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Abstract. Person re-identification is the problem of matching pedestri-
ans under different camera views. The goal of person re-identification is
to make the truly matched pedestrian pair rank as the first place among
all pairs, with the direct translation in math language, which equals that
the distance of matched pedestrian pair is the minimum value of the
distances of all pairs. In this paper, we propose a novel metric learn-
ing method for person re-identification to learn such an optimal feature
mapping function, which minimizes the difference between the distance
of matched pair and the minimum distance of all pairs, namely Ranking
Loss. Furthermore, we develop an improved version of ranking loss by
using p-norm as a smooth approximation of minimum function, with the
advantage of manipulating parameter p to control the distance margin
between matched pair and unmatched pair to benefit the re-identification
accuracy. We also present an efficient solver using only a small portion of
pairs in computation, achieving almost the same performance as using all.
Compared with other loss function, the proposed ranking loss optimizes
the ultimate ranking goal in the most direct and intuitional way, and it
directly acts on the whole gallery set efficiently instead of comparatively
measuring in small subset. The detailed theoretical discussion and exper-
imental comparisons with other loss functions are provided, illustrating
the advantages of the proposed ranking loss. Extensive experiments on
two datasets also show the effectiveness of the proposed method com-
pared to state-of-the-art methods.

1 Introduction

Person re-identification (re-id), which addresses the problem of identifying the
same person captured from different non-overlapping cameras, is a valuable
research subject for building the intelligent video monitoring system. It is also
a challenging research subject due to the significant intra-class variations on
visual appearance caused by the change in illumination, occlusion and person
pose across different views. Nevertheless, person re-id has made great progress
in recent years thanks to the continuous efforts of the researchers.

Most existing person re-id studies focus on metric learning in the supervised
setting [1–4]. The training set with labelled matching pairs for each pair of
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camera views is fully utilized to learn an optimal mapping function from the
original feature space to the new feature space, so that positive pair (i.e. a pair
of people from different views sharing the same identity) has a smaller distance
than negative pair (i.e. a pair of people from different views sharing the different
identity) in the new feature space.

Towards this end, the most direct way is to learn a mapping function, with
which the distance of positive pair equals the minimum value of distances of all
pairs with the given query person. Based on this, we propose a novel loss function
for person re-id, minimizing the difference between the distance of positive pair
and the minimum value of distances of all pairs. Other loss functions for person
re-id are modeled with different format of setting constraints on distances, such
as, the distance of positive pair is lower than a given threshold and the distance
of negative pair is greater than the threshold [5,6], or the distance of positive
pair is lower than the distance of negative pair with a margin [1,2,7]. Although
these loss functions ultimately optimize towards the same goal as the proposed
loss function, i.e. positive pair has a smaller distance than negative pair, they
still achieve the ranking goal in a relatively indirect way, for instance, measuring
comparative similarity in a huge number of small subset (e.g. triplet loss or
quadruplet loss) or setting a insufficiently necessary hard threshold (e.g. binary
classification loss). The proposed loss function works toward the ranking goal
directly to push the positive pair rank as the first place among all, and can
obtain better performance in person re-id than other loss functions. In addition,
since the proposed loss function acts directly on the whole set efficiently, the
sample imbalance problem occurred in implementing other loss functions does
not exist in the context of the proposed method.

To achieve better model optimization, considering the properties of non-
smooth and non-differentiable at some points for the minimum function in the pro-
posed loss function, p-norm, an analytic function, with great differentiable prop-
erty, is utilized as a smooth approximation of minimum function (p < 0). The
introduced parameter p is set by theoretic analysis rather than choosing carefully
like the other loss functions. And it is worth mentioning that, the relatively larger
value for the parameter p (i.e. p → 0) results in a strong constraint on a larger
margin between the distances of positive pairs and negative pairs, that is, further
enlarging inter-class variations and reducing the intra-class variations, which is
effective for improving the accuracy of model in person re-id. Furthermore, we also
develop an efficient solver for the model where only a small part of pairs are used
in the computation. It can obtain almost the same performance on the testing set
compared to the normal solver by using all negative pairs.

In summary, we make three contributions in this paper as follows:

(1) We propose a novel ranking loss function for metric learning based person
re-id, which optimizes the ultimate re-id ranking in the most direct way.

(2) We utilize p-norm to develop a smooth and continuously differentiable ver-
sion of the proposed ranking loss function, with the advantage of controlling
the distance margin by manipulating parameter p to achieve better gener-
alization ability.
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(3) We propose an efficient optimization algorithm by using a small portion of
pedestrian pairs instead of using all pairs in computation.

2 Related Work

In general, person re-id problem is solved by three crucial steps: feature extrac-
tion [8–10], metric learning [1,3,5–7,11] and re-ranking [12–14]. Extensive meth-
ods have been proposed focusing on one or more of the steps. For a detailed
review of person re-id, the interested readers can refer to [15]. In this section,
we only briefly review some representative metric learning based methods that
are related to our work.

We can divide metric learning based person re-id methods into two broad cat-
egories: closed-form solution based and iterative-learning based. The closed-form
solution based methods [9,11,16] are usually related to Linear Discriminative
Analysis technology and the optimal solution can be obtained by the generalized
eigenvalue decomposition. However, because the number of samples is generally
lower than the dimension of samples’ feature vector in person re-id, there is
usually the singular problem in this kind of methods. In the iterative-learning
based methods [1,3,5–7], an objective function is usually constructed and solved
by iterative optimization algorithms to satisfy the constraints on samples of the
training set. According to the objective function, the iterative-learning methods
can be summarized as three main types: the binary classification loss based [5,6],
the triplet loss based [1,7] and the quadruplet loss based [2]. In PCCA [5], the
objective function is optimized so that the distances of positive pairs are lower
than a given threshold and the distances of negative pairs are greater than the
threshold. Compared with the binary classification loss with a fixed threshold,
a generalized similarity metric for person re-id was proposed with an adaptive
threshold [6]. Ding et al. [7] proposed a deep neural network where the relative
distances between positive pairs and negative ones are maximized. Zhou et al.
[4] presented a novel set to set (S2S) loss layer in deep learning framework that
focuses on maximizing the margin between the intra-class set and inter-class
set, while preserving the compactness of intra-class samples. In addition to the
triplet loss based methods, some methods have been proposed to combine and
jointly optimize the binary classification loss and the triplet loss for pursuing
better performance [17,18]. Recently, Chen et al. [2] proposed a quadruplet deep
network by introducing a quadruplet ranking loss to achieve a smaller intra-class
variation and a larger inter-class variation.

3 Ranking Loss Function for Person Re-identification

3.1 Problem Description

Given a query person q from one camera view and a candidate set with N people
G = {gi |i = 1, 2, . . . , N } from another camera view. The distance between q and
gi is measured by

dL(q, gi) = ‖L(xq − xgi
)‖2, (1)
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where xq and xgi
are the feature vector of the person q and gi obtained by the

feature extraction step. L is a feature transformation matrix.
A ranking list L(q,G) = {gr

1, g
r
2, . . . , g

r
N} can be obtained by the distances

between the query person and the candidates in ascending order, i.e. d(q, gr
1) <

d(q, gr
2) < . . . < d(q, gr

N ). For person re-id, we hope that the candidate having
the same identity with the query person q (also known as the positive sample)
is closer to the top of the ranking list. Certainly, it will be perfect in the case
where the positive sample ranks first. To do this, we develop a model to learn
an optimal feature transformation L by the training set.

3.2 Modeling

Without loss of generality, we introduce our method in this subsection based on
the assumption that there is the case of single-shot, i.e one query person shares
the same identity with only one gallery person in the candidate.

For each query person qi (i = 1, . . . , M), in the candidate set G, there are
always one person denoted by gi+ having the same identity with qi, and all
the rest of people having the different identity with qi denoted by gi−

j (j =
1, 2, . . . , N − 1). With the goal of prioritizing the positive sample gi+ on the
ranking list, we find an optimal feature transformation L by which the distance
between feature vectors of qi and positive sample gi+ is the minimum value of
distances between feature vectors of qi and each sample in the set G. So, the
objective function is deduced:

min
L

f∗(L) =
∑M

i=1
[dL(qi, g

i+) − min
gn∈G

dL(qi, gn)]. (2)

For the convenience of expression, we simplify the notation dL(qi, g
i+) as dqi,gi+

and the simplifications of all other dL(·, ·) are similar to this below.
When min

gn∈G
dqi,gn

= dqi,gi+ for each term in f∗(L) , that is, all positive samples

rank first in the corresponding ranking list, the objective function reaches its the
lower bound value of zero. However, the minimum function in Eq. 2 is non-smooth
and non-differentiable at some points. As a result, it is an intractable problem
to solve the model in Eq. 2. For this, we use p-norm as a smooth approximation
of the minimum function:

(
∑

gn∈G (dqi,gn
)p)

1
p ≈ min

gn∈G
dqi,gn

. (3)

Then, the new objective function is given:

min
L

f(L) =
∑M

i=1
[dqi,gi+ − (

∑
gn∈G (dqi,gn

)p)
1
p ]. (4)

This model in Eq. 4 not only inherits the advantage of the one in Eq. 2, i.e.
learning the transformation L by a direct way with request of the positive pair
being in the top rank, but also is favorable for solving the optimal transforma-
tion L. In addition, the introduced parameter p controls the degree of margin
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between distances of positive pair and negative pair, resulting in more flexibility
for model to obtain a better performance.

Now, we elaborate on why the model in Eq. 4 has these advantages. For this,
we reformulate p-norm in Eq. 3 as:

(
∑

gn∈G (dqi,gn
)p)

1
p = [(dqi,gi+)p + (dqi,g

i−
1

)p + . . . + (dqi,g
i−
N−1

)p]
1
p

= [(dqi,gi+)p(1 + (
d
qi,g

i−
1

dqi,g
i+

)p + . . . + (
d
qi,g

i−
N−1

dqi,g
i+

)p]
1
p .

(5)

Substituting Eq. 5 into Eq. 4, we can find that the minimum value of the

objective function f(L) is reached if and only if (
d
qi,g

i−
t

dqi,g
i+

)p = 0 (∀t = 1, . . . , N − 1)

for each person qi. Since we want to achieve dqi,gi+ < dqi,g
i−
t

(∀t = 1, . . . , N − 1)

for each person qi, meaning
d
qi,g

i−
t

dqi,g
i+

> 1 for all terms, it is possible to satisfy

(
d
qi,g

i−
t

dqi,g
i+

)p = 0 only if p < 0. It follows that the model in Eq. 4 with a smooth

and continuously differentiable loss function can achieve same functionality as
the one in Eq. 2, as long as we choose an appropriate parameter of p.

Based on the basic constraint of p < 0, there are two cases where (
d
qi,g

i−
t

dqi,g
i+

)p =

0 is satisfied as follows:

(1) when p → −∞, the value of
d
qi,g

i−
t

dqi,g
i+

just need to be slightly larger than 1.

It means that the margin between distances of positive pairs and negative
pairs is very small;

(2) when p → 0, the value of
d
qi,g

i−
t

dqi,g
i+

need to be much larger than 1. It means

that the margin between distances of positive pairs and negative pairs is
big.

It is obvious that when we optimize the objective function and search its min-
imum solution in Eq. 4, the value of p controls the degree of margin between
distances of positive pairs and negative pairs. We have the flexibility of choosing
p based on the demand for the margin.

We argue that the performance of model on the testing set can be improved by
further enlarging the inter-class variations and reducing the intra-class variations
[19]. Therefore, it is beneficial to set p as a relative large value (i.e. set p → 0)
in the experiments. However, it is imperative to note here that, with p getting
closer and closer to zero, the correspondingly learnt transformation L results

in
d
qi,g

i−
t

dqi,g
i+

→ ∞ for satisfying (
d
qi,g

i−
t

dqi,g
i+

)p = 0, which means the denominator

dqi,gi+ → 0 and the constraint on the value of the numerator dqi,g
i−
t

is weaken
in the process of optimization. To avoid two undesirable consequences: (1) the
model overfitting, (2) lose the control of the margin between distances of positive
pairs and negative pairs, we propose a safer choice to set p → 0 but not getting
closer to the value of zero. In the experiments, we set p = −5 and provide a
detailed validation for the performance of the proposed method with different
value of p, to justify our analysis above.
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3.3 Optimization

It is worth noting that we improve the model from Eq. 2 to Eq. 4 with a smooth
and continuously differentiable objective function at the cost of increased compu-
tational complexity. Specifically, all corresponding negative pairs for each pos-
itive pair are need to be traversed for optimizing the model in Eq. 4. On the
contrary, only one negative pair for each positive pair involves in the computa-
tion for optimizing the model in Eq. 2.

Therefore, in the process of optimizing the model in Eq. 4, we simplify the
computation and only the first k sample pairs with smallest distances for each
positive pair are used in the computation. We use the gradient descent scheme
with line search to solve the model and the simplified objective function at t-th
iteration is formulated as:

ft(L) =
∑M

i=1
[dqi,gi+ − (

∑
gn∈Ωi,j,k

t

(dqi,gn
)p)

1
p ], (6)

where Ωi,j,k
t ⊆ G includes first k sample pairs with smallest distances obtained

by the feature transformation Lt−1. If k = N , we have Ωi,j,k
t = G with which

the optimization process is equivalent to the one in Eq. 4; if k = 1, the model
reverts to the one in Eq. 2.

The corresponding gradient at t-th iteration is derived as follows:

∂ft(L)
∂L

=
∑M

i=1
[πL(qi, g

i+) − ρ(qi, g
i+)

∑
gn∈Ωi,j,k

t

(dqi,gn
)p−1

πL(qi, gn)], (7)

where πL(·, ∗) is the derivative of distance measurement dL with respect to L:

πL(·, ∗) = 2L(x· − x∗)(x· − x∗)T , (8)

and ρ(qi, g
i+) is a constant:

ρ(qi, g
i+) = (

∑
gn∈Ωi,j,k

t

(dqi,gn
)p)

1
p−1. (9)

With each iteration to approximate the optimal solution, the positive pair
(qi, g

i+) is constantly pushed into the first rank with a minimum distance among
the distances of all sample pairs (qi, gn), where n ∈ G. It follows that although
we discard some sample pairs in the process of optimization, it’s still equivalent
to solving the model with all sample pairs. In experiments, we set k = 2, and
the related comparison experiments are carried out and prove that the proposed
method with k = 2 can achieve almost the same performance and shorter running
time compared to the one with k = N .

For convenience, we name the proposed method as R-Loss below. The overall
optimization process of R-Loss is shown in Algorithm 1.

3.4 Model Extension

In this section, we extend our method to the general case: multi-shot, i.e for a
query person, there are more than one positive sample in the candidate set.
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We formally express this case. For each query person qi (i = 1, . . . , M), there
are several positive samples denoted by Gi+ = {gi+

j ∈ G |j = 1, 2, . . . , N i+}, and
a majority of negative samples denoted by Gi− = {gi−

j ∈ G ∣∣j = 1, 2, . . . , N i− },
where N i+ + N i− = N .

For the case of single-shot, we hope that the positive sample can rank first in
the ranking list for the test set, so the distance of positive pair is the minimum
of the distances of all pairs is our objective in the training process. Similarly, for
the case of multi-shot, we certainly hope that one of the positive samples can
rank first for the test set. For obtain a better performance in the test set, we
propose a stronger constraint on the training set that is all positive sample pairs
be in the front of the ranking list. For this, we learn the optimal transformation
L, so that the distance of each positive pair is the minimum of the distances of
this positive pair and all negative pairs with the same query person. Therefore,
the objective function is deduced:

min
L

fex(L) =
∑M

i=1

∑
gi+
j ∈Gi+

[dqi,g
i+
j

− (
∑

gn∈{gi+
j }∪Gi− (dqi,gn

)
p
)

1
p
]. (10)

Algorithm 1. The R-Loss gradient descent algorithm
Input:

The query set Q from one camera and the candidate set G from another camera,
with label information.
Initialize L0 = I (unit matrix), η= 10−4 and t = 1.

Output:
The optimal transformation matrix L.

1: Compute f0(L0) and ∂f0(L)
∂L

|L=L0 according to Eq.6 and Eq.7, respectively.
2: do
3: Update Lt = Lt−1 − η

∂ft−1(L)

∂L

∣
∣
L=Lt−1 .

4: Compute ft(Lt) according to Eq.6.
5: if ft(Lt) ≥ ft−1(Lt−1)
6: η ← 0.9η.
7: if η < 10−20

8: L = Lt.
9: break.

10: end
11: Return the 3-th step.
12: else
13: η ← 1.1η.
14: end
15: if ft−1(Lt−1) − ft(Lt) < 10−5

16: L = Lt.
17: break.
18: end
19: Compute ∂ft(L)

∂L
|L=Lt according to Eq.7.

20: Update t ← t + 1.
21: end
22: return The learnt optimal transformation L.
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When N i+ = 1, the model in Eq. 10 reverts to the one in Eq. 4. We use the
gradient descent scheme to solve the model in Eq. 10. The solving process is
similar to Algorithm 1 and is not be repeated here.

4 Discussion About Different Loss Functions

In this section, we present a detailed discussion about the differences between
the proposed ranking loss function and the existing three classical loss functions:
the binary classification loss, the triplet loss and the quadruplet loss. Figure 1
illustrates how the relationships of distances between positive pairs and negative
pairs are constrained for these loss functions.

Fig. 1. The relationships between positive pairs’ distances and negative pairs’ distances
for loss functions. The blue line and point represent the positive pair and the red ones
represent the negative pair. Better viewed in colour. (Color figure online)

First of all, we formalize the three loss function with the general case of
multi-shot as follows:

(1) the binary classification loss function,

min
L

f∗
binary(L) =

∑M

i=1

∑N

j=1
max(0, yij(dqi,gj

− c)), (11)

where yij =
{

1 gj ∈ Gi+

−1 gj ∈ Gi− is a sign function and c is a margin threshold.

Considering the non-smooth and non-differentiable properties of hinge function
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h(x) = max(0, x), there is usually another form of the binary classification loss
function used for person re-id,

min
L

fbinary(L) =
∑M

i=1

∑N

j=1
lβ(yij(dqi,gj

− c)), (12)

where lβ(x) = 1
β log(1 + eβx) is a smooth approximation of hinge function with

lim
β→∞

lβ(x) = max(0, x).

(2) the triplet loss function,

min
L

ftriplet(L) =
∑M

i=1

∑
gi+
j ∈Gi+

∑
gi−
j ∈Gi− max(0, dqi,g

i+
j

− dqi,g
i−
j

+ c),

(13)
where c is a margin threshold.

(3) the quadruplet loss function,

min
L

fquadruplet(L) =
∑M

i=1

∑
gi+
j ∈Gi+ (

∑
gi−
j ∈Gi− max(0, dqi,g

i+
j

− dqi,g
i−
j

+ c1)

+
∑

v �=i,gn∈Gv−,gn /∈Gi+ max(0, dqi,g
i+
j

− dqv,gn
+ c2)),

(14)
where c1 and c2 are the margin thresholds.

For the binary classification loss function, just the upper bound of positive
pairs’ distances and the lower bound of negative pairs’ distances are constrained
by the threshold value of c, and the margin between the positive pair and negative
pair is not constrained. Instead, the value of p controls the margin in the proposed
loss function and we can set the value of p resulting in a large margin between
positive pair and negative pair in the new learnt space, which is profitable for
performance in person re-id.

For the triplet loss function, the value of c directly determines the margin
between positive pair and negative pair in the new learnt space. A small value
of c results in the small margin between positive pair and negative pair and vice
versa. However, in generally we don’t know what the value of margin should
be, so it is difficult to choose a certain value of margin (i.e. set the value of c).
Instead, the value of p controls the degree of the margin in the proposed loss
function, and we know that a large margin in the new learnt is advantage for
performance, and based on this, we can set the value of p.

For the quadruplet loss function, a stricter constraint on margin is estab-
lished. And similar to the triplet loss function, it is difficult to choose the appro-
priate values of margin for the quadruplet loss function. Even worse is that there
are two parameters c1 and c2 which are need to be set.

Our proposed ranking loss function, as well as the three loss functions, all
aim to drive the distance of positive pair to the minimum of the distances of all
pairs for each query person. But for different loss functions, there are different
ways to reach the goal. And it is the most direct way for the proposed ranking
loss function, which is more accordant with person re-id problem. In addition,
from Eqs. 11–14 we can see that all negative pairs involve in the computation
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for each positive pair, resulting in the high demand of computing. Therefore,
researchers proposed to solve the model with one positive pair vs. a fraction of
negative pairs for the binary classification loss function, one positive pair vs. a
hardest negative pair (i.e. a negative pair with the smallest distance among all
negative pairs) for the triplet loss function and quadruplet loss function. Even
so, there is the problem of sample imbalance in the binary classification loss
function, and the improved models for the triplet loss function and quadruplet
loss function are intractable to solve due to the operation of finding the hardest
negative pair. Instead, there does not exist the problem of sample imbalance in
the proposed ranking loss function since we just impose constraints on the rank
of positive pair, meanwhile, only two pairs for each positive pair are involved in
the computation for our model, with almost the same performance and higher
computational efficiency compared to using all pairs.

5 Experiments

In this section, we conduct experiments from three aspects: (1) evaluate the
performance of the proposed method with different settings; (2) compare the
proposed method with other loss function based methods; (3) compare the pro-
posed method with state-of-the-art methods. Before starting, we make a detailed
introduction for the settings relevant to the experiments.

5.1 Experimental Settings

Datasets. Two publicly available datasets are used in experiments: VIPeR [20]
and CUHK01 [21]. The VIPeR dataset includes 632 pedestrian image pairs
captured by two different cameras in an outdoor environment with only one
image per person for each view. The CUHK01 dataset has 971 identities taken
from two camera views in a campus environment with 2 images of every person
under each camera view.

Feature. There are three feature descriptors used in the experiments: Local
Maximal Occurrence (LOMO) [9], Gaussian Of Gaussian (GOG) [22] and His-
togram of Intensity Pattern & Histogram of Ordinal Pattern (HIPHOP) [23]. For
the LOMO descriptor, the horizontal occurrence of local features described by
the Scale Invariant Local Ternary Pattern (SILTP) and HSV histogram are max-
imized to make a stable representation against viewpoint changes. For the GOG
descriptor, the person image is described by cascaded Gaussian distributions in
which both means and covariances are considered. For HIPHOP descriptor, it
describes the person image based on AlexNet [24] convolution neural network.

Evaluation Protocol. We evaluate the performance of person re-id methods
by Cumulative Matching Characteristics (CMC) where Rank r represents the
expectation of correct match at r-th in the ranking list. The reported results
are the average results of 10 times of the partition of training set and test set.
For each partition, similar to most publications, the identities are randomly
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divide into two equal parts used for training set and test set in VIPeR dataset
respectively; 485 identities and 486 ones are used for training and testing with
single-shot (M1) and multi-shot (M2) setting in CUHK01 dataset.

5.2 Analysis of the Proposed Method

p-norm vs. min. We aim to learn an optimal feature transformation L by which
the distance of positive pair is the minimum value of distances of all sample pairs
with the same query person in the new feature space. The p-norm is used as a
smooth approximation of the minimum function in Eq. 3. The superiority of
p-norm compared with the minimum function has been analyzed theoretically
in Sect. 3.2. In this subsection, we validate the derived theoretical results by
the experiment with GOG feature descriptor employed. The CMC curves of R-
Loss(p-norm) and R-Loss(min) on VIPeR and CUHK01 datasets are reported
in Fig. 2. We can observe that, R-Loss(p-norm) improves the performance of
R-Loss(min) by a large margin on all datasets. By using p-norm as a smooth
approximation of minimum function, the Rank 1 increases 24.55%, 17.53% and
20.02% on VIPeR, CUHK01(M1) and CUHK01(M2) datasets, respectively. It
reveals that the optimization algorithm by using the gradient descent scheme
in the R-Loss(p-norm) model can converge to a better solution than in the R-
Loss(min) model.

Fig. 2. Comparison of CMC curves for the proposed method by using p-norm function
and minimum function.

On the Parameter p. In Sect. 3.2, we present a detailed analysis about the
selection of parameter p and draw a conclusion that a larger value of p but not
getting closer to the value of zero based on a basic constraint p < 0 is beneficial to
the accuracy of person re-id. In this subsection, we compare the performance of
the proposed R-Loss method with different values of p on VIPeR and CUHK01
datasets, and LOMO descriptor and GOG descriptor are used as the feature
representation of person, respectively. As shown in Fig. 3, when p → −∞, the
accuracy of Rank1 gradually degrades on all datasets. More specifically, when
p < −10, the accuracy rapidly degrades on all datasets. It indicates that a lower
value of p with p → −∞ is disadvantage to the performance. Besides, we can also
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see that the accuracy of Rank1 degrades rapidly with p = −1 on CUHK01(M1)
and CUHK01(M2) datasets. Although the proposed method with p = −1 has
well performance on VIPeR dataset, setting the value of p close to the value of
zero is a riskier choice. Therefore, we set p = −5 in the experiments.

Fig. 3. The performances of Rank1 for the proposed method with different value of p.

On the Parameter k. In the process of optimizing the model in Eq. 4, we
introduce a simplified algorithm to find the optimal solution. At each iteration of
optimization algorithm, the first k sample pairs with smallest distances for each
positive pair are used in the computation. In this subsection, we investigate the
effects of k on the performance and running time of the proposed R-Loss method.
Here, we use the LOMO and GOG feature descriptors for representing the person
image, respectively, and the experiments are carried out on VIPeR and CUHK01
datasets. We show the results in Table 2 by varying k from 2 to N . We can see
that the proposed method is kind of invariant to k on performance (fluctuate
around 2%), and the running time gradually decreases with the decrease of k.
When k = N , all samples are used for optimizing model so that the optimization
process become much more complex, the performance might slightly be affected.
As a result, k = 2 is an optimal choice.

5.3 Comparison with Other Loss Function Based Methods

In this paper, we propose a novel metric learning based person re-id method by
optimizing a ranking loss function. Compared with the binary classification loss
based [5,6], the triplet loss based [1,7] and the quadruplet loss based methods
[2], there is no need to select the parameters carefully and no problem of sample
imbalance in the proposed ranking loss based method. In the following, we will
verify a more critical advantage of the proposed method compared with classical
loss function based methods: a better generalization ability on the testing set
(Table 1).

For a fair comparison, GOG feature descriptor is used in this comparison
experiment. Similar to most of methods, we set c = 1 for both the binary clas-
sification loss function and the triplet loss function, and c1 = 1, c2 = 0.5 for the
triplet loss function. The comparison results are shown in Table 3 the proposed
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Table 1. Effects of k on the performance and running time of the proposed R-Loss
method. Running time refers to one iteration time of optimization algorithm. k = N
represents the case for using all samples in optimization.

k VIPeR CUHK01(M1) CUHK01(M2)

GOG LOMO GOG LOMO GOG LOMO

r = 1 T(s) r = 1 T(s) r = 1T (s) r = 1T (s) r = 1T (s) r = 1T (s)

2 47.59 0.39 39.49 0.36 55.34 9.07 51.55 9.35 67.90 9.34 64.81 9.29

5 47.82 0.77 39.49 0.37 55.98 9.28 51.86 9.44 69.14 9.50 65.84 9.49

10 48.82 0.81 39.75 0.38 56.19 9.57 51.65 9.58 68.52 9.64 66.26 9.65

N 46.61 1.48 38.32 1.42 54.33 32.84 50.41 32.70 65.84 32.39 64.20 32.63

Table 2. Comparison with methods based on other loss function on VIPeR and
CUHK01 datasets. The best results (%) are respectively shown in red. Better viewed
in colour.

Methods VIPeR CUHK01(M1) CUHK01(M2)

r= 1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

Binary 46.23 77.34 87.78 93.64 32.33 51.32 60.91 71.71 37.02 59.63 69.84 80.12

Binary (smooth) 46.46 78.42 88.42 94.43 51.44 76.14 84.16 90.63 62.61 84.73 90.16 94.67

Triplet 30.09 62.41 76.93 87.09 45.54 69.25 78.05 85.93 54.69 78.07 86.13 91.91

Quadruplet 33.01 66.11 77.91 88.54 36.00 59.14 68.75 77.91 44.14 69.03 78.48 86.26

R-Loss 47.59 78.86 88.42 93.96 55.34 77.51 85.14 91.16 66.52 86.13 91.58 95.29

R-Loss method outperforms other loss function based methods on all datasets.
Specifically, our method achieves about 3.9% gain at Rank 1 compared with
the second result from the binary classification loss (smooth) based method on
CUHK01 dataset with single-shot and multi-shot setting.

5.4 Comparison with State-of-the-Art Methods

In this section, we evaluate our method against the state-of-the-art person re-id
methods. The experiment results of our method are presented by a simple fusion
of scores obtained by the three types of features mentioned above.

Result on VIPeR Dataset. We compare the proposed method with 13 existing
person re-id methods. From the results shown in Table 4, we can see that our
method achieves the highest performance at Rank1, Rank5 and Rank20. More
specifically, our method beats the closest competitor EBG [25] by 1.11% at
Rank1. EBG [25] as a feature extraction based method where a deep neural
network was proposed to solve the background bias problem, still yield the poorer
results compared with our proposed method based on classical metric learning
technology. It indicates that the deep learning based methods cannot currently
work well on the small person re-id dataset.

Result on CUHK01 Dataset. The proposed R-Loss method is compared with
traditional methods and deep learning based methods in CUHK01 dataset with
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Table 3. Comparison with the state-of-the-art methods on VIPeR dataset. The best
results for deep learning based and traditional methods (%) are respectively shown in
boldface and red. Better viewed in colour.

Method Reference r = 1 r = 5 r = 10 r = 20

Deep learning IDLA 2015CVPR [26] 34.81 63.60 75.63 84.49

Deep Ranking 2016TIP [27] 38.40 69.20 81.30 90.40

TCP 2016CVPR [28] 47.80 74.70 84.80 91.10

PDC 2017ICCV [29] 51.27 74.05 84.18 91.46

DeepAlign 2017ICCV [30] 48.70 74.70 85.10 93.00

EBG 2018CVPR [25] 51.90 74.40 84.80 90.20

MLS 2018CVPR [31] 50.10 73.10 84.35 –

MC-PPMN 2018AAAI [32] 50.13 81.17 91.46 –

Traditional WARCA 2016ECCV [33] 40.22 68.16 80.70 91.14

TMA 2016ECCV [34] 48.19 – 87.65 93.54

PatchM&LocalM 2017PR [1] 46.50 69.30 80.70 –

MVLDML+ 2018TIP [35] 50.00 79.20 88.50 94.70

GCT 2018AAAI [36] 49.40 77.60 87.20 94.00

R-Loss Our 53.01 83.07 90.82 96.27

Table 4. Comparison with the state-of-the-art methods on CUHK01 dataset. The best
results for deep learning based and traditional methods (%) are respectively shown in
boldface and red. Better viewed in colour.

Method Reference r = 1 r = 5 r = 10 r = 20

Deep learning IDLA 2015CVPR [26] 47.50 71.60 80.30 87.50

TCP 2016CVPR [28] 53.70 84.30 91.00 96.30

Deep Ranking 2016TIP [27] 50.40 70.00 84.80 92.00

DeepAlign 2017ICCV [30] 75.00 93.50 95.70 97.70

MC-PPMN 2018AAAI [32] 78.95 94.67 97.64 –

Traditional WARCA 2016ECCV [33] 65.64 85.34 90.48 95.04

PatchM&LocalM 2017PR [1] 53.50 82.50 91.20 96.10

GCT 2018AAAI [36] 61.90 81.90 87.60 92.80

MVLDML+ 2018TIP [35] 61.40 82.70 88.90 93.90

R-Loss Our 73.66 90.64 94.14 96.87

multi-shot setting. Table 4 shows that the best results are from the deep learning
based method MC-PPMN [32] where deep feature representations for semantic-
components and color-texture distributions are learned based on pyramid person
matching network. However, the proposed method is competitive among the
traditional methods at all Rank.
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6 Conclusions

In this paper, we propose a novel ranking loss function from a new perspective
to solve the person re-id problem. The loss function is optimized aiming to
make the distance of positive pair be the minimum value of distances of all
pairs with the given query person, which is more accordant with person re-id
problem. Moreover, we propose to use p-norm to approximate the minimum
function to obtain a smooth and continuously differentiable loss function, which
is favorable for model solution. In addition, just the first two sample pairs with
smallest distances are used in the process of model optimization for improving
the efficiency of model solution, with almost the same accuracies as the model
using all pairs. Extensive experiments with thorough analysis demonstrate that
the proposed R-Loss method achieves superior performance than state-of-the-art
methods on VIPeR and CUHK01 datasets. In future research, we will explore to
apply the ranking loss to deep learning scheme so that a competitive performance
can be achieved on the large datasets.

Acknowledgment. This work is supported by the National Key R&D Program of
China under Grant 2017YFC0803505. We appreciate Hao Dou’s help on this paper.
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