Modeling of mutual inductance between planar inductors on the same plane

Feng Zhang
School of Information Science and Technology; National ASIC Design Engineering Center
University of Science and Technology of China; Institute of Automation, Chinese Academy of Sciences
Hefei, China; Beijing, China
zhangf_dz@163.com

Chunyu Ma*
National ASIC Design Engineering Center
Institute of Automation, Chinese Academy of Sciences
Beijing, China
macy_dz@163.com

Ting Zhao
National ASIC Design Engineering Center
Institute of Automation, Chinese Academy of Sciences
Beijing, China
zhao_t_dz@163.com

Abstract—This paper presents a compact model of mutual inductance between two planar inductors on the same plane, which is essential to design and optimize multiple output isolated power supply or multi-channel digital isolators. The proposed model considers the influence of shapes, geometric parameters and relative lateral distances of the inductors, and it is derived by solving Neumann’s integral. Different planar inductors are simulated by 3-D electromagnetic(EM) software and fabricated on a printed circuit board (PCB) or silicon wafer. The proposed model shows good agreement with simulation and measurement results.

Keywords—mutual inductance; planar inductor; multiple output isolated power supply; multi-channel digital isolator

I. INTRODUCTION

Transformers which provide isolation and transmission of energy and signal are widely used in multiple output isolated power supply and multi-channel digital isolators [1-3]. Crosstalk between inductors on the same plane of multiple transformers will weaken the performance of each transformer, and it is a serious problem in design. Crosstalk is caused by magnetic coupling, which can be expressed by mutual inductance M. The evaluation of M is very important to predict crosstalk and improve device performance. Various approaches have been reported to calculate M, such as the numerical integration of elliptical [4], Bessel function [5] and Neumann’s integral function [6]. All of these approaches are used to calculate M between vertical inductors. Thus, it is desirable to have a methodology to calculate M between inductors on the same plane.

In this study, a compact model for predicting M between planar inductors on the same plane is presented. Different shapes, geometric parameters and relative lateral distances have influence on M. Different planar inductors are simulated by 3-D EM software and fabricated on PCB board or silicon wafer. The proposed model shows good agreement with 3-D EM simulation and test results, and the maximum error is only about 8%.

II. ANALYTICAL MODEL OF MUTUAL INDUCTANCE

For circular inductor-a and inductor-b, their physical configuration and geometric parameters are described in Fig.1(a). Geometric parameters include outer diameter dout, turn number N, track width w and track separation s and lateral distance d. To estimate M between circular inductor-a and inductor-b, each turn of the inductors is approximated as constant current carrying filament [7] as shown in Fig.1(b). It needs to find all the possible combinations of Mij between individual filaments. Then Mij is calculated by Neumann’s equation as shown in (1). Total M is calculated by adding all the combinations of Mij. If inductor-a and inductor-b are square, octagon or other shapes, they are required to be equivalent to circular inductor with the same geometric parameters. Then the M between equivalent circular inductors is calculated by using the above method, and finally it is corrected to obtain the final M between inductor-a and inductor-b. Equation (2) is M between inductor-a and inductor-b which considers the influence of shapes, geometric parameters and relative lateral distances.

\[M_{ij} = \frac{\mu_0}{4\pi} \frac{a_i a_j}{R_y} \]

where:

\[R_y = \sqrt{a_i a_j} \]

and:

\[a_i = d + (i-1)(w_s + s) + \frac{w_o}{2} \]

\[b_j = d + (j-1)(w_s + s) + \frac{w_o}{2} \]

\[d_{ij} = d + (i-1)(w_s + s) + (j-1)(w_s + s) + \frac{w_o}{2} \]

Where dout/dout_b, N_a/N_b, w_o/w_s, s_o/s_b are outer diameter, turn number, track width, and track separation of inductor-a and inductor-b respectively.

\[M = k_1 k_2 \sum_{i=1}^{N_a} \sum_{j=1}^{N_b} M_{ij} \]

(2)

Where k_1 and k_2 are correction factor, which are equal to area ratio of the inductor-a and inductor-b to the equivalent circular inductors, respectively. k_1 and k_2 are summarized in table1. When the shape of inductor is modified octagon as shown in Fig.2, k_1 and k_2 can be corrected as (3), where C_1 and C_2 are shown in Fig.2.

\[k_{12} = k_0 \frac{4}{\pi} \frac{d_{out}w_o - 2C_1 C_2}{d_{out}w_o} \]

(3)

978-1-7281-2062-1/19/$31.00 ©2019 IEEE
TABLE I. K VERSUS SHAPE

<table>
<thead>
<tr>
<th>shape</th>
<th>circular</th>
<th>square</th>
<th>octagon</th>
<th>Modified-octagon</th>
</tr>
</thead>
<tbody>
<tr>
<td>k₁</td>
<td>1</td>
<td>4/π</td>
<td>1.05</td>
<td>4k₀/π</td>
</tr>
<tr>
<td>k₂</td>
<td>1</td>
<td>4/π</td>
<td>1.05</td>
<td>4k₀/π</td>
</tr>
</tbody>
</table>

Fig.1. The circular inductors on the same plane (a) Physical configuration (b) Each turn is approximated as constant current carrying filament.

III. RESULTS AND DISCUSSION

To validate the proposed model, several inductors are simulated by 3-D EM software and fabricated on PCB board and silicon wafer. Inductor-a and Inductor-b have same geometric parameters which are described in table 2. Agilent N5242A vector network analyzer (VNA) is used to measure 2-port s-parameters which are converted to Z-parameters. M of simulation and measurement are calculated by \[\text{Im}(Z_{21})/2\pi f\] at 20MHz.

Fig.3 shows M of proposed model calculated, simulated and measured with different shapes, geometric parameters and distance. (a) Circular, (b) Square, (c) Octagon, (d) Modified octagon.

TABLE II. GEOMETRIC PARAMETERS OF INDUCTOR-A/B

<table>
<thead>
<tr>
<th>shape</th>
<th>type</th>
<th>d_out</th>
<th>w</th>
<th>s</th>
<th>N</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>cir</td>
<td>PCB</td>
<td>136mil</td>
<td>8mil</td>
<td>6mil</td>
<td>3</td>
<td>1.5/2/2.5mm</td>
</tr>
<tr>
<td>squ</td>
<td>PCB</td>
<td>160mil</td>
<td>8mil</td>
<td>6mil</td>
<td>3</td>
<td>1.5/2/2.5mm</td>
</tr>
<tr>
<td>oct</td>
<td>PCB</td>
<td>160mil</td>
<td>8mil</td>
<td>6mil</td>
<td>3</td>
<td>1.5/2/2.5mm</td>
</tr>
<tr>
<td>mod-oct</td>
<td>chip</td>
<td>554um</td>
<td>9um</td>
<td>7um</td>
<td>11</td>
<td>266um</td>
</tr>
<tr>
<td>mod-oct</td>
<td>chip</td>
<td>522um</td>
<td>9um</td>
<td>7um</td>
<td>10</td>
<td>298um</td>
</tr>
<tr>
<td>mod-oct</td>
<td>chip</td>
<td>490um</td>
<td>9um</td>
<td>7um</td>
<td>9</td>
<td>330um</td>
</tr>
<tr>
<td>mod-oct</td>
<td>chip</td>
<td>458um</td>
<td>9um</td>
<td>7um</td>
<td>8</td>
<td>362um</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

The mutual inductance M between two inductors on the same plane causes crosstalk, which affects device performance. A compact model to predict M and its
mathematical derivation are presented. The model considers the influence of shapes, geometric parameters and relative lateral distances. The calculated value of model is in good agreement with simulated and measured value with a maximum error of 8%. The proposed model can provide theoretical guidance for reducing crosstalk and improving device performance.

REFERENCES

