2
Stepl 0o(mn) 4mn? — $n?
Step2 14mn? — 2n3 o(n?)
Step3 2mrek + 14r:k? — 2k3 2nr? + 21}
Step4 2mr? 2rck(n — k) + 4kr? + 2k> — 2r,k?
Step5 amr? — 31} 2(m +re)nr,
Overall 18mn? + n? 5mn? + 6n3
Table 10
Comparison with fast version for our method in accuracy and run time.
Datasets Methods r=1 r=>5 r=10 Time(s)
VIPeR Ours 478 78.6 88.4 2.1952
Oursy 479 78.6 88.3 12910
PRID2011 Ours 35.6 57.8 69.0 0.4919
Oursy 354 57.7 69.2 0.2484
CUHKO1 Ours 533 74.5 81.8 13.4156
Oursy 533 74.5 81.8 7.8118
CUHKO3(manual) Ours 26.7 54.7 69.8 25.4500
Oursy 26.6 54.8 69.6 12.7273

various hyper-parameters such as batch size and learning rate re-
quire to be set. Compared with deep learning based methods, our
method is much simpler, fewer number of parameters are learned
and there is only one kernel hyper-parameter, meanwhile the accu-
racy at Rank 10 can achieve 97% that only decreases by 1.4% com-
pared to the best result from MuDeep [14] on CUHKO3(manual)
dataset.

4.2.4. Comparison with fast version

A fast version for our method is introduced in Section 3.5. In
this section, we analyze its computational complexity, accuracy
and run time. Comparison in the computational complexity® is
given in Table 9. Ignoring low order terms, we compute the overall
computational complexity of normal version and fast version about
18mn? + n3 and 5mn? + 6n3, respectively. Compared with the nor-
mal version, the computation complexity of the fast version is re-
duced by 50%. Table 10 presents the comparison in the accuracy
and run time. The experiments are conducted with GOG feature
descriptor on a PC with Intel Core CPU (4GHz x 8) and 16GB RAM.
It can be seen that the fast version has the same accuracy with a
halving of run time.

5. Conclusion

In this paper, a pseudo-inverse LDA based person re-id method
is proposed to solve the singularity problem in person re-id by

5 The interested reader can refer to [7] for more detailed theoretical analysis.
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computing an optimal orthogonal transformation based on the si-
multaneous diagonalization of three scatter matrices. Furthermore,
in consideration of the non-linearity in person re-id, we develop a
non-linear model by learning the orthogonal transformation in ker-
nel space, thus improve the effectiveness of the proposed method;
we also develop a fast version for learning the transformation aim-
ing to improve the efficiency of the proposed method. A closed-
form solution is provided in the proposed method in which there
is no parameters required to tune, so the proposed method has ad-
vantages of simplicity and high-efficiency. Extensive experiments
on four datasets show that the proposed method outperforms
the state-of-the-art methods. We also conduct the comparison ex-
periment with kernel version and fast version for the proposed
method, validating the superiority of these versions.

The singularity problem commonly exists in image classification
and retrieval. Since the feature vectors extracted from the image
are generally high dimensional for more accurately representing
appearance of content in image, and the number of training sam-
ples is limited by the time-consuming of sample labeling and is
generally far less than the dimension of feature vector, which is
very much similar to the situation in person re-id. The proposed
method focusing on solving the singularity problem in person re-id
could give some inspiring ideas about solving this common prob-
lem existing in image classification and retrieval. By means of la-
beled samples, the optimal orthogonal transformation is learned
in the proposed method. However, in some cases, there are very
small numbers of labeled samples and large numbers of unlabeled
samples in reality. In view of this, in the future work, we will fo-
cus on the semi-supervised way to solve the singularity problem in
person re-id. For example, we can employ label propagation tech-
nology to propagate the label information from labeled samples to
unlabeled samples and further develop the proposed method into
a semi-supervised method.
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Appendix

For Eq. (20), we now present a detail derivation. According to
Eq. (19), we have

A)ISyI® = a*)’ fz [®@) - @(c)]
j=1 i=1
x [®d) - ®(c)]'1°,
AP = a7 Xn: [®(x;) — ®(0)][®(x;) — ®(©]'1®.  (27)
i=1
We feed 1® = 37 | o;®(x;) into the above equation and have

k n;
A)S2® = () Y. [@(x]) - @(cV)]

j=1 i=1
x [®() - ®(c)] D (X)ex
—a'Tere o,

I®)SP1P = ()73 [8(x%) - SO D(x) - B(O)] D(X)a

i=1
=o'ToT? @, (28)

where

k n . i .
ri= Yy [eco em) - LY oxew))]

j=1 i=1
k n; . 1 n; .

= > kX&) - - > kX.x}) | =KI-KB,
j=1i=1 U g=1

n

re=y

) B() — 13 BX) B(xg)
i=1 q=1

n .l n
= ; k(X, %) — - ;k(X, Xg)

= KI - KO. (29)
and I € R™" is a identity matrix, B = diag(By, --- , By) € R™" for
which B; € R"*™ with all terms equal to nl, and O € R™" with all

terms equal to 1.
Then, we have

(I®)'s21® = o"[K(I - B)(I - B)"K]ax,

(I®)TSPI® = o' [K(I — 0) (I - 0)"K]e. (30)
Since SP = SP + S it follows that
(I®)7S?1® = " [K(B - 0)(B— 0)"K]e. (31)
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