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a b s t r a c t 

Recognizing a person across different non-overlapping camera views, is the task of person re- 

identification. For achieving the task, an effective way is to learn a discriminative metric by minimiz- 

ing the within-class variance and maximizing the between-class variance simultaneously. However, the 

dimension of sample feature vector is usually greater than the number of training samples, as a result, 

the within-class scatter matrix is singular and the metric cannot be learned. In this paper, we propose 

to solve the singularity problem by employing the pseudo-inverse of the within-class scatter matrix and 

learning an orthogonal transformation for the metric. The proposed method can be effectively solved 

with a closed-form solution and no parameters required to tune. In addition, we develop a kernel ver- 

sion against non-linearity in person re-identification, and a fast version for more efficient solution. In 

experiments, we prove the validity and advantage of the proposed method for solving the singularity 

problem in person re-identification, and analyze the effectiveness of both kernel version and fast version. 

Extensively comparative experiments on VIPeR, PRID2011, CUHK01 and CUHK03 person re-identification 

benchmark datasets, show the state-of-the-art results of the proposed method. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The aim of person re-identification (re-id) is to identify the

same person, captured from different non-overlapping camera

views. Because of its abroad application in video surveillance sys-

tem such as tracking criminals and behavior analysis, person re-id

is favored by the academe in recent years. Despite of years of ef-

forts by researchers, it is still a challenging problem due to the

large intra-class variations caused by the change in illumination,

person pose and occlusion across views. In addition, the imperfect

pedestrian detection result and the similarity in appearance among

different people further increase its difficulty in real applications. 

Existing research on this topic has mainly concentrated on two

aspects: feature representation and metric learning. Researchers fo-

cus on developing an effective f eature representation [1,2] against

the variation in appearance of people across different camera

views. The feature dimensionality is usually large for a more-

refined representation, which leads to curse of dimensionality .

Moreover, in most cases, features are extracted in the unsuper-
∗ Corresponding author at: 95 Zhongguancun East Road, Beijing 100190, China. 
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ised setting so that the identification ability is weak. Whereas,

he metric learning based method mainly concentrates on learning

 proper distance function (or a discriminative low-dimensional

pace) in the supervised setting. Out of the many metric learn-

ng approaches, Linear Discriminant Analysis (LDA) is the most

lassical and popular approach due to its characteristics of no-

arameters tuning required and closed-form solution. LDA aims

o learn an optimal linear transformation by which the new low-

imensional feature space is obtained. In this space, the within-

lass variance is minimized and the between-class variance is max-

mized simultaneously. The within-class scatter matrix to be non-

ingular is a requirement in the classical LDA. However, in person

e-id, the dimension of sample feature vector is generally greater

han the sample size, as a result, all scatter matrices are singu-

ar. This means that person re-id is a singularity (or undersam-

led) problem and classical LDA cannot be directly applied. To ad-

ress this limitation, several effort s have been devoted to handling

he singularity problem in person re-id. Regularized LDA (RLDA)

n which a scalar multiple of the identity matrix is added to the

ithin-class scatter matrix has been applied to person re-id [2,3] ,

ith parameters required to tune. However, the solutions may

ot be optimal since they suffer from the degenerate eigenvalue

https://doi.org/10.1016/j.patcog.2019.05.035
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Table 1 

The objective function of various variants of LDA. S w and S b denote the within-class 

scatter matrix and the between-class scatter matrix, respectively. (S) + denotes the 

pseudo-inverse of the matrix S. L ∗ denotes the optimal transformation. 

Method Objective function 

LDA L ∗ = arg max trace { ( L T S w L ) −1 L T S b L } 
Regularized LDA L ∗ = arg max trace { ( L T ( S w + λI) L ) −1 L T S b L } 
Null space LDA L ∗ = arg max L T S w L =0 trace { L T S b L } 
Pseudo-inverse LDA L ∗ = arg max trace { ( L T S w L ) + L T S b L } 
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roblem, i.e several eigenvectors share the same eigenvalue. Zhang

t al. [4] proposed to apply Null Space LDA (NLDA) to person re-id.

LDA aims to compute the discriminant vectors in the null space

f the within-class scatter matrix, but it may not be applicable for

ow-dimensional data since the null space of the within-class scat-

er matrix is empty in the low-dimensional data. 

In this context, we propose Pseudo-inverse LDA (PLDA) to deal

ith the singularity problem in person re-id. PLDA employs the

seudo-inverse of the within-class scatter matrix to overcome the

ingularity problem, and is equivalent to approximating the so-

ution using a least-squares solution method. Compared with the

ariants of LDA mentioned above, PLDA not only solves the sin-

ularity problem, but also avoids the above shortcomings. Table 1

hows the objective functions of these variants of LDA. For the

olution of PLDA, the traditional solution is to apply Generalized

ingular Value Decomposition (GSVD) [5] , yet with the high com-

utational cost. Instead, we solve PLDA based on the simultane-

us diagonalization of within-class matrix, between-class matrix

nd total scatter matrix [6] . The resulting optimal discriminant

ectors are orthogonal to each other, known as Orthogonal LDA

OLDA). OLDA is specifically designed for the singularity problem,

ith complete theoretical analysis [6] . Besides, there are some im-

ortant characteristics about OLDA: 1) closed-form solution, 2) no-

arameters tuning required and 3) better robustness for the noise

n the data, which are advantageous for person re-id. 

Furthermore, in consideration of the non-linear distribution of

ata in person re-id, we develop a non-linear version via the ker-

el trick, which combines the strengths of both OLDA and kernel-

ased learning techniques, to boost the performance of person

e-id. In addition, it is imperative to note here that the eigen-

ecomposition is involved in solving the model. Compared with

he QR decomposition, the eigen-decomposition is computationally

xpensive for the high-dimensional data. Hence, we present a fast

LDA algorithm [7] for solving the singularity problem in person

e-id. The fast version is implemented by using the QR decomposi-

ion rather than the eigen-decomposition. Its computational com-

lexity, run time and performance will be analyzed in detail in the

xperiment section. 

In summary, the contributions of this paper are the follow-

ng three-folds: 1) For the singularity problem in person re-id, we

ropose to learn an orthogonal transformation with the pseudo-

nverse of the within-class scatter matrix for the first time. 2)

gainst the non-linear distribution of data in person re-id, we de-

elop a kernel version for learning the orthogonal transformation,

hereby boosting the performance of person re-id. 3) In order to

mprove the solving efficiency, we present a fast version with the

nchanged performance of person re-id. 

The rest of this paper is organized as follows. Section 2 reviews

he related works. In section 3 , the proposed method, and the cor-

esponding kernel version and fast version are described in detail,

espectively. In Section 4 , we present a thorough comparative eval-

ation of the proposed method with respect to the state-of-the-art

ethods on four benchmark datasets, and a detail analysis of ker-

el version and fast version for the proposed method. Finally, in

ection 5 , we conclude this paper. 
. Related works 

In this paper, we explore a novel way to solve the singularity

roblem in person re-id, which is closely pertinent to LDA ap-

roach. In the following, we will discuss the relevant works on

DA, person re-id and LDA based person re-id. 

.1. Linear discriminant analysis 

LDA is a classical supervised metric learning method, aiming to

eek a linear transformation in the training data that maximizes

he between-class variance and minimizes the within-class vari-

nce, simultaneously. It has been applied successfully in many ap-

lication areas for decades. However, there is a main disadvan-

age for LDA: the within-class scatter matrix must be nonsingu-

ar, which is not met in many applications. In order to overcome

he limitation and make LDA applicable in a wider range of ap-

lications, researchers have proposed many methods to extend the

lassical LDA. Specifically, a kind of methods to overcome the limi-

ation are to project the original data to a lower-dimensional space

y Principal Component Analysis (PCA) approach resulting in a full-

ank within-class scatter matrix before LDA, known as PCA+LDA

or two-stage LDA) [8] . Another kind of methods are to modify the

ithin-class scatter matrix by adding a perturbation term, known

s RLDA [9] . In addition, Chen et al. [10] proposed to compute the

ost discriminant transformation by modifying the Fisher’s crite-

ion of the classical LDA: the within-class variance equals zero and

he between-class variance is maximized, so that the singularity

roblem is implicitly avoided, known as NLDA. Furthermore, there

re a kind of approaches to avoid the singularity problem: PLDA in

hich the inverse of within-class scatter matrix is replaced with

he pseudo-inverse of the one in the Fisher’s criterion. The meth-

ds based on this approach include LDA/GSVD [5] , Uncorrelated

DA (ULDA) [6] and OLDA [6] . The LDA/GSVD applies the GSVD to

ompute the optimal transformation. For ULDA, the solution is ob-

ained by diagonalizing the three scatter matrices simultaneously

nd the resulting features in the reduced space are uncorrelated

o each other. After ULDA, an orthogonalization step is applied to

he transformation, deducing the OLDA. The discriminant vectors

n OLDA are orthogonal to each other. Some methods mentioned

bove are closely related, for example, NLDA is a special OLDA un-

er some condition [7] . 

.2. Person re-identification 

In the current field of person re-id, researchers usually assume

hat pedestrian detection has been completed and the cropped per-

on image is taken as input of person re-id system. In this system,

eature extraction and metric learning are the essential steps. The

iscriminative ability through extracting features in person image

s limited, therefore learning a discriminative distance metric is

mportant for closing the gap between different features of same

erson and is the focus of this paper. The metric learning based

ethod can be divided into two groups: iterative-learning based

11,12] and closed-form solution based [2–4] . In the iterative-

earning based method, the objective function is constructed based

n criteria that a pair of true match should have a smaller distance

han that of a wrongly matched pair, and the optimal metric func-

ion is obtained by using the iterative optimization method such

s gradient descent method. Compared with the iterative-learning

ased method, the closed-form solution based method is simple

nd efficient, which is usually related to LDA technology, such as

ross-view quadratic discriminant analysis (XQDA) [2] . In this pa-

er, we propose to learn an optimal transformation based on the

DA technology and the closed-form solution can be derived. Re-

ently, various deep learning architectures [13,14] have also been
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proposed to either address visual ambiguity of people across views,

or learn better metric function. However, convolution neural net-

work (CNN) architectures used in person re-id are not competitive

on public datasets with small size. 

2.3. Linear discriminant analysis based person re-identification 

Because of a large number of theoretical researches on LDA and

its characteristics of non-parameter tuning required and closed-

form solution, some metric learning based person re-id methods

have been proposed to learn an optimal metric distance function

based on LDA. Pedagadi et al. [3] adopt two-steps to learn the

low-dimensional discriminative feature space: PCA and then Reg-

ularized Local Fisher Discriminant Analysis (RLFDA), which is the

graph-based LDA approach with regularization. Since the feature

dimensionality is large compared to the number of samples af-

ter the first-step PCA, the singularity problem still exists in the

second-step and RLFDA is therefore applied to solve the problem.

Liao et al. [2] proposed to learn a subspace with the training data,

and at the same time learn a distance function in the subspace by

applying RLDA. For RLDA, choosing an appropriate perturbation is

critical, since a large perturbation results in the loss of informa-

tion in the scatter matrix and a small perturbation may not be ef-

fective in solving the singularity problem. The main disadvantage

of RLDA is that the optimal amount of the perturbation is difficult

to determine. To this end, NLDA has been developed to learn the

optimal metric distance function in person re-id [4] . However, one

limitation is that NLDA may not be applicable for low-dimensional

data. In this paper, we propose to solve the singularity problem

in person re-id with the aid of OLDA, which is applicable for both

low-dimensional data and high-dimensional data. 

3. Methodology 

3.1. Problem description 

Given a probe person captured from one camera view and a

candidate set in which people are captured from another camera

view, we aim to obtain an ordered list of candidate IDs for the

probe person, based on the distances between the probe person

and the candidates in ascending order. In the training phase, an

optimal feature transformation is learned based on the proposed

method. In the test phase, the distance between the probe person

and the candidate is computed by the Euclidean distance in the

new feature space obtained based on the learned transformation. 

In consideration of many notations used in the rest of the pa-

per, we present some important notations in Table 2 for conve-

nience. 

3.2. Classical linear discriminant analysis 

We start with briefly introducing the LDA before describing the

proposed person re-id method. 

Given a feature matrix X = [ x 1 , . . . , x n ] ∈ R 

m ×n with n peo-

ple in the training set and m -dimensional feature vector for each

person, classical LDA computes a linear transformation L ∈ R 

m ×d 
Table 2 

The description of important notations used in the paper

Notations Descriptions 

m Feature dimension in the original space 

d Feature dimension in the reduced space 

k Number of classes 

S b Between-class scatter matrix 

r b Rank of the matrix S b 
L Transformation matrix 
 m > d ) that maps the feature vector x i of i -th person to a new

eature vector y i in the d -dimensional space: 

 i = L T x i . (1)

Define the matrices 

 w 

= 

1 √ 

n 

[
X 1 − c (1) (e (1) ) T , . . . , X k − c (k) (e (k) ) T 

]
, 

H b = 

1 √ 

n 

[√ 

n 1 (c (1) − c) , . . . , 
√ 

n k ( c 
(k) − c) 

]
, 

H t = 

1 √ 

n 

(
X − ce T 

)
, (2)

here X i ∈ R 

m ×n i ( i = 1 , . . . , k ) is the feature matrix of i -th

lass sample and 

∑ k 
i =1 n i = n, e (i ) = [ 1 , . . . , 1 ] 

T ∈ R 

n i and e =
 

1 , . . . , 1 ] 
T ∈ R 

n , c (i ) = 

1 
n i 

X i e 
(i ) and c = 

1 
n Xe are the centroid of

he i -th class sample and the global centroid, respectively. 

Then, the within-class scatter matrix S w 

, the between-class

catter matrix S b and the total scatter matrix S t are expressed as

 w 

= H w 

H 

T 
w 

, S b = H b H 

T 
b , S t = H t H 

T 
t , (3)

here it is easy to verify that S t = S b + S w 

. 

The goal of LDA is to find an optimal transformation L ∗ such

hat the within-class samples are much closer while the between-

lass samples farther apart in the reduced-dimensional space: 

 

∗ = arg max 
L 

trace { ( L T S w 

L ) −1 L T S b L } . (4)

The optimization problem is equivalent to solve the generalized

igen-problem S b l = λS w 

l. The transformation L ∗ can be obtained

s the eigenvectors corresponding to the k − 1 largest eigenvalues

f S −1 
w 

S b , if S w 

is nonsingular. However, in person re-id, it is usu-

lly the case that m > n resulting in a singular S w 

and the classical

DA cannot be directly applied. Therefore, we propose to solve the

ingularity problem by considering the pseudo-inverse instead of

he inverse of S w 

. The optimal solution is computed based on the

imultaneous diagonalization of the three scatter matrices, and re-

ulting in an orthogonal transformation. 

.3. Learning an orthogonal transformation based on pseudo-inverse 

DA 

The new optimization problem is defined as 

 

∗ = arg max 
L 

trace { ( L T S t L ) + L T S b L } , (5)

here ( L T S t L ) 
+ denotes the pseudo-inverse and is equivalent to

( L T S w 

L ) + due to S t = S b + S w 

. 

We solve the above maximization problem based on the simul-

aneous diagonalization of the three scatter matrices. 

Theorem 1 . Let the SVD of H t as H t = U�V T , where � =
�t 0 

0 0 

]
and �t ∈ R 

r t ×r t with r t = rank ( S t ) . Divide U into U =

 

U 1 , U 2 ] with U 1 ∈ R 

m ×r t and U 2 ∈ R 

m ×(m −r t ) . Denote T = �−1 
t U 

T 
1 

H b 

nd compute its SVD as T = P ̃  �Q 

T . The simultaneous diagonalization

f the three scatter matrices is achieved by the matrix G = U 1 �
−1 
t P . 
. 

Notations Descriptions 

n Sample size in the training set 

X Feature matrix in the training set 

S w Within-class scatter matrix 

S t Total scatter matrix 

r t Rank of the matrix S t 
– –
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Algorithm 1 Learning the Orthogonal Transformation for Person 

Re-Identification. 

Input: 

The feature matrix X and its label information in the training 

set. 

The feature vectors x test 
i 

and x test 
j 

in the test set. 

Output: 

The distance D (x test 
i 

, x test 
j 

) between x test 
i 

and x test 
j 

. 

1: Construct the matrices H b and H t by Eq. 2. 

2: Compute SVD of H t as H t = U 

[
�t 0 

0 0 

]
V T . 

3: Denote T = �−1 
t U 1 H b , where U 1 is generated by the first r t 

columns of U with r t = rank ( H t H 

T 
t ) , and compute SVD as T = 

P ̃  �Q 

T . 

4: Denote G = U 1 �
−1 
t P . 

5: Compute the QR decomposition of G as G = Q g R g . 

6: Denote L ∗ = Q g , which is the optimal solution of Eq.5. 

7: return D (x test , x test ) = 

∥∥∥L ∗T x test − L ∗T x test 

∥∥∥2 

; 
roof. According to the SVD of H t , we have 

 t = H t H 

T 
t = U �V 

T (U �V 

T ) T = U �V 

T V �T U 

T = U 

[
�2 

t 0 

0 0 

]
U 

T , 

⇒ U 

T S t U = 

[
U 1 

U 2 

]
S t 

[
U 1 U 2 

]
= 

[
�2 

t 0 

0 0 

]
, 

⇒ U 

T 
1 S t U 1 = �2 

t , 

⇒ �−1 
t U 

T 
1 S t U 1 �

−1 
t = I t . (6) 

Since S t = S w 

+ S b , we have 

−1 
t U 

T 
1 S w 

U 1 �
−1 
t + �−1 

t U 

T 
1 S b U 1 �

−1 
t = I t . (7)

et T = �−1 
t U 

T 
1 H b and compute the SVD as T = P ̃  �Q 

T . Then 

−1 
t U 

T 
1 S b U 1 �

−1 
t = �−1 

t U 

T 
1 H b H 

T 
b U 1 �

−1 
t = P ̃  �Q 

T Q ̃

 �T P T = P �b P 
T , 

(8) 

here �b = 

˜ �2 . Since P is an orthogonal matrix, it follows that 

 

T �−1 
t U 

T 
1 S b U 1 �

−1 
t P = �b . (9) 

ccordingly, from Eqs. (7) and (8) , we have 

−1 
t U 

T 
1 S w 

U 1 �
−1 
t = I t − P �b P 

T , 

⇒ P T �−1 
t U 

T 
1 S w 

U 1 �
−1 
t P = I t − �b = �w 

. (10) 

onsidering the orthogonal matrix P , the last line in Eq. (6) can be

ewritten as 

 

T �−1 
t U 

T 
1 S t U 1 �

−1 
t P = I t . (11) 

Now, combining Eqs. (9) , (10) and (11) together, we define G =
 1 �

−1 
t P and it follows that 

 

T S t G = I t , G 

T S b G = �b , G 

T S w 

G = �w 

. (12)

Then all three scatter matrices are diagonalized by the matrix

 = U 1 �
−1 
t P . �

According to Theorem 1, we rewrite L T S t L and L T S b L as 

L T S t L = L T ( G 

−1 ) T ( G 

T S t G ) G 

−1 L = ̃

 L T I t ̃  L = ̃

 L T ˜ L , 

 

T S b L = L T ( G 

−1 ) T ( G 

T S b G ) G 

−1 L = ̃

 L T �b ̃
 L , (13) 

here 

 

 = G 

−1 L. (14) 

hen, the following equation holds: 

 = t race 
{
( L T S t L ) 

+ L T S b L 
}

= t race 
{
( ̃  L T ˜ L ) + ˜ L T �b ̃

 L 
}

= trace 
{
( ̃  L ̃  L + ) T �b ( ̃  L ̃  L + ) 

}
. (15) 

e compute the SVD of ̃  L as: 

 

 = M 

[
�l 0 

0 0 

]
N 

T . (16) 

here �l ∈ R 

r l ×r l with r l = rank ( ̃  L ) . Since both M and N are or-

hogonal matrices and �l is a diagonal matrix, so 

 

 ̃

 L + = M 

[
�l 0 

0 0 

]
N 

T N 

[
�−1 

l 
0 

0 0 

]
M 

T = M 

[
I l 0 

0 0 

]
M 

T . (17)

hen, Eq. (15) can be rewritten as: 

 = trace 

{
M 

[
I l 0 

0 0 

]
M 

T �b M 

[
I l 0 

0 0 

]
M 

T 

}
= trace 

{[
I l 0 

0 0 

]
M 

T �b M 

[
I l 0 

0 0 

]}
= trace { M 

T �b M l } , (18) 
l 
here M l is generated by the first r l columns of M . 

Now, the optimization problem in Eq. (5) becomes the maxi-

ization of trace { M 

T 
l 
�b M l } . Next, we introduce a lemma [15] for

olving the maximization problem. 

emma 1. For any matrix A ∈ R 

m ×q ( q ≤ m ) with A 

T A = I, and the

ositive semi-definite matrix J ∈ R 

m ×m with h i be the eigenvector of J

orresponding to the i-th largest eigenvalue λi , we have trace ( A 

T JA ) ≤
1 + · · · + λq . The equation holds when A = [ h 1 , . . . , h q ] E, where

 ∈ R 

q ×q is an arbitrary orthogonal matrix. 

The proof of the lemma 1 is not provided here for the sake of

pace and interested readers can refer to [15] . 

According to Lemma 1, we have F = trace { M 

T 
l 
�b M l } ≤ λ1 +

· · + λr b 
with r b = rank (S b ) . The maximization of F is reached if

 l = 

[
E 

0 

]
, where E ∈ R 

r b ×r b is an arbitrary matrix with E T E = I. We

ed M l into Eq. (16) with r b = r l and obtain 

˜ L = 

[
E �l N 

T 

0 

]
. Since

oth E and N are the orthogonal matrices and �l is the diagonal

atrix, we denote A = E �l N 

T as an arbitrary nonsingular matrix. 

Now, with Eq. (14) , we solve the optimization problem in

q. (5) by L ∗ = GA . 

There is a problem for selection of the arbitrary nonsingular

atrix A . The simplest choice is A = I and correspondingly L ∗ = G .

ith Eq. (12) , we can find that L ∗T S t L 
∗ = I t . It means that the dis-

riminant vectors are S t -orthogonal to each other. As a result, the

ew features obtained by the optimal transformation L ∗ are uncor-

elated to each other, which is named as ULDA. However, ULDA

nvolves the minimal redundant information in the new feature

pace, so that it is likely to lead to overfitting and be sensitive to

he noise in the data. 

Therefore, we make the QR decomposition of G as G = Q g R g and

hoose A = R −1 
g . Correspondingly, L ∗ = Q g with L ∗T L ∗ = I, which is

amed as OLDA. Compared with ULDA, the redundancy is intro-

uced into the transformed space and the overfitting problem can

e effectively avoided in OLDA. 

In summary, in the training set, an optimal transformation L ∗ is

earned in which the discriminant vectors are orthogonal to each

ther, based on the pseudo-inverse LDA. The learned transforma-

ion L ∗ works on the feature vectors in the test set by Eq. (1) , re-

ulting in the new discriminative feature vectors. Algorithm 1 for-

alizes the proposed person re-id method. 
i j i j 
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3.4. Kernel version for learning the orthogonal transformation 

An optimal linear transformation is learned in Algorithm 1 ,

which however is limited to solve the linear problem. However, in

most cases person re-id is a non-linear problem due to the non-

linearity in person’s appearance. In this section, a non-linear or-

thogonal discriminant analysis based on the kernel technique is

developed, to better fit the person re-id problem. 

Let the original feature space be mapped into a new high-

dimensional kernel space through a non-linear mapping function

�: x ∈ R 

m → �(x ) ∈ R 

r ( r � m ). The new feature matrix is denoted

as �(X ) = [ �( x 1 ) , . . . , �( x n ) ] ∈ R 

r×n . 

Denote the three scatter matrices in the kernel space by S �w 

, S �
b 

and S �t , respectively. Then, we can obtain 

S �w 

= 

1 

n 

k ∑ 

j=1 

n i ∑ 

i =1 

[
�(x j 

i 
) − �( c ( j) ) 

][
�(x j 

i 
) − �( c ( j) ) 

]T 

S �b = 

1 

n 

k ∑ 

j=1 

n i 

[
�( c ( j) ) − �(c) 

][
�( c ( j) ) − �(c) 

]T 

S �t = 

1 

n 

n ∑ 

i =1 

[ �( x i ) − �(c) ] [ �( x i ) − �(c) ] 
T 
, (19)

where �(c (j) ) and �(c) are the centroid of the j -th class sample

and the global centroid in the kernel space, respectively. 

Explicitly computing the mapping �(x) and then performing

Algorithm 1 is intractable and computationally expensive. Instead,

the data can be implicitly embedded by rewriting the algorithm in

terms of dot products, i.e. the kernel trick is replaced by the kernel

function k (x i , x j ) = �( x i ) · �( x j ) . 

First we notice that the discriminant vector l � satisfies l � =∑ n 
i =1 αi �( x i ) , where the coefficient vector α = [ α1 , . . . , αn ] 

T .

Then, we have 

( l �) T S �b l 
� = αT [ K(B − O ) (B − O ) T K] α

( l 
�
) T S �t l 

� = αT [ K(I − O ) (I − O ) T K] α, (20)

where K = �(X ) T �(X ) , B = diag( B 1 , · · · , B k ) ∈ R 

n ×n and B i ∈ R 

n i ×n i 

(i = 1 , . . . , k ) with all terms equal to 1 
n i 

, O ∈ R 

n ×n with all terms

equal to 1 
n and I is a n × n identity matrix 1 . 

Accordingly, the three scatter matrix can be kernelized as 

K w 

= K(I − B ) (I − B ) T K, K b = K(B − O ) (B − O ) T K, 

K t = K(I − O ) (I − O ) T K. (21)

We now can rewrite the optimization problem in Eq. (5) as 

A 

∗ = arg max 
A 

trace 
{
( A 

T K t A ) + A 

T K b A 

}
(22)

where A = [ α1 , . . . , αd ] . 

Then the d orthogonal discriminant vectors in kernel space are

obtained according to Algorithm 1 , which need not be repeated

here. In particular, in the test phase, the new discriminative fea-

ture is obtained as y test 
i 

= ( L �) T · �(x test 
i 

) = A 

∗T k (X, x test 
i 

) . 

3.5. Fast version for learning the orthogonal transformation 

In this section, we present a fast version for solving the op-

timization problem in Eq. (5) with QR decomposition replacing

eigen-decomposition in the computation. 

The feature matrix X is rewritten as X = [ X 1 , X 2 , . . . , X k ] ,

where X i ∈ R 

m ×n i (i = 1 , . . . , k ) denotes the feature matrix of i -th

class sample. 
1 Detailed derivation of Eq. (20) is given in Appendix. 
We firstly compute the economy-size QR decomposition of X

s X = Q x R x with Q x ∈ R 

m ×n and R x ∈ R 

n ×n . Compared with the

ull QR decomposition X = QR with Q ∈ R 

m ×m and R ∈ R 

m ×n , the

conomy-size one only computes the first n columns of Q and the

rst n rows of R . 

Denote Z as a permutation matrix generated by exchanging the

 -th column and the ( 
∑ i −1 

j=1 n j + 1) -th column of the identity ma-

rix I ∈ R 

n ×n , H i (i = 1 , . . . , k ) and H as the Householder trans-

ormations of vectors [ 1 , . . . , 1 ] 
T ∈ R 

n i and [ 
√ 

n 1 , . . . , 
√ 

n k ] 
T 
, re-

pectively. Then, we express 

 x 

⎡ ⎣ 

H 1 

. . . 

H k 

⎤ ⎦ Z 

[
H 

I 

]
= [ R 1 , R 2 , R 3 ] , (23)

here R 1 ∈ R 

n ×1 , R 2 ∈ R 

n ×(k −1) and R 3 ∈ R 

n ×(n −k ) . 

We compute the rank-revealing QR decomposition (also called

conomic QR decomposition with column pivoting) of [ R 2 , R 3 ] as 

 

R 2 , R 3 ] P qr = 

˜ Q ̃

 R = 

[˜ Q 1 , 
˜ Q 2 , 

˜ Q 3 

][ ˜ R 11 
˜ R 12 

0 

˜ R 22 

0 

˜ R 32 

] 

, (24)

here P qr is a permutation matrix, ˜ R 11 is an upper triangular ma-

rix and 

˜ R 32 ≈ 0 is numerically negligible. ˜ Q 1 ∈ R 

n ×r 2 , ˜ Q 2 ∈ R 

n ×r 3 

nd 

˜ Q 3 ∈ R 

n with r 2 = rank ( R 2 ) and r 3 = rank ( R 3 ) . ˜ R 11 ∈ R 

r 2 ×(k −1)

nd 

˜ R 12 ∈ R 

r 2 ×(n −k ) . Let 

 

R 11 R 12 

0 R 22 

0 0 

] 

= 

[ ˜ R 11 
˜ R 12 

0 

˜ R 22 

0 

˜ R 32 

] 

P T qr . (25)

hen we obtain the QR decomposition of [ R 2 , R 3 ]. 

Accordingly, the QR decomposition of 

[
R 12 

R 22 

]
R T 22 is computed as

R 12 

R 22 

]
R 

T 
22 = Q̄ 

[
R̄ 

0 

]
. (26)

The optimization problem of Eq. (5) is solved by L ∗ =
 x 

[˜ Q 1 , 
˜ Q 2 

]
Q̄ . For the detailed proof, the interested reader can refer

o [7] . 

As stated above, QR decomposition is used for solving

q. (5) instead of eigen-decomposition. Algorithm 2 formalizes the

lgorithm 2 Fast Version for Learning the Orthogonal Transforma-

ion. 

Input: 

The feature matrix X and its label information in the training

set. 

The feature vectors x test 
i 

and x test 
j 

in the test set. 

Output: 

The distance D (x test 
i 

, x test 
j 

) between x test 
i 

and x test 
j 

. 

1: Compute the economy-size QR decomposition of X as X = Q x R x .

2: Construct the matrices Z, H and H i ( i = 1 , . . . , k ) and compute

[ R 1 , R 2 , R 3 ] according to Eq.2. 

3: Compute the rank-revealing QR decomposition of [ R 2 , R 3 ]

and obtain the corresponding QR decomposition [ R 2 , R 3 ] =[˜ Q 1 , 
˜ Q 2 , 

˜ Q 3 

][ 

R 11 R 12 

0 R 22 

0 0 

] 

. 

4: Compute the QR decomposition of 

[
R 12 

R 22 

]
R T 22 = Q̄ 

[
R̄ 

0 

]
. 

5: Denote L ∗ = Q x 

[˜ Q 1 , 
˜ Q 2 

]
Q̄ , which is the optimal solution of

Eq.5. 

6: return D (x test 
i 

, x test 
j 

) = 

∥∥∥L ∗T x test 
i 

− L ∗T x test 
j 

∥∥∥2 

; 
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2 Following the standard protocol [21] , all the images are normalized to 227 × 227 

pixels when extracting HIPHOP descriptor in the experiment. 
ast version for our method, and has lower computational com-

lexity than Algorithm 1 . The detailed analysis about the compu-

ational complexity will be shown in the experiment section. 

. Experiments 

.1. Datasets and settings 

We carry out experiments on four widely used benchmark

atasets: VIPeR [16] , PRID2011 [17] , CUHK01 [18] and CUHK03

19] . 

VIPeR contains 632 image pairs of pedestrians from two dis-

oint outdoor cameras, with large variations in viewpoint, illumi-

ation and poses. Following the standard settings, we normalize all

he images as 128 × 48 pixels and randomly partition the dataset

nto training and test sets using the ration 1: 1. 

PRID2011 is collected from two disjoint surveillance cameras,

ontaining 385 and 749 identities, respectively, with only 200 iden-

ities appearing in both cameras. All the images have been nor-

alized to 128 × 64 pixels. We use the single shot version of the

ataset. For the training set, 100 image pairs are randomly chosen

rom the 200 identities in both cameras. For the test set, the probe

et is formed by the remaining 100 identities appearing in both

ameras and the gallery set is formed by the remaining ones and

49 single images. This dataset is very challenging since there are

any disturbed images in the gallery set for test data. 

CUHK01 is a larger dataset in person re-id, including 3,884

mages of 971 identities captured by two disjoint cameras in a

ampus environment, with each identity having two images under

ach camera. All the images have been normalized to 160 × 60 pix-

ls. In the one camera, the side view of identities is captured. And

n the another camera, the front or back view is captured. We use

he same protocol with [4] : the 4 85/4 86 training/test with multi-

hot setting. 

CUHK03 is one of the largest person re-id datasets. It consists

f 13,164 images of 1,360 identities under six surveillance cameras

n campus, with each identity captured by two cameras and hav-

ng 4.8 images at each viewpoint. The dataset provides both manu-

lly annotated bounding boxes and bounding boxes detected by the

eformable-Part-Model (DPM) [20] , denoted as CUHK03(manual)

nd CUHK03(detected) dataset, respectively. The latter type of an-

otation is more approach to the real-world person re-id system.

,260 identities and 100 ones are used for training and testing un-

er the single-shot setting, respectively. And all the images are nor-

alized as 128 × 48 pixels. 

Evaluation protocol . We use Cumulative Matching Characteris-

ics (CMC) for evaluation where Rank k matching rate is the expec-

ation of correct match at rank k . The splitting of training set and

est set is repeated 10 times for all datasets except for CUHK03

ataset, in which the procedure is repeated 20 times as provided

n [19] . Rank 1, Rank 5 and Rank 10 in the average CMC curve are

eported. 

Parameter setting . There is not any parameter required to

uned in our method. However, due to the kernelisation of our

ethod, it is necessary to select the proper parameter for the ker-

el function. We set these parameters via 2-fold cross validation.

pecifically, for each splitting of training set and test set, we ran-

omly select 90% samples in the training set as the new training

et and the other 10% in the training set are used as the validation

et. Moreover, there are PCA technology involved for the compari-

on purpose in the experiment and we perform PCA with holding

0% energy. 

Feature descriptor . In order to perform an overall evaluation

or our method, we use three feature descriptors in the experi-

ent: Histogram of Intensity Pattern & Histogram of Ordinal Pat-
ern (HIPHOP) [21] , Local Maximal Occurrence (LOMO) [2] and

aussian Of Gaussian (GOG) [1] . The HIPHOP descriptor 2 is deep

erson appearance representation by exploit the AlexNet [22] . The

OMO descriptor analyzes the horizontal occurrence of local fea-

ures with robustness to viewpoint changes. The GOG descrip-

or represents the pedestrian by hierarchical Gaussian distribution

ith both means and covariances, and is extracted from the al-

ernative color channels as GOG RGB , GOG Lab , GOG HSV and GOG RnG .

ig. 1 summarizes the statistics of dimensionality of feature and

ample size. For all feature descriptors mentioned above on all

atasets, the dimension of feature vector is greater than the sam-

le size, and the singularity problem does exist in person re-id.

n order to further verify the performance of our method in the

ase that there is no singularity problem in person re-id, and the

erformance of NLDA in low-dimensional data, PCA dimensional-

ty reduction is performed in GOG feature descriptor, denoted as

OG PCA , also used as the feature descriptor and compared in the

xperiment. We can see from Fig. 1 that the dimension of feature

ector is less than the sample size only for GOG PCA on all datasets,

epresenting the non-singularity case; while the rest resulting in

he singularity problem usually met in person re-id context. 

.2. Performance comparison 

.2.1. Comparison with variants of LDA 

We compare ours with various variants of LDA on VIPeR,

RID2011, CUHK01 and CUHK03(manual) datasets. The compared

ethods include PCA+LDA [8] , RLDA [9] , ULDA [6] and NLDA [10] .

or an overall comparison, HIPHOP, LOMO, GOG and GOG RGB fea-

ure descriptors are used to represent the pedestrian in the ex-

eriment, respectively. In these cases, person re-id is a singularity

roblem. Moreover, we also use GOG PCA as the feature descriptor in

he experiment, to demonstrate the non-singularity case for NLDA

n person re-id. 

Fig. 2 and Table 3 summarize the comparison results. We can

ee that: 1) Our method beats PCA+LDA and ULDA for all feature

escriptors on all four datasets. It shows that the ability of our

ethod in solving person re-id is superior to these two methods.

) Our method is obvious better than RLDA in most cases except

or low-dimensional data such as GOG RGB . Nevertheless, in RLDA,

he parameter has to be tuned carefully to obtain the highest re-

ults. Conversely, there is not any parameter required to tuned

n our method. 3) NLDA achieves almost the same performance

ith our method in the vast majority of cases. However, for low-

imensional data such as GOG PCA , the performance of NLDA is in-

erior to our method. In particular, NLDA performs poorly in the

arge dataset CUHK01 and CUHK03(manual) with 0.2% and 1.0% at

ank 1, respectively. It verifies the NLDA’s inapplicability to low-

imensional data. 4) Our method achieves the best performance

n three datasets VIPeR, CUHK01 and CUHK03(manual) for GOG PCA 

escriptor, which indicates the advantage of our method in the

on-singularity case in person re-id. 5) The performance of our

ethod is variable for different features. This is reasonable because

ifferent f eatures have different discrimination properties, and as a

esult the performance of the method based on these features may

e affected. 

.2.2. Comparison with kernel version 

We investigate the performances of different kernel func-

ions applying to our method on VIPeR, PRID2011, CUHK01 and

UHK03(manual) datasets. HIPHOP, LOMO and GOG feature de-

criptors are used to represent the pedestrian in the experiment,
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Fig. 1. The statistics of dimensionality of feature and sample size on four datasets. Better viewed in colour. 

Table 3 

Comparison with various variants of LDA. The best results are shown in boldface. 

Methods VIPeR PRID2011 CUHK01 CUHK03(manual) 

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 

HIPHOP PCA + LDA 31.3 54.9 65.7 9.6 23.2 30.0 44.1 61.9 69.5 7.9 23.0 32.0 

RLDA 31.4 55.0 65.8 9.5 23.3 30.8 44.9 62.9 70.5 7.8 22.9 32.2 

ULDA 32.5 56.6 67.1 9.9 24.9 32.5 43.1 61.0 69.0 9.1 22.5 33.1 

NLDA 41.5 69.7 80.6 12.5 27.9 38.4 60.7 81.2 87.0 28.3 52.6 64.0 

Ours 41.5 69.7 80.6 12.5 27.9 38.4 60.9 81.1 87.1 28.3 52.6 64.0 

LOMO PCA + LDA 25.7 50.0 61.2 22.3 41.8 50.3 33.2 51.2 59.8 5.4 17.4 28.9 

RLDA 25.7 50.4 61.8 22.6 41.3 50.7 33.7 52.0 60.5 5.6 17.2 29.2 

ULDA 25.8 49.5 61.0 23.4 41.4 50.7 29.2 48.2 56.1 4.9 16.0 26.1 

NLDA 38.5 68.3 79.3 26.9 50.0 61.7 56.9 78.0 83.7 20.9 47.7 61.9 

Ours 38.5 68.3 79.3 26.7 50.2 61.7 56.8 78.1 83.8 20.8 47.7 61.8 

GOG PCA + LDA 30.4 55.0 64.7 30.3 50.3 60.5 22.6 39.6 49.1 7.1 17.2 26.9 

RLDA 30.9 55.8 65.2 30.5 50.3 60.5 23.1 39.9 49.8 7.1 17.3 27.0 

ULDA 31.1 55.3 65.7 30.0 50.7 59.9 19.1 34.3 43.9 6.6 16.6 24.9 

NLDA 47.8 78.6 88.4 35.6 57.8 69.0 53.2 74.3 81.6 26.7 54.7 69.8 

Ours 47.8 78.6 88.4 35.6 57.8 69.0 53.3 74.5 81.8 26.7 54.7 69.8 

GOG RGB PCA + LDA 18.3 37.8 48.5 24.7 45.6 55.4 12.9 25.8 34.4 3.8 11.4 19.4 

RLDA 39.4 72.1 83.4 30.0 51.7 61.8 48.4 70.6 78.9 16.0 35.8 50.5 

ULDA 18.4 36.8 46.5 26.5 43.8 53.3 7.7 17.2 24.7 2.5 9.8 16.5 

NLDA 38.6 70.7 82.1 30.3 52.3 61.9 34.5 56.5 66.6 10.2 27.1 38.8 

Ours 38.6 70.7 82.1 30.3 52.3 61.9 34.6 56.9 66.7 10.2 27.1 38.8 

GOG PCA PCA + LDA 20.3 40.3 50.5 26.5 46.1 56.1 39.2 60.9 70.4 7.9 19.8 30.5 

RLDA 36.5 67.7 80.1 32.0 55.4 64.9 44.0 65.5 73.9 12.2 29.0 40.4 

ULDA 24.2 44.7 54.7 27.1 45.6 56.5 22.8 38.9 48.5 6.4 15.6 25.0 

NLDA 33.7 64.6 77.4 25.9 48.8 60.1 0.2 1.0 2.1 1.0 5.0 10.0 

Ours 37.9 68.8 80.5 30.0 49.9 61.7 57.2 78.1 85.1 16.0 39.9 53.4 

 

 

 

 

 

 

 

 

 

respectively. Moreover, for verifying our method’s ability of score-

level fusion with different feature descriptors, we present the re-

sult of our method with fusion pattern in which we add up

the distance values obtained by three different feature descriptors

HIPHOP, LOMO and GOG as the final distance value. The related

kernel functions are introduced as follows: 
• Gaussian: A classical radial basis kernel with good anti-

interference for the noise in the data and the mathematical

form k (x , y) = e 
− ‖ x −y ‖ 2 

2 σ2 . 
• Sigmoid: An “S” shape kernel function widely applied in

the field of deep learning now, with the mathematical form

k (x , y) = tanh (α〈 x , y 〉 + β) . 
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Fig. 2. Comparison of Rank 1 with various variants of LDA. Better viewed in colour. 
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• Cauchy: a kernel function coming from Cauchy distribution

that can be applied in very high-dimensional data due to

the wide domain of definition, with the mathematical form

k (x , y) = 

1 

‖ x −y ‖ 2 /σ+1 
. 

• ANOVA: A radial basis kernel, with the mathematical form

k (x , y) = e (−σ (x −y) 2 ) 
γ

. 
• Multiquadric (MQ): A rational quadratic kernel, with the

mathematical form k (x , y) = 

√ 

‖ x − y ‖ 2 + c 2 . 
i  
• Inverse Multiquadric (IM): An inverse multi quadric kernel

in which the kernel matrix is full rank, with the mathemat-

ical form k (x , y) = 

1 √ 

‖ x −y ‖ 2 + c 2 . 

The results are given in Table 4 . We have the following observa-

ion: 1) The performance can be boosted by introducing kernelisa-

ion into our method in most cases. Among them, our method with

aussian kernel function and fusion pattern achieves the largest

ncrease 33.7% at Rank 1 on CUHK03(manual) dataset. However, on
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Table 4 

Comparison of our methods for non-kernel version and kernel version with different kernel functions. 

Methods VIPeR PRID2011 CUHK01 CUHK03(manual) 

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 

GOG Ours(w/o) 47.8 78.6 88.4 35.6 57.8 69.0 53.3 74.5 81.8 26.7 54.7 69.8 

Ours(kernel) Gaussian 49.1 80.6 89.3 33.3 57.9 67.1 70.8 88.3 92.8 59.8 87.7 94.5 

Sigmoid 47.2 80.2 88.9 34.9 58.4 67.7 70.8 88.4 92.9 58.0 86.6 94.0 

Cauchy 49.2 80.8 89.4 32.7 56.7 66.2 71.3 88.7 93.0 58.8 86.9 94.8 

ANOVA 48.6 79.9 89.2 34.7 58.0 67.7 71.1 88.6 92.9 57.8 86.6 93.8 

MQ 48.9 80.1 89.3 33.4 57.8 67.7 71.2 88.6 93.0 59.2 87.1 94.4 

IM 48.8 80.0 89.4 33.3 58.1 67.1 71.2 88.8 93.0 59.4 86.9 94.8 

LOMO Ours(w/o) 38.5 68.3 79.3 26.7 50.2 61.7 56.8 78.1 83.8 20.8 47.7 61.8 

Ours(kernel) Gaussian 41.7 71.2 83.3 27.3 50.2 62.0 68.0 88.1 93.1 48.4 80.4 89.6 

Sigmoid 42.5 73.5 85.2 27.2 50.4 61.1 68.1 88.7 93.3 49.3 81.7 91.6 

Cauchy 41.4 71.1 83.3 26.6 49.7 61.5 67.6 87.7 92.7 47.9 80.2 90.2 

ANOVA 41.5 71.4 83.5 27.2 50.3 61.4 67.9 87.8 92.7 49.3 81.8 91.4 

MQ 41.1 70.8 82.6 26.9 50.6 61.8 66.8 86.3 91.5 45.2 77.5 87.3 

IM 41.5 71.1 82.7 27.2 50.4 61.1 67.7 87.5 92.4 49.3 80.8 91.1 

HIPHOP Ours(w/o) 41.5 69.7 80.6 12.5 27.9 38.4 60.9 81.1 87.1 28.3 52.6 64.0 

Ours(kernel) Gaussian 44.2 73.2 83.3 12.3 27.4 37.1 65.4 84.9 90.8 44.8 75.8 86.1 

Sigmoid 44.4 72.9 82.9 13.0 29.3 38.6 64.9 83.9 90.0 43.5 72.8 83.5 

Cauchy 44.2 73.3 83.1 13.0 28.3 37.4 65.3 84.7 90.6 43.0 75.7 86.9 

ANOVA 44.0 73.4 83.2 13.6 28.6 37.8 65.0 84.1 90.2 46.2 76.8 85.6 

MQ 44.1 72.8 82.9 12.7 28.5 37.1 64.9 84.0 90.1 44.2 74.6 84.4 

IM 44.2 73.0 83.0 12.7 28.5 37.1 63.8 85.0 90.7 46.2 78.2 86.4 

Fusion Ours(w/o) 52.0 82.0 90.5 40.6 65.6 76.7 55.0 81.6 90.3 34.8 70.4 82.2 

Ours(kernel) Gaussian 52.8 82.8 91.3 37.8 63.2 73.4 79.7 94.7 97.3 68.5 92.7 97.0 

Sigmoid 44.2 74.6 85.9 36.0 59.0 68.6 76.1 93.0 96.8 57.8 87.1 94.2 

Cauchy 52.9 82.0 91.2 36.9 62.3 73.0 79.8 94.7 97.6 64.4 91.0 95.9 

ANOVA 50.9 80.4 89.6 35.5 60.6 69.2 80.0 94.5 97.4 66.4 91.7 85.6 

MQ 53.6 82.7 91.8 38.3 63.1 73.1 78.1 93.6 97.0 65.1 89.6 95.7 

IM 49.3 77.8 87.4 32.8 57.6 67.1 73.4 91.3 95.3 62.1 88.2 94.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Comparison with state-of-the-art methods on VIPeR dataset. The best results are 

shown in boldface. 

Methods r = 1 r = 5 r = 10 

LOMO ITML [23] 24.7 49.8 63.0 

LMNN [24] 29.4 59.8 73.5 

KISSME [25] 34.8 60.4 77.2 

kCCA [26] 30.2 62.7 76.0 

MFA [27] 38.7 69.2 80.5 

kLFDA [27] 38.6 69.2 80.4 

XQDA [2] 40.0 68.1 80.5 

MLAPG [28] 40.7 – 82.3 

CRAFT [21] 42.3 74.7 86.5 

Ours 41.7 71.2 83.3 

DMLLV [29] 50.4 80.5 88.7 

PML&LSL [30] 46.5 69.3 80.7 

PDC [31] 51.3 74.1 84.2 

MuDeep [14] 43.0 74.4 85.8 

DM 

3 [32] 42.7 74.3 85.1 

CSPL [33] 51.3 81.7 90.2 

Ours(Fusion) 52.8 82.8 91.3 

 

t  

A  

r  

f  

e  

a

 

VIPeR and PRID2011 datesets, there is the case of performance re-

duction when introducing kernelisation into our method, for ex-

ample, our method with Sigmoid kernel function and GOG fea-

ture descriptor decreases the Rank 1 by 0.7% on PRID2011 dataset.

It might be due to the influence of different description for non-

linearity on datasets of different sizes. For large dataset, there are

very large number of pedestrians resulting in a more accurate de-

scription for non-linearity in person re-id, so that the performance

is improved by learning model in kernel space; in contrast, the de-

scription for non-linearity may be inaccurate on the small dataset,

so that kernelisation has no effect on performance. 2) Our method

with each kernel function is roughly equal on performance for

GOG, LOMO and HIPHOP feature descriptors on all datasets, indi-

cating the robustness of the proposed method against kernel func-

tions. 3) Compared with our method with single feature descrip-

tor, the one with the fusion of these descriptors can significantly

improve performance. The increases are 4.4%, 5.0%, 8.7% and 8.0%

for the best results from single descriptor to the fusion of descrip-

tors on VIPeR, PRID2011, CUHK01, CUHK03(manual) datasets, re-

spectively. 

4.2.3. Comparison with state-of-the-art methods 

We compare the performance of ours against state-of-the-art

person re-id methods. For comparison against metric learning

based person re-id methods, since most of methods with LOMO

feature are reported in papers, the same feature descriptor LOMO

is used in the proposed method for a fair comparison. For com-

parison against other state-of-the-art methods, the results of our

method with fusion pattern (ours(fusion) for short in the follow-

ing) are presented. Gaussian kernel is utilized for our method in

all the comparison experiments 3 
3 By 2-fold cross validation, the parameter σ in Gaussian kernel is set as 1 for 

VIPeR dataset, 2 for PRID2011 dataset and 0.5 for CUHK01 and CUHK03 datasets, 

respectively. 

i  

o  

T  

o  
VIPeR. For VIPeR dataset, we first compare our method with

he classical and state-of-the-art metric learning based methods.

s shown in Table 5 , our method obtains the second best accu-

acy and performs slightly worse than CRAFT [21] approach that

ocuses on learning view-specific feature transformations. How-

ver, in comparison to other state-of-the-art methods, our method

chieves the best accuracy at Rank 1, Rank 5 and Rank 10. 

PRID2011. Similarly, we compared our method to metric learn-

ng based person re-id methods and other state-of-the-art meth-

ds, respectively, on PRID2011 dataset. The results are reported in

able 6 . Our method performs the best among all compared meth-

ds. Specifically, our method achieves 15.8% gain at Rank 1 com-
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Table 6 

Comparison with state-of-the-art methods on PRID2011 dataset. The best results are 

shown in boldface. 

Methods r = 1 r = 5 r = 10 

LOMO kCCA [26] 14.3 37.4 47.6 

MFA [27] 22.3 45.6 57.2 

kLFDA [27] 22.4 46.5 58.1 

XQDA [2] 26.7 49.9 61.9 

Ours 27.3 50.2 62.0 

Metric Ensembles [35] 17.9 39.0 50.0 

M3TCP [34] 22.0 – 47.0 

CrowdPSE [36] 21.1 46.7 60.0 

DMLLV [29] 27.8 48.4 59.5 

Ours(Fusion) 37.8 63.2 73.4 

Table 7 

Comparison with state-of-the-art methods on CUHK01 dataset. The best results are 

shown in boldface. 

Methods r = 1 r = 5 r = 10 

LOMO kCCA [26] 56.3 80.7 87.9 

MFA [27] 54.8 80.1 87.3 

kLFDA [27] 54.6 80.5 86.9 

XQDA [2] 63.2 83.9 90.0 

MLAPG [28] 64.2 – 90.8 

CRAFT [21] 65.4 85.3 90.5 

Ours 68.0 88.1 93.1 

Metric Ensembles [35] 53.4 76.4 84.4 

M3TCP [34] 53.7 84.3 91.0 

DMLLV [29] 65.0 85.6 91.1 

PML&LSL [30] 53.5 82.5 91.2 

DM 

3 [32] 49.7 77.3 86.1 

CSPL [33] 72.0 88.6 92.8 

SGLE [11] 70.9 89.8 93.5 

Ours(Fusion) 79.7 94.7 97.3 

p  

l  

t  

f

 

m  

s  

c  

T  

o  

r  

o  

m

 

t  

F  

C  

a  

t  

m  

C  

C  

o  

l  

m  

b  

p  

p

t

f

Table 8 

Comparison with state-of-the-art methods on CUHK03 dataset. The best results are 

shown in boldface. 

Methods CUHK03(manual) CUHK03(detected) 

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 

Deep learning IDLA [37] 54.7 87.6 94.0 54.7 86.5 93.9 

EDM [13] 61.3 88.9 96.4 52.1 82.9 91.8 

LSTM S-CNN [38] – – – 57.3 80.1 88.3 

MSCAN [39] 74.2 94.3 97.5 68.0 91.0 95.4 

DSPL [12] 73.16 92.26 96.54 – – –

MuDeep [14] 76.9 96.1 98.4 75.6 94.4 97.5 

Traditional kLFDA [27] 48.2 59.3 66.4 – – –

XQDA [2] 52.2 82.2 92.1 46.3 78.9 88.6 

MLAPG [28] 58.0 87.1 94.7 51.2 83.6 92.1 

SSSVM [40] 57.0 84.4 90.9 – – –

GOG [1] 67.3 91.0 96.0 65.5 88.4 93.7 

Ours 68.5 92.7 97.0 60.8 86.6 94.2 

Table 9 

Comparison with fast version for our method in computational complexity. 

Algorithm1 Algorithm2 

Step1 O ( mn ) 4 mn 2 − 4 
3 

n 3 

Step2 14 mn 2 − 2 n 3 O ( n 2 ) 

Step3 2 mr t k + 14 r t k 
2 − 2 k 3 2 nr 2 t + 

2 
3 

r 3 t 

Step4 2 mr 2 t 2 r t k (n − k ) + 4 kr 2 t + 

2 
3 

k 3 − 2 r t k 
2 

Step5 4 mr 2 
b 

− 4 
3 

r 3 
b 

2(m + r t ) nr b 
Overall 18 mn 2 + n 3 5 mn 2 + 6 n 3 

Table 10 

Comparison with fast version for our method in accuracy and run time. 

Datasets Methods r = 1 r = 5 r = 10 Time(s) 

VIPeR Ours 47.8 78.6 88.4 2.1952 

Ours fast 47.9 78.6 88.3 1.2910 

PRID2011 Ours 35.6 57.8 69.0 0.4919 

Ours fast 35.4 57.7 69.2 0.2484 

CUHK01 Ours 53.3 74.5 81.8 13.4156 

Ours fast 53.3 74.5 81.8 7.8118 

CUHK03(manual) Ours 26.7 54.7 69.8 25.4500 

Ours fast 26.6 54.8 69.6 12.7273 

v  

q  

m  

a  

r  

p  

d

4

 

t  

a  

g  

c  

1  

m  

d  

a  

d  

I  

h

5

ared with M3TCP 4 [34] that learns both the global full-body and

ocal body-parts features via CNN. It verifies the fact that currently

he deep learning based method cannot work well on small dataset

or person re-id. 

CUHK01. Compared with the above two datasets, there are

ore number of identities on CUHK01 dataset. Nevertheless, the

ingularity problem still exists in the dataset (refer to Fig. 1 ). We

ompare the classical and state-of-the-art results shown in Table 7 .

he results show clearly that both for metric learning based meth-

ds and state-of-the-art methods, our method achieves the best

esults at Rank 1, Rank 5 and Rank 10. Specifically, our method

utperforms deep learning based method M3TCP [34] with a large

argin of 26.0% at Rank 1. 

CUHK03. It is one of the largest datasets in person re-id but

here still exists the singularity problem in this dataset (refer to

ig. 1 ). We conduct experiments on both CUHK03(manual) and

UHK03(detected) datasets, with comparison to several traditional

nd deep learning based state-of-the-art methods. The experimen-

al results are shown in Table 8 . Compared with the traditional

ethods, our method achieves the best accuracy at all Rank on

UHK03(manual) dataset and the best accuracy at Rank 10 on

UHK03(detected) datasets. However, deep learning based meth-

ds show better performance than traditional methods. In deep

earning models, almost ten millions of parameters are learned and

ore information from data can be obtained so that the model has

etter generalization ability. Without doubt, it is coming from a

remise that the model is trained on the large dataset. In addition,
4 In M3TCP, more than one million of parameters are learned and three hype- 

arameters require to be set, in contrast, there is only about 0.06 million parame- 

ers for learning and one kernel parameter for setting in the proposed method with 

usion pattern. 

 

i  
arious hyper-parameters such as batch size and learning rate re-

uire to be set. Compared with deep learning based methods, our

ethod is much simpler, fewer number of parameters are learned

nd there is only one kernel hyper-parameter, meanwhile the accu-

acy at Rank 10 can achieve 97% that only decreases by 1.4% com-

ared to the best result from MuDeep [14] on CUHK03(manual)

ataset. 

.2.4. Comparison with fast version 

A fast version for our method is introduced in Section 3.5 . In

his section, we analyze its computational complexity, accuracy

nd run time. Comparison in the computational complexity 5 is

iven in Table 9 . Ignoring low order terms, we compute the overall

omputational complexity of normal version and fast version about

8 mn 2 + n 3 and 5 mn 2 + 6 n 3 , respectively. Compared with the nor-

al version, the computation complexity of the fast version is re-

uced by 50%. Table 10 presents the comparison in the accuracy

nd run time. The experiments are conducted with GOG feature

escriptor on a PC with Intel Core CPU (4GHz × 8) and 16GB RAM.

t can be seen that the fast version has the same accuracy with a

alving of run time. 

. Conclusion 

In this paper, a pseudo-inverse LDA based person re-id method

s proposed to solve the singularity problem in person re-id by
5 The interested reader can refer to [7] for more detailed theoretical analysis. 
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computing an optimal orthogonal transformation based on the si-

multaneous diagonalization of three scatter matrices. Furthermore,

in consideration of the non-linearity in person re-id, we develop a

non-linear model by learning the orthogonal transformation in ker-

nel space, thus improve the effectiveness of the proposed method;

we also develop a fast version for learning the transformation aim-

ing to improve the efficiency of the proposed method. A closed-

form solution is provided in the proposed method in which there

is no parameters required to tune, so the proposed method has ad-

vantages of simplicity and high-efficiency. Extensive experiments

on four datasets show that the proposed method outperforms

the state-of-the-art methods. We also conduct the comparison ex-

periment with kernel version and fast version for the proposed

method, validating the superiority of these versions. 

The singularity problem commonly exists in image classification

and retrieval. Since the feature vectors extracted from the image

are generally high dimensional for more accurately representing

appearance of content in image, and the number of training sam-

ples is limited by the time-consuming of sample labeling and is

generally far less than the dimension of feature vector, which is

very much similar to the situation in person re-id. The proposed

method focusing on solving the singularity problem in person re-id

could give some inspiring ideas about solving this common prob-

lem existing in image classification and retrieval. By means of la-

beled samples, the optimal orthogonal transformation is learned

in the proposed method. However, in some cases, there are very

small numbers of labeled samples and large numbers of unlabeled

samples in reality. In view of this, in the future work, we will fo-

cus on the semi-supervised way to solve the singularity problem in

person re-id. For example, we can employ label propagation tech-

nology to propagate the label information from labeled samples to

unlabeled samples and further develop the proposed method into

a semi-supervised method. 
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Appendix 

For Eq. (20) , we now present a detail derivation. According to

Eq. (19) , we have 

( l �) T S �w 

l � = ( l �) T 
k ∑ 

j=1 

n i ∑ 

i =1 

[
�(x j 

i 
) − �( c ( j) ) 

]
×

[
�(x j 

i 
) − �( c ( j) ) 

]T 
l �, 

( l �) T S �t l � = ( l �) T 
n ∑ 

i =1 

[ �( x i ) − �(c) ] [ �( x i ) − �(c) ] 
T 

l �. (27)

We feed l � = 

∑ n 
i =1 αi �( x i ) into the above equation and have 

( l �) T S �w 

l � = αT �(X ) 
T 

k ∑ 

j=1 

n i ∑ 

i =1 

[
�(x j 

i 
) − �( c ( j) ) 

]
×

[
�(x j 

i 
) − �( c ( j) ) 

]T 
�(X ) α

= αT 	�
w 

	�
w 

T 
α, 

( l �) T S �t l � = αT �(X ) 
T 

n ∑ 

i =1 

[ �( x i ) − �(c) ] [ �( x i ) − �(c) ] 
T 
�(X ) α

= αT 	�
t 	

�
t 

T 
α, (28)

where 
�
w 

= 

k ∑ 

j=1 

n i ∑ 

i =1 

[ 
�(X ) 

T �(x j 
i 
) − 1 

n i 

∑ n i 

q =1 
�(X ) 

T �(x j q ) 
] 

= 

k ∑ 

j=1 

n i ∑ 

i =1 

[ 

k (X, x j 
i 
) − 1 

n i 

n i ∑ 

q =1 

k (X, x j q ) 

] 

= K I − K B, 

�
t = 

n ∑ 

i =1 

[ 

�(X ) 
T �(x i ) −

1 

n 

n ∑ 

q =1 

�(X ) 
T �(x q ) 

] 

= 

n ∑ 

i =1 

[ 

k (X, x i ) −
1 

n 

n ∑ 

q =1 

k (X, x q ) 

] 

= KI − KO. (29)

nd I ∈ R 

n ×n is a identity matrix, B = diag( B 1 , · · · , B k ) ∈ R 

n ×n for

hich B i ∈ R 

n i ×n i with all terms equal to 1 
n i 

, and O ∈ R 

n ×n with all

erms equal to 1 
n . 

Then, we have 

( l 
�
) T S �w 

l 
� = αT [ K(I − B ) (I − B ) T K] α, 

( l 
�
) T S �t l 

� = αT [ K(I − O ) (I − O ) T K] α. (30)

ince S �t = S �
b 

+ S �w 

, it follows that 

( l 
�
) T S �b l 

� = αT [ K(B − O ) (B − O ) T K] α. (31)
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