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Summary
Delivery accuracy of volu-
metric modulated arc therapy
is commonly assessed by
measurement-based patient-
specific quality assurance;
however, this process is labor
intensive and time
consuming. By using plan
complexity metrics as input
and gamma passing rate as
output, 1 regression model
and 1 classification model
were developed and vali-
dated technically and clini-
cally. The derived regression
model could accurately pre-
dict gamma passing rate for
the majority of volumetric
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Purpose: To assess the accuracy of machine learning to predict and classify quality
assurance (QA) results for volumetric modulated arc therapy (VMAT) plans.
Methods and Materials: Three hundred three VMAT plans, including 176 gyneco-
logic cancer and 127 head and neck cancer plans, were chosen in this study. Fifty-
four complexity metrics were extracted from the QA plans and considered as inputs.
Patient-specific QA was performed, and gamma passing rates (GPRs) were used as
outputs. One Poisson lasso (PL) regression model was developed, aiming to predict
individual GPR, and 1 random forest (RF) classification model was developed to clas-
sify QA results as “pass” or “fail.” Both technical validation (TV) and clinical valida-
tion (CV) were used to evaluate the model reliability. GPR prediction accuracy of PL
and classification performance of PL and RF were evaluated.
Results: In TV, the mean prediction error of PL was 1.81%, 2.39%, and 4.18% at 3%/
3 mm, 3%/2 mm, and 2%/2 mm, respectively. No significant differences in prediction
errors between TV and CV were observed. In QA results classification, PL had a high-
er specificity (accurately identifying plans that can pass QA), whereas RF had a higher
sensitivity (accurately identifying plans that may fail QA). By using 90% as the action
limit at a 3%/2 mm criterion, the specificity of PL and RF was 97.5% and 87.7% in TV
and 100% and 71.4% in CV, respectively. The sensitivity of PL and RF was 31.6% and
100% in TV and 33.3% and 100% in CV, respectively. With 100% sensitivity, the QA
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modulated arc therapy plans

with high specificity,
whereas the classification
model had higher sensitivity.
Machine learning is a useful
tool to reduce quality assur-
ance workload.
workload of 81.2% of plans in TV and 62.5% of plans in CV could be reduced by RF.
Conclusions: The PL model could accurately predict GPR for most VMAT plans. The
RF model with 100% sensitivity was preferred for QA results classification. Machine
learning can be a useful tool to assist VMAT QA and reduce QA workload. � 2019
Elsevier Inc. All rights reserved.
Introduction

Over the past 2 decades, there have been rapid de-
velopments in radiation therapy delivery techniques.
Compared with 3-dimensional conformal radiation ther-
apy, intensity modulated radiation therapy (IMRT),
including fixed-gantry IMRT and volumetric modulated
arc therapy (VMAT), provides better target coverage and
dose sparing to organs at risk.1,2 Fixed-gantry IMRT and
VMAT plans created by inverse planning algorithms
consist of highly modulated apertures with increased
dosimetric uncertainty and pose a great challenge to
treatment planning system (TPS), dose calculation, and
linear accelerator (Linac) performance.3,4 Comprehensive
quality assurance (QA) and quality control programs have
been developed to assess the reliability of treatment de-
livery and improve patient safety.5-8 Although questions
and concerns were raised by many studies,9-12 patient-
specific QA with gamma analysis is still the most widely
used QA method. Patient-specific QA is labor intensive
and time consuming and is unfavorable for busy radiation
therapy centers. Recently, researchers have shown an
increased interest in using machine learning to predict
patient-specific QA results.13-16

Valdes et al used the plan complexity metrics and
patient-specific QA results of 498 IMRT plans from mul-
tiple treatment sites to train a Poisson regression with Lasso
regularization (PL) model.13 The developed model could
accurately predict 3%/3 mm gamma passing rate (GPR)
with maximum errors smaller than 3%. The generalization
performance of this model was then tested in a multi-
institutional validation study; 86.33% (120 of 139) plans
had a prediction error smaller than 3.5%.14 The decreased
prediction accuracy may be due to different dose verifica-
tion methods used in different institutions. By using fluence
maps of IMRT plans as input, the convolution neural
network (CNN) model developed by Interian et al15 had
similar prediction accuracy compared with the previously
developed Poisson lasso model. However, more than 15
plans with prediction error higher than 3% were observed
in both the CNN and PL models, and the maximum pre-
diction error was higher than 5%. Instead of predicting
GPR for plans from multiple treatment sites, Tomori et al16

trained the CNN model with 60 prostate IMRT plans.
Planar dose distributions, geometric features of planning
target volume (PTV) and rectum, and MU for each field
were used as inputs. The maximum prediction errors were
3.0%, 4.5%, and 5.8% at 3%/3 mm, 3%/2 mm, and 2%/2
mm, respectively.

Previous studies have shown the potential of machine
learning models to accurately predict patient-specific QA
results. When deciding whether the plan can be delivered
accurately enough to be used for patient treatment, it is
critical to select the appropriate gamma criteria and toler-
ance/action limits. The American Association of Physicists
in Medicine TG 218 report recommended 95% and 90% as
the tolerance and action limits under a 3%/2 mm gamma
criterion, respectively.8 Therefore, the most important
function of a machine learning model is to find plans that
may fail to pass the tolerance/action limits before QA
measurements. However, the classification accuracy of
machine learning models under different gamma criteria
and tolerance/action limits was not fully investigated and
available in literature. Furthermore, previous studies were
only based on IMRT plans, and it is still unclear whether
the QA results of VMAT plans can be accurately predicted
or classified. To the best of our knowledge, this study is the
first to report machine learning algorithms used for virtual
VMAT QA and the sensitivity and specificity using
different gamma metrics.

In this study, 1 regression model and 1 classification
model were developed to predict patient-specific QA results
of VMAT plans for gynecologic (GYN) and head and neck
(H&N) cancer. The aims of this study were (1) to investi-
gate the accuracy of a machine learning model to predict
GPR of VMAT plans at different gamma criteria; (2) to
evaluate the sensitivity and specificity of machine learning
model to classify VMAT QA results using different action
limits at different gamma criteria; (3) based on the results,
to give recommendations for model clinical application.
The findings of this study will provide more insights into
the field of automation in patient-specific VMAT QA.

Methods and Materials

Clinical data collection

Three hundred three VMAT plans with dual-arc and 2�

control-point spacing were retrospectively collected.
Among these plans, 176 were GYN plans and 127 were
H&N plans. The prescription dose to PTV for GYN pa-
tients was 50.4 Gy (1.8 Gy/28 fractions). For H&N cases,
prescription doses of 60.04 Gy (1.82 Gy/33 fractions) and
69.96 Gy (2.12 Gy/33 fractions) were delivered to PTV and



Table 1 Summary of complexity metrics used in this study

Number Metrics Reference

1 Modulation index for leaf speed
f Z 2 (MIs 2)

17

2 Modulation index for leaf speed
f Z 1 (MIs 1)

17

3 Modulation index for leaf speed
f Z 0.5 (MIs 0.5)

17

4 Modulation index for leaf speed
f Z 0.2 (MIs 0.2)

17

5 Modulation index for leaf
acceleration f Z 2 (MIa 2)

17

6 Modulation index for leaf
acceleration f Z 1 (MIa 1)

17

7 Modulation index for leaf
acceleration f Z 0.5 (MIa 0.5)

17

8 Modulation index for leaf
acceleration f Z 0.2 (MIa 0.2)

17

9 Modulation index for total
modulation f Z 2 (MIt 2)

17

10 Modulation index for total
modulation f Z 1 (MIt 1)

17

11 Modulation index for total
modulation f Z 0.5 (MIt 0.5)

17

12 Modulation index for total
modulation f Z 0.2 (MIt 0.2)

17

13 Proportion of leaf speed ranging
from 0-0.4 cm/s (S0-0.4)

18

14 Proportion of leaf speed ranging
from 0.4-0.8 cm/s (S0.4-0.8)

18

15 Proportion of leaf speed ranging
from 0.8-1.2 cm/s (S0.8-1.2)

18

16 Proportion of leaf speed ranging
from 1.2-1.6 cm/s (S1.2-1.6)

18

17 Proportion of leaf speed ranging
from 1.6-2.0 cm/s (S1.6-2)

18

18 Proportion of leaf acceleration
ranging from 0-1 cm/s2 (A0-1)

18

19 Proportion of leaf acceleration
ranging from 1-2 cm/s2 (A1-2)

18

20 Proportion of leaf acceleration
ranging from 2-4 cm/s2 (A2-4)

18

21 Proportion of leaf acceleration
ranging from 4-6 cm/s2 (A4-6)

18

22 Average leaf speed (ALS) 18
23 Standard deviation of leaf speed

(SLS)
18

24 Average leaf acceleration (ALA) 18
25 Standard deviation of leaf

acceleration (SLA)
18

26 Small aperture score 5 mm
(SAS 5 mm)

19

27 Small aperture score 10 mm
(SAS 10 mm)

19

28 Small aperture score 20 mm
(SAS 20 mm)

19

29 Mean asymmetry distance (MAD) 19
30 Modulation complex score (MCS) 20
31 Leaf sequence variability (LSV) 20

(continued)

Table 1 (continued )

Number Metrics Reference

32 Aperture area variability (AAV) 20
33 Plan area (PA) 21
34 Plan irregularity (PI) 21
35 Plan modulation (PM) 21
36 Plan normalized MU (PMU) 21
37 Union aperture area (UAA) 21
38 Edge metric (EM) 22
39 Converted aperture metric (CAM) 23
40 Edge area metric (EAM) 23
41 Circumference/area (C/A) 23
42 Average leaf travel distance (LT) 24
43 Combination of LT and MCS

(LTMCS)
24

44 Average leaf gap (ALG) 25
45 Standard deviation of leaf

gap (SLG)
25

46 Average dose rate (ADR) -
47 Standard deviation of dose

rate (SDR)
-

48 MU value in first arc (MU 1) -
49 MU value in second arc (MU 2) -
50 Prescribed dose to primary target

per fraction (dose)
-

51 Field length at X direction in first
arc (field X1)

-

52 Field length at Y direction in first
arc (field Y1)

-

53 Field length at X direction in second
arc (field X2)

-

54 Field length at Y direction in second
arc (field Y2)

-

Complexity metrics that have “-” in the reference column can be

easily extracted or calculated based on plan information in the treat-

ment planning system.
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planning gross target volume, respectively. All plans were
generated on Eclipse TPS version 10.0 and delivered with
Trilogy Linac and Millennium 120 multileaf collimator
(Varian Medical System, Palo Alto, CA). The patient-
specific QA measurements were performed with MatriXX
ion chamber array and MultiCube phantom (IBA Dosim-
etry, Schwarzenbruck, Germany). The plan was delivered
using the true composite method, recommended by the
American Association of Physicists in Medicine TG 218
report.8 The angular dependence of the detector array was
corrected using a gantry angle sensor (IBA Dosimetry,
Schwarzenbruck, Germany) during measurement. Gamma
criteria of 3%/3 mm, 3%/2 mm, and 2%/2 mm with 10%
dose threshold, absolute dose mode, and global normali-
zation were used for gamma evaluations.

Fifty-four metrics affecting dose delivery accuracy of
VMAT were selected by expert clinical physicists and used
to characterize the modulation complexity of VMAT plans.
A full summary is given in Table 1.17-25 Radiation therapy
plan files were exported from the Eclipse system and
converted into ASCII format. An in-houseedeveloped
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•     Training: 254
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GPR of clinical VMAT plans
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results into pass or fail
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under different Y criteria
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under different Y criteria

and action limits

Fig. 1. Flow diagram of the model development, technical validation, and clinical validation.
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MATLAB script was used to extract the multileaf colli-
mator positions and MU weights of all control points in the
VMAT plans and calculate the complexity metrics.

Machine learning model design and validation

This study contained 3 sections, including model devel-
opment, technical validation (TV), and clinical validation
(CV) (Fig. 1). Two machine learning models were estab-
lished and validated in this study: one is a PL model, and
the other is a random forest (RF) model. In TV, 255 VMAT
plans (143 GYN and 112 H&N) with nested cross valida-
tion were used to explore the model performance under
different gamma criteria and action limits. In CV, an in-
dependent cohort of 48 VMAT plans (33 GYN and 15
H&N) without cross validation were used to further vali-
date the reliability and feasibility of machine learning
models as a clinical actionable tool for reducing QA
workload.

The PL model has been previously used in individual-
ized prediction studies.13,14 It consists of a generalized
linear regression model with Poisson prior and least abso-
lute shrinkage and selection operator regularization. In this
study, Poisson regression is used to model the nonnegative
data with count attribute, solving the problem via
maximum a posteriori estimation and trying to identify the
optimal beta weights b by cross validation. Note that
instead of predicting passing rate pr(X), Poisson regression
predicts the failing rate, which equals 100 e pr(X). This
was implemented using the open-source Python package,
Statsmodels.

The TV workflow for a PL model with nested 10-fold
and leave-one-out cross validation is shown in Figures 1
and 2A. To train the regression model with as much data
as possible and test the model with the remaining data,
leave-one-out cross validation was used. The data were
divided into 254 plans for training and a single remaining
plan for testing. In the model-training phase, 10-fold cross
validation was used for PL to achieve the optimal hyper-
parameters, which were used for training the optimal
regression models to achieve better generalization (white
block in Fig. 2A). After the training process, the model
derived from the training data was used to predict the GPR
of the remaining test plan. This procedure looped 255 times
so that the GPR of every VMAT plan was predicted. The
classification performance of the PL model at different
gamma criteria and action limits was further evaluated
(Fig. 3). The sensitivity and specificity of the PL model was
calculated at 3%/2 mm with action limits ranging from
90% to 99% and at 2%/2 mm with action limits ranging
from 80% to 90%.

To further improve the classification accuracy, ensemble
RF classification models with dimension reduction and
balanced sampling techniques were developed and used to
classify QA results. The TV workflow for the RF model is
shown in Figures 1 and 2B. Principal component analysis
(PCA) was adopted to reduce the feature number before
classification; this is an orthogonal linear transformation to
transform the data from high-dimensional space to a
desired low-dimensional level. Here, the data are converted
from 54 dimensions to 15 dimensions. Because the VMAT
plans were heavily unbalanced between positive and
negative plans (number of plans with relative higher GPR
vs number of plans with relative lower GPR), leading to
undesired classification results, a tendency to divide the
samples into the majority class is possible. To avoid the
minority class being neglected by the RF classifiers, a
random undersampling strategy was applied to balance the
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Classification results for all plans

Fig. 2. The workflow chart for the Poisson lasso regression model (A) and random forest classification model (B) in
technical validation. Abbreviations: GPR Z gamma passing rate; PCA Z principal component analysis; RF Z random
forest.
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2 unbalanced classes by down sampling the majority class
to the same size as the minority class. RF was used to
provide the basic classifiers because RF achieves better
performance and generalization by using column sampling
to avoid overfitting. These RF classifiers were then
ensembled to reduce variance and achieve the final stable
classification results.

Similar nested cross validation was adopted to choose
the optimal hyperparameters for PCA and RF classifiers,
and the data were divided into training plans and testing
plans. As shown in Figure 2B, PCA was first used for
dimension reduction of training plans (N Z 254). Random
undersampling of majority classes was performed m times
to balance the sample distribution, resulting in m RF clas-
sifiers. For the remaining 1 testing plan, classification was
then made by ensemble voting of all the m classifiers,
aiming to achieve more robust and unbiased results. Here
we choose m Z 1000.

In CV, 255 VMAT plans used in TV were used for
model training. Another independent cohort of 48 VMAT
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plans, including 33 GYN and 15 H&N plans, was used for
external testing (Fig. 1). No cross validation was performed
in CV. The prediction and classification process of PL and
RF model were the same as described.
Results

Prediction accuracy

The distributions of measured GPR of VMAT plans in TV
and CV are shown in Table 2. In both data sets, majority of
the measured GPR was distributed in the range of 95% to
100% at 3%/3 mm, 90% to 100% at 3%/2 mm, and 85% to
95% at 2%/2 mm gamma criteria. In the TV data set, 9
(3.5%) plans had GPR lower than 90% at 3%/3 mm; 19
(7.5%) plans had GPR lower than 90% at 3%/2 mm; and 23
(9.0%) plans had GPR lower than 80% at 2%/2 mm. In CV
data set, 1 (2.1%) plan had GPR lower than 90% at 3%/3
mm; 6 (12.5%) plans had GPR lower than 90% at 3%/2
mm; and 5 (10.4%) plans had GPR lower than 80% at 2%/2
mm. The GPR prediction accuracy of PL decreased as the
gamma criteria became more stringent (from 3%/3 mm to
2%/2 mm) (Fig. 4).

The differences of absolute prediction errors between PL
model in TV and CV were not statistically significant. In
TV, 239 (93.7%) plans had absolute prediction error lower
than 5% at 3%/3 mm; 233 (91.4%) plans had absolute
prediction error lower than 5% at 3%/2 mm; and only 174
(68.24%) plans had absolute prediction error lower than 5%
at 2%/2 mm (Table 3). In CV, 45 (93.8%) plans had ab-
solute prediction error lower than 5% at 3%/3 mm; 36
(75.0%) plans had absolute prediction error lower than 5%
at 3%/2 mm; and only 29 (60.4%) plans had absolute
prediction error lower than 5% at 2%/2 mm. The prediction
accuracy of PL model was also affected by measured GPR,
as shown in Table 4.

In both technical and CV, plans with measured GPR
higher than 95% had significantly lower prediction errors
than plans with measured GPR lower than 95% at 3%/3
mm and 3%/2 mm gamma criteria (3%/3 mm TV: 1.36% �
1.39% vs 4.39% � 3.37%, P < .001; 3%/3 mm CV: 1.38%
� 1.21% vs 4.12% � 2.63%, P Z .021; 3%/2 mm TV:
1.57% � 1.16% vs 4.02% � 3.28%, P < .001; 3%/2 mm
CV: 1.71% � 1.60% vs 4.15% � 3.35%, PZ .003); In 2%/
2 mm GPR prediction, plans with measured GPR ranging
from 85% to 95% had significantly lower prediction errors
than plans with measured GPR higher than 95% or lower
than 85%. (TV: 2.79% � 2.51% vs 5.94% � 4.32%, P <
.001; CV: 3.13% � 2.86% vs 8.39% � 5.39%, P Z .001).

Classification accuracy

The classification performances of the PL and RF models in
TV are shown in Figure 5. In general, PL had higher
specificity and RF had higher sensitivity. As the action limit



Table 2 Summary of measured GPR under different gamma criteria

Measured GPR

3%/3 mm 3%/2 mm 2%/2 mm

TV, n (%) CV, n (%) TV, n (%) CV, n (%) TV, n (%) CV, n (%)

100-95 217 (85.1) 40 (83.3) 170 (66.7) 23 (47.9) 50 (19.6) 2 (4.2)
95-90 29 (11.4) 7 (14.6) 66 (25.9) 19 (39.6) 80 (31.4) 15 (31.3)
90-85 7 (2.7) 1 (2.1) 12 (4.7) 4 (8.3) 62 (24.3) 15 (31.3)
85-80 0 0 3 (1.2) 2 (4.2) 40 (15.7) 11 (22.9)
80 2 (0.8) 0 4 (1.6) 0 23 (9) 5 (10.4)

Abbreviations: CV Z clinical validation; GPR Z gamma passing rate; TV Z technical validation.
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value decreased, the sensitivity of PL was remarkably
reduced; the opposite trend was observed for RF. For 3%/2
mm GPR classification using 90% as the action limits, the
specificity of PL and RF was 97.46% (230/236) and
87.71% (207/236), respectively; the sensitivity of PL and
RF was 31.57% (6/19) and 100% (19/19), respectively. For
2%/2 mm GPR classification using 80% as the action limit,
the specificity of PL and RF was 96.55% (224/232) and
80.60% (187/232), respectively; the sensitivity of PL and
RF were 43.48% (10/23) and 100% (23/23), respectively.
The classification performances of the PL and RF models
were further validated in CV (Table 5). For 3%/2 mm GPR
classification using 90% as the action limits, the specificity
of PL and RF was 100% (42/42) and 71.43% (30/42),
respectively; the sensitivity of PL and RF was 33.33% (2/6)
and 66.67% (4/6), respectively. For 2%/2 mm GPR
P = .947
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Fig. 4. The distribution of prediction errors of volumetric
modulated arc therapy plans at different gamma criteria.
Abbreviations: CV Z clinical validation; TV Z technical
validation. Error barZ mean � standard deviation. Student
t test was performed.
classification using 80% as the action limit, the specificity
of PL and RF was 100% (43/43) and 44.19% (19/43),
respectively; the sensitivity of PL and RF was 60% (3/5)
and 100% (5/5), respectively.

Discussion

The main advantage of adopting machine learning into
patient-specific QA is that the machine learning model
could inform the physicist which treatment plan may fail
QA before QA measurements. With the use of machine
learning models, patient-specific QA could be narrowed
and concentrated on a few plans instead of all plans.
Given the large-scale adoption of VMAT in the clinic,
machine learning models that are able to predict patient-
specific QA results for VMAT plans will be useful for
improving the efficiency of VMAT QA. After saving time
and resources, physicists can devote more time to the
failed plans and identify the cause of failure. In TV, we
have demonstrated that the PL model could precisely
predict the GPR for more than 90% of VMAT plans
within 3.5% accuracy at 3%/3 mm and within 5% accu-
racy at 3%/2 mm. PL model also maintains the same
prediction accuracy during CV. The prediction accuracy
of PL models was greatly affected by gamma criteria and
measured GPR.

The number of plans with low GPR differed across
studies, and this will have a huge impact on prediction
accuracy. In the study by Valdes et al,13 about 8% of IMRT
plans (40/498) had measured 3%/3 mm GPR lower than
95%. In the study by Tomori et al,16 very few IMRT plans
had measured 3%/3 mm GPR lower than 95%, and the
lowest 3%/3 mm GPR was 94%. In this study, 15.2% of
VMAT plans (46/303) had measured GPR lower than 95%,
and the lowest 3%/3 mm GPR was 74.63%. In a previous
study,16 3 plans had measured GPR lower than 90% at 3%/2
mm; 15 plans had measured GPR lower than 85% at 2%/2
mm. In this study, 25 plans had measured GPR lower than
90% at 3%/2 mm; 79 plans had measured GPR lower than
85% at 2%/2 mm. Although there are differences in
measured GPR among studies, all previous studies and this
study had heavily unbalanced data distribution. It is very
difficult for a single institution to collect adequate amounts
of low GPR plans for model training. To improve the



Table 3 Summary of prediction errors under different gamma criteria

Metrics

3%/3 mm 3%/2 mm 2%/2 mm

TV, n (%) CV, n (%) TV, n (%) CV, n (%) TV, n (%) CV, n (%)

Abs Err �3.5% 230 (90.2) 40 (83.3) 205 (80.4) 33 (68.8) 133 (52.2) 23 (47.9)
Abs Err �5% 239 (93.7) 45 (93.8) 233 (91.4) 36 (75.0) 174 (68.2) 29 (60.4)
Abs Err �10% 251 (98.4) 48 (100) 251 (98.4) 46 (95.8) 238 (93.3) 40 (83.3)
MAE (SD) 1.81% (2.12) 1.83% (1.82) 2.39% (2.41) 2.98% (2.91) 4.18% (3.76) 5.10% (4.71)

Abbreviations: Abs Err Z absolute prediction error; CV Z clinical validation; MAE Z mean absolute error; SD Z standard deviation; TV Z
technical validation.
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prediction accuracy of plans with low GPR, a multi-
institutional collaborative research is warranted.

The prediction accuracy of the machine learning model
is also affected by the accuracy and consistency of patient-
specific QA measurement. Hussein et al26 reported that the
variability of measurement results among different com-
mercial QA devices increased with tightening gamma
criteria. The largest difference for mean GPR and minimum
GPR at 2%/2 mm was 8.4% and 15%, respectively. Agnew
et al27 found that less than 0.5% variation existed among
GPR at 3%/3 mm with different gamma analysis software;
however, the variation increased to 10% at 1%/1 mm. If the
measurement results are inaccurate or inconsistent, the
machine learning model would struggle to find correlations
between input features and GPR and make an accurate
prediction; in both this study and previous study,16 the 2%/2
mm GPR prediction accuracy was much worse compared
with 3%/3 mm and 3%/2 mm GPR prediction. Many re-
searchers have shown that 2%/2 mm criterion was more
sensitive in detecting clinically relevant errors compared
with 3%/3 mm9,10; thus, machine learning models that can
accurately predict 2%/2 mm GPR are more favorable.
Future studies should focus on improving the model pre-
diction accuracy at 2%/2 mm.

Instead of the differences between measured and pre-
dicted GPR, the ability of machine learning model to
accurately classify plans into “pass” or “fail” based on
action limits used is the most important indicator to eval-
uate the clinical feasibility of machine learning models, as
suggested in the TG 218 report.8 To our best knowledge,
this is the first study to discuss the clinical usability of
machine learning models based on a clinical decision-
Table 4 Summary of absolute prediction error under different meas

Measured GPR

3%/3 mm

TV, mean (SD) CV, mean (SD) TV, mean

100-95 1.36 (1.40) 1.38 (1.21) 1.58 (1.
95-90 3.38 (1.35) 3.77 (2.63) 3.17 (1.
90-85 5.42 (3.74) 6.55 (NA) 4.21 (2.
85-80 0 0 7.34 (2.
80 15.52 (1.12) 0 14.88 (4.

Abbreviations: CV Z clinical validation; GPR Z gamma passing rate; NA
making process and to give actionable recommendations
for the clinical application of machine learning models.
There are 2 types of classification errors. The first is false
positive, which will reduce the model specificity and add
unnecessary QA workload. The second is false negative,
which will reduce the model sensitivity and bring hidden
dangers to patient safety and should be avoided. The ability
of the PL to detect plans that may fail patient-specific QA
(sensitivity) decreased significantly with decreasing value
of action limits, whereas the opposite trends were observed
for the RF model. This may be because the PL model
tended to overestimate the GPR of VMAT plans, especially
for those plans that had low measured GPR. To avoid
overfitting and classification bias caused by unbalanced
training data, data preprocessing strategies such as PCA,
random undersampling, and ensemble voting were applied
to an RF model for the first time. In TV, a much better
sensitivity of the RF model was observed at the cost of a
relatively small decrease in specificity. These results are
valuable because model sensitivity is more important than
specificity in virtual patient-specific QA using machine
learning. These results also emphasize the importance of
choosing the machine learning algorithm based on its
inherent characteristics.

With 100% sensitivity, the patient-specific QA work-
load of plans labeled “pass” can be reduced. This para-
digm shift can both save time and ease the strain on
treatment resources. For plans labeled “fail,”
measurement-based QA still needs to be performed before
patient treatment. Based on the results in TV, 81.2% (207/
255) and 73.3% (187/255) of QA workload could be
reduced by the RF model at 3%/2 mm using a 90% action
ured GPR

3%/2 mm 2%/2 mm

(SD) CV, mean (SD) TV, mean (SD) CV, mean (SD)

16) 1.72 (1.60) 4.44 (1.92) 9.28 (4.11)
91) 3.14 (2.44) 1.88 (1.76) 3.28 (2.75)
04) 7.41 (4.86) 3.97 (2.84) 2.98 (3.04)
42) 7.30 (3.10) 5.27 (4.07) 8.85 (4.83)
36) 0 10.36 (5.59) 7.04 (7.62)

Z not available; SD Z standard deviation; TV Z technical validation.
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Fig. 5. Classification performance of Poisson lasso model and random forest model in technical validation with various
action limits at 3%/2 mm (A, B) and 2%/2 mm (C, D) criteria.
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limit and at 2%/2 mm using an 80% action limit,
respectively. In CV, the classification performances of PL
and RF models were further evaluated. The RF model still
has better sensitivity compared with the PL model; only 2
false negative plans were observed at the 3%/2 mm
gamma criterion. Interestingly, we found that the 2 false
negative plans were labeled “fail” by the RF model at a
2%/2 mm gamma criterion and 80% action limit, indi-
cating that if 1 particular plan were labeled “pass” at 3%/
2 mm and labeled “fail” at 2%/2 mm, measurement-based
QA still needs to be performed for that plan. Based on the
results in CV, 62.5% (30/48) and 39.6% (19/48) of QA
Table 5 Model classification performance in clinical
validation

Gamma criteria,
Action limits Model Predicted

Measured

Positive Negative

3%/2 mm, 90% Poisson
lasso

Positive 2 0

Negative 4 42
3%/2 mm, 90% Random

forest
Positive 4 12

Negative 2 30
2%/2 mm, 80% Poisson

lasso
Positive 3 0

Negative 2 43
2%/2 mm, 80% Random

forest
Positive 5 24

Negative 0 19
workload could be reduced by the RF model at 3%/2 mm
using a 90% action limit and at 2%/2 mm using an 80%
action limit, respectively. Based on these results, the
clinical use of machine learning model is recommended
as follows: (1) compared with the PL model, the RF
model is safer and more practical to identify plans that
may fail QA and thus is a clinically usable tool to reduce
VMAT QA workload; (2) classification results of the RF
model at both 3%/2 mm and 2%/2 mm criteria should be
taken into consideration when physicists decide whether
to perform measurement-based VMAT QA; (3) standard
QA is no longer necessary only if a treatment plan is
labeled “pass” by RF model at both 3%/2 mm and 2%/2
mm criteria using the GPR action limits of 90% and 80%,
respectively.

Note that the measurement-based pretreatment QA
could only be reduced based on the assumption that ac-
curate TPS commissioning, adequate machine QA, and
other dose verification methods such as electronic portal
imaging device transit dosimetry or independent dose
calculation were followed.6,7,28-34 Because all input and
output data of this study were derived from single Varian
Linac and 2D array, it is critical to evaluate the general-
ization performance of the machine learning model. Plans
and corresponding QA results from different institutions
with different types of Linac and QA devices will be
incorporated in a future study to investigate the effect of
Linac or QA device and methods on prediction/classifi-
cation accuracy and generalization performance of ma-
chine learning model. Because this study is an exploratory
study, only GYN and H&N VMAT plans were used to
train the machine learning model. VMAT plans from other
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anatomic sites will be evaluated in a future study to
investigate the effect of treatment sites on model training
and prediction.
Conclusions

The PL model could accurately predict patient-specific QA
results for the majority of VMAT plans at 3%/3 mm and
3%/2 mm gamma criteria. Although the PL model had a
higher specificity, a much better sensitivity was achieved by
the RF model. The RF model with 100% sensitivity was
preferred for QA results classification. Machine learning is
proven to be a useful tool to assist measurement-based
patient-specific QA and to reduce the QA workload.
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33. Leal A, Sánchez-Doblado F, Arráns R, et al. Routine IMRT verifica-

tion by means of an automated Monte Carlo simulation system. Int J

Radiat Oncol Biol Phys 2003;56:58-68.

34. Pawlicki T, Yoo S, Court LE, et al. Moving from IMRT QA mea-

surements toward independent computer calculations using control

charts. Radiother Oncol 2008;89:330-337.

http://refhub.elsevier.com/S0360-3016(19)33553-9/sref1
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref1
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref1
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref1
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref1
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref2
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref2
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref2
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref2
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref2
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref3
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref3
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref3
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref4
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref4
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref4
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref5
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref5
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref5
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref6
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref6
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref7
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref7
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref7
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref7
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref8
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref8
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref8
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref9
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref9
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref9
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref10
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref10
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref10
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref10
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref11
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref11
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref11
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref12
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref12
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref12
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref13
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref13
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref13
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref14
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref14
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref14
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref15
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref15
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref15
https://doi.org/10.1002/mp.13112
https://doi.org/10.1002/mp.13112
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref17
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref17
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref18
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref18
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref18
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref19
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref19
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref19
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref20
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref20
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref20
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref21
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref21
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref21
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref22
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref22
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref22
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref23
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref23
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref23
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref24
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref24
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref24
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref25
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref25
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref25
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref26
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref26
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref26
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref27
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref27
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref28
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref28
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref28
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref29
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref29
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref29
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref30
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref30
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref30
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref31
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref31
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref31
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref32
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref32
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref33
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref33
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref33
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref34
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref34
http://refhub.elsevier.com/S0360-3016(19)33553-9/sref34

	Machine Learning for Patient-Specific Quality Assurance of VMAT: Prediction and Classification Accuracy
	Introduction
	Methods and Materials
	Clinical data collection
	Machine learning model design and validation

	Results
	Prediction accuracy
	Classification accuracy

	Discussion
	Conclusions
	References


