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Abstract

Policy evaluation with linear function approxi-
mation is an important problem in reinforcement
learning. When facing high-dimensional feature
spaces, such a problem becomes extremely hard
considering the computation efficiency and qual-
ity of approximations. We propose a new algo-
rithm, LSTD()\)-RP, which leverages random pro-
jection techniques and takes eligibility traces into
consideration to tackle the above two challenges.
We carry out theoretical analysis of LSTD()\)-RP,
and provide meaningful upper bounds of the es-
timation error, approximation error and total gen-
eralization error. These results demonstrate that
LSTD(M)-RP can benefit from random projection
and eligibility traces strategies, and LSTD(\)-RP
can achieve better performances than prior LSTD-
RP and LSTD()) algorithms.

1 Introduction

Policy evaluation, commonly referred to as value function ap-
proximation, is an important and central part in many rein-
forcement learning (RL) algorithms [Sutton and Barto, 1998],
whose task is to estimate value functions for a fixed policy in
a discounted Markov Decision Process (MDP) environment.
The value function of each state specifies the accumulated
reward an agent would receive in the future by following the
fixed policy from that state. Value functions have been widely
investigated in RL applications, and it can provide insightful
and important information for the agent to obtain an optimal
policy, such as important board configurations in Go [Silver
et al., 2007], failure probabilities of large telecommunication
networks [Frank et al., 2008], taxi-out times at large airports
[Balakrishna et al., 2010] and so on.

Despite the value functions can be approximated by differ-
ent ways, the simplest form, linear approximations, are still
widely adopted and studied due to their good generalization
abilities, relatively efficient computation and solid theoreti-
cal guarantees [Sutton and Barto, 1998; Dann er al., 2014;
Geist and Scherrer, 2014; Liang et al., 2016]. Tempo-
ral Difference (TD) learning is a common approach to this
policy evaluation with linear function approximation prob-
lem [Sutton and Barto, 1998]. These typical TD algorithms

can be divided into two categories: gradient based meth-
ods (e.g., GTD()) [Sutton et al., 2009]) and least-square
(LS) based methods (e.g., LSTD()) [Boyan, 2002]). A good
survey on these algorithms can be found in [Maei, 2011;
Dann, 2012; Geist and Pietquin, 2013; Dann et al., 2014;
Geist and Scherrer, 2014].

As the development of information technologies, high-
dimensional data is widely seen in RL applications [Sutton,
1996; Tedrake et al., 2004; Riedmiller and Gabel, 2007] ,
which brings serious challenges to design scalable and com-
putationally efficient algorithms for the linear value function
approximation problem. To address this practical issue, sev-
eral approaches have been developed for efficient and effec-
tive value function approximation. Kolter and Ng (2009) and
Farahmand and Szepesvari (2011) adopted [/; or [, regu-
larization techniques to control the complexity of the large
function space and designed several [; and [, regularized
RL algorithms. Gehring et al. (2016) studied this problem
by using low-rank approximation via an incremental singular
value function decomposition and proposed t-LSTD(\). Pan
et al. (2017b) derived ATD(\) by combining the low-rank
approximation and quasi-Newton gradient descent ideas.

Recently, Ghavamzadeh er al. (2010) and Pan et
al. (2017a) investigated sketching (projecting) methods to
reduce the dimensionality in order to make it feasible to em-
ploy Least-Squares Temporal Difference (briefly, LSTD) al-
gorithms. Specifically, Ghavamzadeh et al. (2010) proposed
an approach named LSTD-RP, which is based on random pro-
jections. They showed that LSTD-RP can benefit from the
random projection strategy. The eligibility traces have al-
ready been proven to be important parameters to control the
quality of approximation during the policy evaluation pro-
cess, but Ghavamzadeh er al. (2010) did not take them into
consideration. Pan ef al. (2017a) empirically investigated the
effective use of sketching methods including random projec-
tions, count sketch, combined sketch and hadamard sketch for
value function approximation, but they did not provide any
conclusion on finite sample analysis. However, finite sam-
ple analysis is important for these algorithms since it clearly
demonstrates the effects of the number of samples, dimen-
sionality of the function space and the other related parame-
ters.

In this paper, we focus on exploring the utility of ran-
dom projections and eligibility traces on LSTD algorithms
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to tackle the computation efficiency and quality of approx-
imations challenges in the high-dimensional feature spaces
setting. We also provide finite sample analysis to evaluate its
performance. To the best of our knowledge, this is the first
work that performs formal finite sample analysis of LSTD
with random projections and eligibility traces. Our contribu-
tions can be summarized from the following two aspects:
Algorithm: By introducing random projections and eligi-
bility traces, we propose a refined algorithm named LSTD
with Random Projections and Eligibility Traces (denoted
as LSTD(M)-RP for short), where A is the trace parameter
of A-return when considering eligibility traces. LSTD())-
RP algorithm consists of two steps: first, generate a low-
dimensional linear feature space through random projections
from the original high-dimensional feature space; then, apply
LSTD(\) to this generated low-dimensional feature space.
Theoretical Analysis: We perform theoretical analysis to
evaluate the performance of LSTD(\)-RP and provide its fi-
nite sample performance bounds, including the estimation er-
ror bound, approximation error bound and total error bound.
The analysis of the prior works LSTD-RP and LSTD()) can-
not directly apply to our setting, since (i) The analysis of
LSTD-RP is based on a model of regression with Markov
design, but it does not hold when we incorporate eligibility
traces; (ii) Due to utilizing random projections, the analysis
of LSTD(\) cannot be directly used, especially the approx-
imation error analysis. To tackle these challenges, we first
prove the linear independence property can be preserved by
random projections, which is important for our analysis. Sec-
ond, we decompose the total error into two parts: estima-
tion error and approximation error. Then we make analysis
on any fixed random projection space, and bridge these error
bounds between the fixed random projection space and any
arbitrary random projection space by leveraging the norm and
inner-product preservation properties of random projections,
the relationship between the smallest eigenvalues of the Gram
matrices in the original and randomly projected spaces and
the Chernoff-Hoeffding inequality for stationary [-mixing
sequence. What’s more, our theoretical results show that

1) Compared to LSTD-RP, the parameter A of eligibility
traces illustrates a trade-off between the estimation error
and approximation error for LSTD(\)-RP. We could tune
A to select an optimal A* which could balance these two
errors and obtain the smallest total error bound. Further-
more, for fixed sample n, optimal dimension of randomly
projected space d* in LSTD(A)-RP is much smaller than
that of LSTD-RP.

2) Compared to LSTD()), in addition to the computational
gains which are the result of random projections, the es-
timation error of LSTD(A)-RP is much smaller at the
price of a controlled increase of the approximation er-
ror. LSTD())-RP may have a better performance than
LSTD(X\), whenever the additional term in the approxi-
mation error is smaller than the gain achieved in the esti-
mation error.

These results demonstrate that LSTD()\)-RP can benefit from
eligibility traces and random projections strategies in compu-
tation efficiency and approximation quality, and can be supe-
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rior to LSTD-RP and LSTD(\) algorithms.

2 Background

In this section, first we introduce some notations and prelimi-
naries. Then we make a brief review of LSTD(\) and LSTD-
RP algorithms.

Now we introduce some notations for the following pa-
per. Let |-| denote the size of a set and ||-||2 denote the Lo
norm for vectors. Let X be a measurable space. Denote
S(X) the set of probability measure over X, and denote the
set of measurable functions defined on X and bounded by
L € R* as B(X,L). For a measure u € S(X), the u-
weighted Ly norm of a measurable function f is defined as
1 flle = /> wer f(@)?u(x). The operator norm for matrix
”m““'

W is defined as [|[W{|,, = sup,,

2.1 Value Functions

Reinforcement learning (RL) is an approach to find optimal
policies in sequential decision-making problems, in which
the RL agent interacts with a stochastic environment for-
malized by a discounted Markov Decision Process (MDP)
[Puterman, 2014]. An MDP is described as a tuple M =
(X, A, P2, R,v), where state space X is finite !, action
space A is finite, P2, is the transition probability from state
x to the next state 2’ when taking actiona, R : X x A — Ris
the reward function, which is uniformly bound by R,,.x, and
v € (0,1) is the discount factor. A deterministic policy? 7 :
X — Ais a mapping from state space to action space, which
is an action selection policy. Given the policy 7, the MDP
M can be reduced to a Markov chain M™ = (X, P™, 7™, ),
with transition probability P™(-|z) = P(-|z,n(z)) and re-
ward ™ (z) = R(x, 7(z)).

In this paper, we are interested in policy evaluation, which
can be used to find optimal policies or select actions. It in-
volves computing the state-value function of a given policy
which assigns to each state a measure of long-term perfor-
mance following the given policy. Mathematically, given a
policy 7, for any state x € &, the value function of state x is
defined as follows:

VT (2) = Ex[32720 7' (Xe)| Xo = 2],
where E, denotes the expectation over random samples
which are generated by following policy 7. Let V7
denote a vector constructed by stacking the values of

V7(1),...,V™(]X]) on top of each other. Then, we can see
that V'™ is the unique fixed point of the Bellman operator T :

VT =T"V" 2 R" 4+ 4P"V", 1)

where R™ is the expected reward vector under policy .
Equation (1) is called Bellman Equation, which is the basis
of temporal difference learning approaches. In the reminder

"For simplicity, we assume the state space is finite. However, the
results in this paper can be generalized into other more general state
spaces.

“Without loss of generality, here we only consider the determin-
istic policy. The extension to stochastic policy setting is straight-
forward.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

of this paper, we omit the policy superscripts for ease of ref-
erence in unambiguous cases, since we are interested in on-
policy learning in this work.

When the size of state space |X'| is very large or even infi-
nite, one may consider to approximate the state-value func-
tion by a linear function approximation, which is widely
used in RL [Sutton and Barto, 1998; Dann et al., 2014].
We define a linear function space F, which is spanned by
the basis functions ¢; : X — R,i € [D|(D < |X])°,
ie, F = {falfa() = ¢()Ta,a € RP}, where ¢(-) =
(¢1(+), ..., op(-))T is the feature vector. We assume ¢; €
B(X,L),i € [D] for some finite positive constant L. For
any function f, € F, let m(fo) = |a/l2supycxl|o(2)]2.
Furthermore, we generate a d-dimensional (d < D) ran-
dom space G from F through random projections H, where
H € R¥P be arandom matrix whose each element is drawn
independently and identically distributed (i.i.d.) from Gaus-
sion distribution N'(0,1/d)*. For any j € [d], denote the

randomly projected feature vector ¢(-) = (¢1(+), ..., ¥i(+)) T,
where () = H@(-). Thus, G = {gs|gs(-) = ¢¥(-)7 8,8 €
R%}. Define ® = (¢(x))zex = (¢1,-..,6p) of dimension
|X| x Dand ¥ = (¢¥(x))zexr = (¥1,-..,%¥p) of dimension

|X'| X d to be the original and randomly projected feature ma-
trix respectively.

2.2 LSTD())

Least-Squares Temporal Difference (LSTD) is a traditional
and important approach for policy evaluation in RL, which
was first introduced by [Bradtke and Barto, 1996], and later
was extended to include the eligibility traces by [Boyan,
1999; Boyan, 2002] referred to as LSTD()).

The essence of LSTD() is to estimate the fixed point of
the projected multi-step Bellman equation, that is,

V =TV,

2
where V = ®6, and IIr

=®(®"D,®)"'®"D,,

where p is the steady-state probabilities of the Markov chain
M7 induced by policy 7, D,, denotes the diagonal matrix
with diagonal elements being p, II£ is the orthogonal pro-
jection operator into the linear function space F, and T is a
multi-step Bellman operator parameterized by A € [0, 1], and
it is defined as follows:
T = (1 -\ 2 AT

When A\ = 0, we have T* = T, and it becomes LSTD.
Given one sampled trajectory {X;}? ; generated by the
Markov chain M™ under policy 7, the LSTD(/\) algorithm

returns VLSTD o) = 0, with § = A~1b, where
1
S A0 — 16(Xia),

1 n—1 _
n—1 Zi:l Zir(Xi)7

where Z; = Z;Zl(A'y)i*kaﬁ(Xk) is called the eligibility
trace, and X € [0, 1] is the trace parameter for the A-return.

D) ={1,...,D}.

*It is also can be some sub-Gaussian distributions. Without loss
of generality, here we only consider Gaussian distribution for sim-
plicity.

A:

_ 3
and b=
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2.3 LSTD-RP

Compared to gradient based temporal difference (TD) learn-
ing algorithms, LSTD(\) has data sample efficiency and pa-
rameter insensitivity advantages, but it is less computation-
ally efficient. LSTD()) requires O(D?) computation per
time step or still requires O(D?) by using the Sherman-
Morrison formula to make incremental update. This ex-
pensive computation cost makes LSTD()\) impractical for
the high-dimensional feature spaces scenarios in RL. Re-
cently, Least-Squares TD with Random Projections algorithm
(briefly denoted as LSTD-RP) was proposed to deal with the
high-dimensional data setting [Ghavamzadeh et al., 2010].

The basic idea of LSTD-RP is to learn the value func-
tion of a given policy from a low-dimensional linear space G
which is generated through random projections from a high-
dimensional space F. Their theoretical results show that the
total computation complexity of LSTD-RP is O(d® + ndD),
which is dramatically less than the computation cost in the
high dimensional space F (i.e., O(D? + nD?)). In addi-
tion to these practical computational gains, Ghavamzadeh et
al. (2010) demonstrate that LSTD-RP can provide an effi-
cient and effective approximation for value functions, since
LSTD-RP reduces the estimation error at the price of the in-
crease in the approximation error which is controlled.

However, LSTD-RP does not take the eligibility traces into
consideration, which are important parameters in RL. First,
the use of these traces can significantly speed up learning by
controlling the trade off between bias and variance [Att ef al.,
2000; Sutton et al., 2014]. Second, the parameter A of these
traces is also known to control the quality of approximation
[Tsitsiklis et al., 1997]. In the remainder of this paper, we
present a generalization of LSTD-RP to deal with the A > 0
scenario (i.e., LSTD())-RP (see Section 3)). What’s more,
we also give its theoretical guarantee in Section 4.

3 Algorithm

In this section, we first consider the Bellman equation with
random projections (see Equation (4)), and explore the exis-
tence and uniqueness properties of its solution, which is the
goal of our newly proposed algorithm to estimate. Then we
present the LSTD with Random Projections and Eligibility
Traces algorithm (briefly denoted as LSTD(A)-RP) as shown
in Algorithm 1, and discuss its computational cost.

3.1 Bellman Equation with Random Projections

To begin with, we make the following assumption through-
out the paper as [Tsitsiklis et al., 1997; Tagorti and Scherrer,
2015].

Assumption 1. The feature matrix ® has full column
rank; that is, the original high-dimensional feature vectors
(#5)jeq1,....p} are linearly independent.

From the following lemma, we can get that the linear inde-
pendence property can be preserved by random projections.
Due to the space restrictions, we leave its detailed proof into
Appendix B in the full version of this work [Li et al., 2018].
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Lemma 1. Let Assumption 1 hold. Then the randomly pro-
Jjected low-dimensional feature vectors (Q/Jj)je{lw’d} are lin-
early independent a.e.. Accordingly, \I'TD“\I' is invertible

a.e..5

Let IIg denote the orthogonal projection onto the randomly
projected low-dimensional feature space G with respect to the
p-weighted Lo norm. According to Lemma 1, we obtain the
projection IIg has the following closed form

Mg =v(¥TD,v)"*wTD,.

Then the projected multi-step Bellman equation with random
projections becomes

V =MgT*V, X € [0,1],

A © Nigitl S
where T = (1 — ) Zi:o)\ .
Note that when A = 0, we have T* = T.
According to the Banach fixed point theorem, in order to
guarantee the existence and uniqueness of the fixed point
of Bellman equation with random projections (see Equation
(4)), we only need to demonstrate the contraction property of
operator IIg7™. By simple derivations, we can demonstrate
that the contraction property of IIg7* holds as shown in the
following Lemma 2, and we leave its detailed proof into Ap-
pendix C of the full paper [Li e al., 2018].

Lemma 2. Let Assumption 1 hold. Then the projection oper-
ator 1lg is non-expansive w.r.t. p-weighted quadratic norm,

and the operator TIgT™ is a ( Wl(i;;\) -)contraction.

Denote the unique solution of the Bellman equation with
random projections (see Equation (4)) as Vi stp(x)-rp- In this
work, we focus exclusively on the linear function approxima-
tion problem. Therefore, there exists 6 € R? such that

Vistooyre = WO = g T e. 5)

Just as the derivations of LSTD(\) algorithm [Tsitsiklis et al.,
1997; Sutton and Barto, 1998; Boyan, 2002], we can obtain
that 6 is a solution of the linear equation

A0 = b,
where A =U"D,(I —~yP)(I - yP) ¥, (6)
and b=0"D,(I —y\P) " 'r.

Furthermore, by Lemma 1, we can prove that A is invertible.
Thus, Vistp(n)re = WA™1b is well defined.

3.2 LSTD()\)-RP Algorithm

Now we present our proposed algorithm LSTD()\)-RP in Al-
gorithm 1, which aims to estimate the solution of Bellman
equation with random projections (see Equation (6)) by us-
ing one sample trajectory { X;}}_; generated by the Markov
chain M™. Then we discuss its computational advantage
compared to LSTD(\) and LSTD-RP.

LSTD(M)-RP algorithm is a generalization of LSTD-RP.
It uses eligibility traces to handle the A > 0 case. Line 8

SNotice that here the randomness is w.r.t. the random projection
rather than the random sample. In the following paper, without loss
ay are linearly independent

.....

and ¥ D,V is invertible.

2393

Algorithm 1: LSTD()\)-RP Algorithm

1t Input: The original high-dimensional feature vector
¢ X — RP; discount factor v € [0,1); eligibility
trace parameter A\ € [0, 1]; the sample trajectory
{X¢,r¢}7, where X, and r; are the observed state
and reward received at time ¢ respectively;

2 Output: 0 := A=1hor 6 := A'h, where At denote the
Moore-Penrose pseudo-inverse of matrix A;

3 Initialize: A < 0,b+ 0,2 + 0, « 0;

4 Generate random projection matrix H €
elements are drawn i.i.d. from A(0,1/d);

s fort=0,1,...,ndo

6 t—t+1;

7 The randomly projected low-dimensional feature

vector (X)) = Hop(X+);

8 z — Ayz 4+ 9(Xy);

o | AA (X)) — (X))

10 Ab <+ 21y

1 A(—A—l—%[AA—A];

12 I;<—B+%[A6—(S];

R*D whose

updates the eligibility traces z, and lines 9-12 incrementally
update A and b as described in Equation (8), which have some
differences from that in LSTD-RP algorithm due to eligibility
traces. If the parameter ) is set to zero, then the LSTD(\)-RP
algorithm becomes the original LSTD-RP algorithm. What’s
more, if the random projection matrix H is identity matrix,
then LSTD()\)-RP becomes LSTD(\).

From Algorithm 1, we obtain that the LSTD()\)-RP algo-
rithm returns

Visto(are = U0, @)
with § = A=1,% where
~ 1 n—1
A= mX) —y(Xa)",
~ 1 n—1 @ i
b=——> " mr(X),andz=3 " ()" F¥(X).

®)
Here z; is referred to as randomly projected eligibility trace.
The difference between LSTD(A)-RP algorithm and the
prior LSTD-RP algorithm lies in the fact that LSTD()\)-
RP incorporates the eligibility traces. From Algorithm 1,
we know that the computational cost of eligibility traces is
O(nd). Based on the analysis of the computational complex-
ity of LSTD-RP algorithm, we obtain that the total computa-
tional complexity of LSTD())-RP is O(d® + ndD)(D > d).
This reveals that the computation cost of LSTD(\)-RP algo-
rithm is much less than that of LSTD()) algorithm, which is
O(D? + nD?) [Ghavamzadeh et al., 2010].
To evaluate the performance of LSTD(\)-RP algorithm,
we consider the gap between the value function learned by

LSTD()M)-RP algorithm VLSTD( »)-rp and the true value func-

tion V, i.e., VLSTD()\)_RP — V|4 We refer to this gap as

*We will see that A~* exists with high probability for a suffi-
ciently large sample size n in Theorem 3.
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the frotal error of the LSTD()\)-RP algorithm. According to
the triangle inequality, we can decompose the total error into
two parts: estimation error ||VLSTD( x)-rP — VLsTD(2)-RP| 12 @Nd
approximation error ||Vistpay-rp — V|- We will illustrate

how to derive meaningful upper bounds for these three errors
of LSTD(A)-RP in the following section.

4 Theoretical Analysis

In this section, we conduct theoretical analysis for LSTD())-
RP. First, we examine the sample size needed to ensure the
uniqueness of the sample-based LSTD(A)-RP solution, that
is, we explore sufficient conditions to guarantee the invert-
ibility of A with high probability, which can be used in the
analysis of estimation error bound. Second, we make fi-
nite sample analysis of LSTD(A)-RP including discussing
how to derive meaningful upper bounds for the estimation

u» the approximation error

error || Vistp(a)-rp — VisTD(A)-RP|
[[Visto(a)-re — V||, and the total error |[Vistpx)rp = V|-

To perform such finite sample analysis, we also need to
make a common assumption on the Markov chain process
(X¢)i>1 that has some S-mixing properties as shown in As-
sumption 2 [Mohri and Rostamizadeh, 2010; Tagorti and
Scherrer, 2015]. Under this assumption, we can make full
use of the concentration inequality for S-mixing sequences
during the process of finite sample analysis.

Assumption 2. (X,):>1 is a stationary exponential [3-mixing
sequence, that is, there exist some constant parameters 3y >
0, 81 > 0, and k > 0 such that $(m) < By exp(—B1m™).

4.1 Uniqueness of the Sample-Based Solution

In this subsection, we explore how sufficiently large the num-
ber of observations n needed to guarantee the invertibility of
A with high probability as shown in Theorem 3, which indi-
cates the uniqueness of sample-based LSTD()\)-RP solution.
Due to the space limitations, we leave the detailed proof into
Appendix D of the full paper [Li et al., 2018].

Theorem 3. Let Assumptions 1 and 2 hold, and X1 ~ p. For
any § € (0,1),v € (0,1), and X € [0,1], let ng () be the
smallest integer such that

2dL? 2£(d,n75/4)\/ N _ é
(1*7)VF?7(d,D,5/2){ Vn—1 (rmln=t3)
26(d,n,0/4) 1

T m”+(1—>\7)( —1)]<1’ ©
where

log(n—1)

s ey (o,1] _ W
mn_{ log 5= 0 N ,€(n,d, 0) =1+ Elogg,

=0
n(d, D,8) = (1 —+/d/D — \/210g(2/8)/ D),
I(n,8) = 32A(n, §) max{A(n,8)/B1, 1} *,
A(n,8) = log(8n® /) + log(max{4e® nBo}),

and vy is the smallest eigenvalue of the Gram matrix F' =

®T D, ®. Then when D > d + 2,/2dlog(4/8) + 2log(4/6),
with probability at least 1 — § (the randomness w.rt. the

random sample and the random projection), we have, for all
n > ng(d), A is invertible.
From Theorem 3, we can draw the following conclusions:

1) The number of observations needed to guarantee the
uniqueness of the sample-based LSTD(A)-RP solution
is of order O(dQ), and it is much smaller than that of
LSTD()), which is of order O(D?)(D > d) (Theorem
1 in [Tagorti and Scherrer, 2015]).

2) In our analysis, setting A = 0, we can see that our re-
sult has some differences from LSTD-RP (Lemma 3 in
[Ghavamzadeh et al., 2010]), since we consider the invert-
ibility of the matrix A, while they consider the empirical
Gram matrix 1 070

Remark 1: According to Assumption 1, we know that vp >
0. For all § € (0,1) and fixed d, ng(d) exists since the left
hand side of Equation (9) tends to O when n tends to infinity.

4.2 Estimation Error Bound

In this subsection, we upper bound the estimation error of
LSTD(M\)-RP as shown in Theorem 4. For its proof, first,
bound the estimation error on one fixed randomly projected
space G. Then, by utilizing properties of random projections,
the relationship between the smallest eigenvalues of the Gram
matrices in F and G and the conditional expectation proper-
ties, bridge the error bounds between the fixed space and any
arbitrary random projection space. Due to space limitations,
we leave its detailed proof into Appendix E [Li et al., 2018].
Theorem 4. Let Assumptions 1 and 2 hold, and let X1 ~ p.
For any 6 € (0,1), v € (0,1), and X\ € [0,1], when D >
d+2+/2dlog(4/0)+2log(4/6) and d > 15log(4n/¢), with
probability 1 — § (the randomness w.r.t. the random sample
and the random projection), for all n > no(9), the estimation

error ||Vistp(xy-re — VLSTDW_RPH# is upper bounded as follows:
||‘/LSTD()\)—RP - ‘7LSTD(A)—RP||H < h(”: d, 5)

4‘/made2€(n7 d7 6/4) A —
I 0= e D57 V(m) +1)I(n—1, 5/4)(,10)

with h(n,d, ) = O(% log ), where vp(> 0) is the small-

est eigenvalue of the Gram matrix ‘PTDHQ), Vinax = %"jy",

&(n,d,é), n(d, D,d), m), I(n,§), and ng(5) are defined as

in Theorem 3.

From Theorem 4, we have by setting A = 0 in Equation
(10), the estimation error bound of LSTD(A)-RP becomes of
order O(d/+/n), and it is consistent with that of LSTD-RP
(Theorem 2 in [Ghavamzadeh et al., 2010]).

4.3 Approximation Error Bound

Now we upper bound the approximation error of LSTD(\)-
RP which is shown in Theorem 5. As to its proof, we first
analyze the approximation error on any fixed random pro-
jected space G. Then, we make a bridge of approximation er-
ror bound between the fixed random projection space and any
arbitrary random projection space by leveraging the defini-
tion of projection and the inner-product preservation property
of random projections and the Chernoff-Hoeffding inequality
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for stationary S-mixing sequence. Due to space limitations,
we leave detailed proof into Appendix F of [Li et al., 2018].

Theorem 5. Let Assumptions 1 and 2 hold. Let X1 ~ .
For any 6 € (0,1),v € (0,1), and A\ € [0,1], when
d > 15log(8n/9), with probability at least 1 — 0 (w.r.t. the
random projection), the approximation error of LSTD(\)-RP
algorithm ||V — Visrpn)-re . can be upper bounded as be-
low,

— My

IV = Vistoonrellu < 5— S IV -1V,
2/T(n,8/2) (D
+ (S/d) log(8n/5)(1 + T)W(H}'Vﬂ,

where Y (n, §) = (log %)H%ﬂ;%_

From Theorem 5, we know that by setting A = 0, the
right hand of Equation (11) becomes = [||[V — IL=V|,. +

O(\/(1/d)log(n/6)m(l1xV))], while for LSTD-RP (Theo-

rem 2 in [Ghavamzadeh et al., 2010]) it is \/4% (v —
OV |.+0(y/(1/d)log(n/s)m(I1xV))]. Notice that they are
just different from the coefficients. Furthermore, due to eligi-
bility traces which can control the quality of approximation,
we could tune A to make approximation error of LSTD(\)-RP
smaller than that of LSTD-RP, since the coefficient in Equa-

tion (11) is 3722, while it is -2 in LSTD-RP.

1 - / 1 —
Remark 2: The coefficient 2= in the approximation can be

1=y
1—M\y

V(=7 (1+v=2)\y)
4.4 Total Error Bound

Combining Theorem 4 and Theorem 5, and by leveraging the
triangle inequality, we can obtain the total error bound for
LSTD(M)-RP as shown in the following corollary.

Corollary 6. Let Assumptions 1 and 2 hold. Let X1 ~ p.
Forany 6 € (0,1),y € (0,1), and X € [0,1], when D >

d + 2+/2dlog(8/9) + 21og(8/6) and d > 15log(16n/4),

with probability (the randomness w.r.t. the random sample
and the random projection) at least 1 — 9, for all n > ng(9),

the total error |V — VLSTD( z)-rp|lu can be upper bounded by:
4VinaxdL?€(n,d, 5/8)

vn —1(1 —~y)vpn(d, D,d/4)
1—X\

improved by [Tsitsiklis et al., 19971.

V(m) +1)I(n—1,6/8)

+— J [IV = TrV |, + +/(8/d) log(16n,/8) (1+
(2/v/a) /T (0, 6/0)m(ILFV)] + h(n, d, )
~ 12)
with h(n,d,8) = O(%log 3), where vp(> 0) is the small-
est eigenvalue of the Gram matrix ®T Dy ®, Viypax = %‘;"

&(n,d,d), n(d,D,6), m), I(n,5), no(8) are defined as in

Theorem 3 and Y'(n, d) is defined as in Theorem 5.

By setting A = 0, the total error bound of LSTD())-RP is
consistent with that of LSTD-RP except for some differences
in coefficients. These differences lie in the analysis of LSTD-
RP based on a model of regression with Markov design.

Although our results consistent with LSTD-RP when set-
ting A = 0 except for some coefficients, our results have some
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advantages over LSTD-RP and LSTD()). Now we have some
discussions. From Theorem 4, Theorem 5 and Corollary 6,
we can obtain that

1) Compared to LSTD(), the estimation error of LSTD())-
RP is of order O(d/+/n), which is much smaller than that
of LSTD()) (i.e., O(D/+/n) (Theorem 1 in [Tagorti and
Scherrer, 2015])), since random projections can make the
complexity of the projected space G is smaller than that
of the original high-dimensional space F. Furthermore,
the approximation error of LSTD(M)-RP increases by at
most O(+/(1/d)log(n/d)m(I1V')), which decreases w.r.t
d. This shows that in addition to the computational gains,
the estimation error of LSTD(\)-RP is much smaller at the
cost of a increase of the approximation error which can
be fortunately controlled. Therefore, LSTD()\)-RP may
have a better performance than LSTD()), whenever the
additional term in the approximation error is smaller than
the gain achieved in the estimation error.

2) Compared to LSTD-RP, X\ illustrates a trade-off be-
tween the estimation error and approximation error for
LSTD()M)-RP, since eligibility traces can control the trade
off between the approximation bias and variance during
the learning process. When \ increases, the estimation er-
ror would increase, while the approximation error would
decrease. Thus, we could select an optimal A\* to balance
these two errors and obtain the smallest total error.

3) Compared to LSTD-RP, we can select an optimal

disto(n)RP = O(nlog n)% to obtain the smallest total er-
ror, and make a balance between the estimation error and
the approximation error of LSTD(A)-RP, which is much

smaller than that of LSTD-RP (dfsipre = O(nlog n)%)
due to the effect of eligibility traces.

These conclusions demonstrate that random projections
and eligibility traces can improve the approximation quality
and computation efficiency. Therefore, LSTD(\)-RP can pro-
vide an efficient and effective approximation for value func-
tions and can be superior to LSTD-RP and LSTD()).
Remark 3: Some discussions about the role of factor
m(IIxV) in the error bounds can be found in [Maillard and
Munos, 2009] and [Ghavamzadeh et al., 2010].

Remark 4: Our analysis can be simply generalized to the
emphatic LSTD algorithm (ELSTD)[Yu, 2015] with random
projections and eligibility traces.

5 Conclusion and Future Work

In this paper, we propose a new algorithm LSTD(\)-RP,
which leverages random projection techniques and takes eli-
gibility traces into consideration to tackle the computation ef-
ficiency and quality of approximations challenges in the high-
dimensional feature space scenario. We also make theoretical
analysis for LSTD()\)-RP.

For the future work, there are still many important and
interesting directions: (1) the convergence analysis of the
off-policy learning with random projections is worth study-
ing; (2) the comparison of LSTD())-RP to /; and [, regular-
ized approaches asks for further investigation. (3) the role of
m(IIzV') in the error bounds is in need of discussion.
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