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Abstract 

 

Previous methods build image annotation model by leveraging three basic dependencies: 
relations between image and label (image/label), between images (image/image) and between 
labels (label/label). Even though plenty of researches show that multiple dependencies can 
work jointly to improve annotation performance, different dependencies actually do not "work 
jointly" in their diagram, whose performance is largely depending on the result predicted by 
image/label section. To address this problem, we propose the adaptive attention annotation 
model (AAAM) to associate these dependencies with the prediction path, which is composed 
of a series of labels (tags) in the order they are detected. In particular, we optimize the 
prediction path by detecting the relevant labels from the easy-to-detect to the hard-to-detect, 
which are found using Binary Cross-Entropy (BCE) and Triplet Margin (TM) losses, 
respectively. Besides, in order to capture the inforamtion of each label, instead of explicitly 
extracting regional featutres, we propose the self-attention machanism to implicitly enhance 
the relevant region and restrain those irrelevant. To validate the effective of the model, we 
conduct experiments on three well-known public datasets, COCO 2014, IAPR TC-12 and 
NUSWIDE, and achieve better performance than the state-of-the-art methods. 
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1. Introduction 

Image annotation refers to the process assigning any image with its relevant labels from 
predefined list of  keywords,  which is the key to semantic keyword based image retrieval and 
understanding. However, it can be very costly and subjective to annotate an large scale of 
image manually.  Therefore, automatic image annotation (AIA) is receiving more attention in 
the field. 

Previously methods build image annotation model based on three basic dependencies: 
relations between image and label (image/label), between images (image/image) and between 
labels (label/label). Assuming targets are independent to each other, they managed to establish 
the relations between images and labels [1-8]. Despite its powerful discriminative ability, it 
cannot detect those visually hard-to-detect targets, such as small and blured objects. In fact, we 
can further improve the performance by using multiple dependencies, since most of the targets 
are correlated with each other, and similar images share common features. Inspired by these 
conclusions, subsequent researches tried to obtain extra clues utilizing image/image and 
label/label dependencies. One of the most common paradigm is refining the annotation 
predicted by image/label dependency, using the other two dependencies. Even though this 
methods can, to some extent, keep discriminative and optimize generalization ability, its 
performance is largely affected by the initial annotation. In order to obtain better performance, 
we need to make them work jointly as a whole. Wang et al. [9] proposed prediction path, a 
series of labels in the predefined order to be recognized, to integrate image/label with 
label/label dependencies. However, different prediction path may produce very different 
results, and  it is still a great chanllege to this method since it can be very costly to find the best 
one. Zhu et al. [44] proposed Spatial Regularization Network (SRN) to model the spatial 
relations between labels.  

Another bottleneck of the current methods comes from the lack of regional features, as 
popular deep networks tend to extract global features that output from fully-connected layer. 
Similar to image detection, there are multiple targets in an image for annotation, global 
features usually lead to the loss of the information of some labels, especially for those targets 
with low occurrence. One of the feasiable solution is to devide the whole image into patches, 
and extract regional features of them. Zhang et al. [10] suggest finding accurate features for 
every object through Object Patch Net. Though this method is effective in find regional 
featutres, it fails to fuse the regional features with the global features.   

In this paper, we put forward the adaptive attention annotation model (AAAM, Fig. 1) to 
address the above two problems. On one hand, we use image/label dependency to find those 
easy-to-detect targets where we apply Binary Cross-Entropy (BCE) loss to model image/label 
dependency, and at the same time, we apply Triplet Margin (TM) loss to make the undetected 
relevant labels close to detected relevant ones, and make the detected irrelevant labels away 
from detected relevant ones. In this way, TM can adaptively adjust the relations among labels 
every time BCE detects new targets, and annotation results can thus take both dependencies 
into account. Experimental results show that the proposed prediction path from the 
easy-to-detect to the hard-to-detect labels can obtain better performance than previous 
methods. On the other hand, different from previous methods that try to directly obtain 
regional featutres, we assume that the regional featutres are implicitly contained in the feature 
maps, and can be extracted by enhancing the relevant and restraining the irrelevant ones. 
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Therefore, we present an self-attention layer, acting on feature maps, to implicitly extract 
regional featutres. The key advantage of our method is that we can not only keep accurate 
regional featutres, but also incorporate them into the global features through forward 
propagation . 

The main contributions of the paper are as follows: (1) Instead of traditional annotation 
paradigm, we propose an end-to-end automatic image annotation model AAAM, making 
image/label and label/label work jointly, to improve the performance of visually 
hard-to-detect targets. (2) Contrary to previous methods explicitly extracting regional featutres, 
we put forward an Self-Attention layer, implicitly extracting and incorporating them into 
global features, to further improve the discriminative ability. The experimental results on the 
COCO 2014 [11], IAPR TC-12 [12] and NUSWIDE [13] benchmark show that our method 
outperforms those methods using traditional paradigm. 

The rest of the paper is organized as follows: we introduces the related work in image 
annotation in Section 2,  present our motivation in Section 3, elaborate the proposed 
annotation model AAAM in Section 4, analyze our experiments in detail in Section 5, and 
make a conclusion in Section 6. 

2. Related Work 
Earlier works built image annotation model mainly by leveraging three basic 

dependencies: image/label, image/image and label/label. Inspired by the topic models in 
natural language processing, some literatures applied LSA [14], pLSA [15] and LDA [16] to 
model the joint distribution over images and labels. Zheng et al. [17] proposed Supervised 

 
Fig. 1. The structure of the proposed AAAM. The red labels are relevant to the query image while 
the blue one is irrelevant. Those esay-to-detect labels, such as people and grass, are first detected by 

BCE (image/label dependency), then based on these previous found labels, we apply TM 
(label/label) to detect the hard-to-detect label football, and restrain the irrelevant label room. The 

Self-Attention layer helps us find more useful regional features of the targets. 
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Document Neural Autoregressive Distribution Estimator (SupDocNADE) to learn the joint 
representation from images and labels, and obtained a better performance than previous topic 
models. Park et al. [18] trained a model to build a shared feature space of both media by 
max-margin embedding method. Gong et al. [19] combined DNN with different top-k ranking 
loss functions to improve performance. Rezatofighi et al. [42] transfromed the multi-label 
classification problem into sets prediction problem, it used Convolutional Neural Network 
(CNN) to model the image/label dependency, and applied the cardinality as an extra 
supervised informantion to improve the annotation performance. Usunier et al. [29] proposed 
the Weighted Approximate-Rank Pairwise (WARP) loss to optimize the label ranking 
problem in image annotation. In order to separate the irrelevant labels from the target image, 
He et al. [5] took a triple consisting of images, relevant labels and irrelevant labels as input, to 
train a deep neural network (DNN) by pairwise hinge loss. Ghamrawi et al. [20] used 
Conditional Random Field to model the label/label dependency. Wu et al. [21] took image and 
tags as two instance sets, and construct a weakly supervised learning framework using deep 
multiple instance learning. 

Even though models based on either of these dependencies can obtain fair performance, 
they still left much to be desired. Models based on image/label often failed to detect visually 
hard-to-detect targets, such as small objects and abstract objects; those based on label/label 
can extract less discriminative features; methods based on image/image often needed large 
amount of samples to get joint distribution. Plenty of researches demonstrated that multiple 
dependencies can work jointly to improve annotation performance. The common practice is 
first to train the model , based on image/label, to predict an initial annotation, and then refine 
them utilizing extra knowledge from the other two dependencies. Jin et al. [22] employed a 
cascading structure with CNN and Recurrent Neural Network (RNN) to predict arbitrary 
length image tag recurrently, where the dependency between labels and dependency between 
image and label are modeled using RNN. Wang et al. [23] put forward the CNN-RNN 
framework for multi-label classification problem. In this model, it transforms a multi-label 
prediction to an order prediction problem. The CNN part extracts image features and the RNN 
part captures the information of the previously predicted labels, followed by the projection 
layer computing the output label probabilities. The biggest innovation of this paper is using 
RNN to model the high-order dependency between labels and dependency between image and 
label. Liu [43] proposed to use a semantically regularised embedding layer as the interface 
between the CNN and RNN, to improve the co-training between CNN and RNN. Murthy et al. 
[24] and Uricchio et al. [25] adopted Canonical Correlation Analysis (CCA) and Kernel CCA 
(KCCA) to refine the annotation based on the features obtained through previous deep 
network based on image/label respectively. Wu et al. [41] put forward the diverse and distinct 
image annotation (D2IA) to produce the tags like humans, where it applied weighted semantic 
path to model the label/label dependency, and used CNN to model the image/label 
dependency. 

As current deep networks tend to extract global features, those annotation model based on 
deep networks will lose discriminative ability to some extent. Therefore, some researches 
managed to explicitly extract regional featutres. One of the classical methods transformed 
multi-label classification into multiple binary classification problem, i.e. building a binary 
classifier for every label and picking out the most likely labels by output scores. However, it 
often failed to deal with large numbers of images, due to its high cost and low efficiency. To 
improve its computation cost, Tsoumakas et al. [26] divided the multiple label set into a few 
small random multiple label sets called RAndom k labELsets (RAkEL), and trained classifiers 
for every label powerset, which greatly reduced the computation complexity. Wei et al. [27] 
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proposed a novel framework called Hypotheses-CNN-Pooling, which took a few hypotheses 
of the image as input, and assembled these CNN features using max-pooling to output the 
predictions. Zhang et al. [10] presented the Object Patch Net, which divided each image into 
patches to build the dense patch group set, then incorporated these groups into a graph, and 
searched for the most similar nodes for every patches of the test image, finally predicted its 
annotations by voting. Wang et al. [28] proposed a patch-level and end-to-end architecture to 
model the appearance of local patches, called PatchNet. PatchNet was essentially a 
customized network trained in a weakly supervised manner, which used the image-level 
supervision to guide the patch-level feature extraction. 

3. Motivation 
As some recent researches has proven that the fusion of multiple dependencies can further 
improve the annotation performance, subsequent annotation methods began taking multiple 
dependencies into account. Most of them used the similar learning paradigm: first trained the 
model, based on image/label, to predict an initial annotation, and then refined them utilizing 
extra knowledge from the other two dependencies. However, in these models, different 
dependencies actually did not work jointly, and thus can be further improved. Wang et al. [23] 
treated all the labels as a sentence and each label as a word in the sentence, they asserted that 
the annotation is actually a matter of orders, and the order of labels are pre-determined that is 
called prediction path. However, it was often time-consuming to search for the best prediction 
path. Therefore, finding the prediction path adaptively should be a optimal solution. In order to 
confirm the relationship between dependencies and prediction paths, we conduct experiments 
using image/label (WARP, the 2nd row) and label/label (BCE, the 3rd row) dependencies 
respectively, and the results are shown in Fig. 2. 

According to our experimental results, the features of some labels are learned in the early 
stage of training, while the other ones in the later stage, and they have different prediction path 
for different dependencies. Therefore, the prediction paths are actually the inherent attributes 
of different dependencies, and the optimal prediction paths can be found by the fusion of 
multiple dependencies. Here, we simply call the targets that are relevant to an image and  
deteced in the early stage the easy-to-detect targets, and in the later stage the hard-to-detect 
ones. In our paradigm, we assume that by the fusion of multiple dependencies, those 
easy-to-detect targets can help to find the hard-to-detect and filter out the irrelevant ones.  

Similar to the image detection, image annotation needs to find out multiple targets 
relevant to an image, where local and global features are of equal importance. However, the 
deep network tend to extract global features and neglect regional ones. Attention mechanism 
[30-34] is widely applied in machine translation, text classification and etc.,  which addresses 
the problem that different parts do not make an equal contribution to the task. In the context of 
image annotation, most of the labels represent an object, which is only corresponding some 
part of the image. In order to detect all the relevant labels, we should assign different attentions 
to different parts. Instead of explicitly extracting regional featutres from large quantity of 
proposals, we assume that they are implicitly contained in the feature maps. Hence, we add an 
Self-Attention layer assigning different weights to those feature maps, to implicitly extract 
regional featutres. 
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4. Adaptive Attention Annotation Model 
At the beginning, we will formulate the image annotation task. Given an image I , the set 

of all the possible labels 1 2, ,{ }, ny yY y=  , where n is the vocabulary size, i.e. the number 
of labels used for annotation.  we use a binary vector 1 2[ , , , ] ( {0,1})I n iZ z z z z= ∈ , to 
represent relevant/irrelevant relations between an image and all the labels, where 1=iz  

                         
 

 

 

  
Fig. 2. Scores of labels for different models on COCO 2014: the 1st row shows the target images, the 

2nd, 3rd and 4th rows show the results of WARP, BCE and AAAM respectively. The red texts 
represent the relevant labels, and the green ones represent the irrelevant labels. 
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means the image has been annotated with iy and 0 otherwise. The goal of the image 

annotation is building a model );(ˆ WIFZI = , to predict if a label is relevant/irrelevant to an 
image. 

4.1 Cross-Entropy Loss 
In our paradigm, we make two dependencies, image/label and label/label, work jointly to 
adaptively find better prediction path. Especially, we apply Binary Cross-entropy (BCE) loss 
to model the image/label dependency as our baseline: 
  

 
1

ˆ ˆlog (1 ) log(1 )
n

BCE i i i i
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zL z z z
=

= − + − −∑   (1) 

  where the gradient is the difference between each pair of predicted scrore iẑ and ground-truth 
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since iẑ  is a function of I , we can rewrite (2) as follows: 
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i
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The Cross-Entropy loss optimizes the relationship between image I and label iz  as we 
desired, and bring more stable but faster convergence comparing with quadratic function such 
as Mean Square Error (MSE). However, the gradient with respect to iẑ  is not associate with 
other predicted label jẑ ( ij ≠ ), which means we can hardly detect those visually 
hard-to-detect targets. 

4.2 Triplet Margin Loss 
Although some researches have demonstrated that it can help to predict more precisely results 
to employ label/label dependency, which consider it as a ranking problem and give 
punishments to those cases that the irrelevant labels rank ahead of the relevant ones. However, 
from the view of the prediction path, early detected relevant objects should not only help 
model to detect the other hard-to-detect targets, but also suppress those irrelevant targets on 
the other hand. These intuitions indicate that not only relation between relevant and irrelevant 
objects, that between relevant objects also need to be considered. Therefore, we propose to use 
TM loss to address this problem. 

 , ,
, ,

1 ˆ ˆmax(0, )
2TM i j i k

i j R k R

L m z z
+ −∈ ∈

= + ∆ −∆∑   (4) 

where 2
, |ˆˆ|ˆ jiji zzz −=∆ is the score discrepancy between two relevant labels iy  and jy , and 

2
, |ˆˆ|ˆ kiki zzz −=∆  between irrelevant labels iy  and ky , respectively. The gradient with 

respect to iẑ  is: 
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where ( )I •  is an indicator function. Based on the above analysis, we can observe that, 
comparing with absolute discrepancy in pairwise ranking losses, the TM gives consideration 
to both relations at the same time, by enlarging relative discrepancy between the relevant and 
irrelevant pairs. 

4.3 Joint Training  
In order to make above dependencies work jointly in our paradigm, we design a triplet sampler 
that choose a top-ranking relevant label iy , a lower-ranking relevant label jy  and a 

top-ranking irrelevant tag ky , respectively at each time, so that the model can adaptively 
changes its prediction path to detect more relevant objects. Then, we perform joint training on 
these two losses: 
 BCE TML L Lλ+=   (6) 

where λ  is designed to make a trade-off between the two losses. With the integration of two 
dependencies, the  performance of these later-predict objects can be boosted by those 
previous-predict targets. We conclude the training process as Algorithm 1. 

 

 

 
Fig. 3. The architecture of the Self-Attention layer. p is the feature map of the last convolution 

layer of VGG16, we first use a convolutional layer to produce feature map p‘ , then we use the 

filters whose kernel size is the same as input 'p , and output 1 1n× × attention weights α , where n 

is the number of the feature maps. And we strengthen or weaken 'p according to the value of α . 
At last, we adopt a skip-connections to add p and the output of the Self-Attention layer. 
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4.4 Self-Attention Layer 
In the field of image annotation, an image corresponds to multiple labels, where the features 
for each target (regional featutres) are expected for accurate annotation. Instead of explicitly 
extracting regional featutres such as dividing an image into patches [28], or generating 
proposals [35-37], we insist that all the regional featutres are implicitly contained in the 
feature maps of convolutional layers, and  propose an Self-Attention layer to enhance those 
relevant regions of targets and weaken those irrelevant regions. Besides, these enhanced 
feature maps are integrated to generate global features (features of FC layers), making more 
local information be included. The architecture of Self-Attention layer is shown in Fig. 3.  
    In fact, generating proposals can be equal to assigning weight 1to those relevant and 0 to 
those irrelevant proposals to some extent. Hence, in order to extract the features of those 
relevant proposals, we can give different weights to the features of all the proposals. However, 
it can be very costly to do it, since it can be thousands proposals for each image. In this paper, 
we simplify this process by assigning different weights to different feature maps. Intutively, 
we always give more attention to those partion that closely connected to the target tags. 
Therefore, we apply Self-Attention machanism to address this problem.  In our method, at first, 

we use a convolutional layer to produce feature map p‘ which has the same number of 

channels with p  , then use a series of filters to convolve with p‘  to obtain the attention 
weights, where these filters have the same size with the input feature maps. And, we can get 
attentional feature maps by multiplying them together. 
 
Algorithm 1: Joint Training with BCE and TM Loss 

Input: annotated data ),( )()( mm yx , Yy m ∈)(  

Repeat 

pick a random annotated labeled example ),( )()( mm yx  

obtain predicted score through );(ˆ )()( WxFZ mm =  

rank all the elements of )(ˆ mZ  in descend order 
    Repeat 

        random choose the top-ranking relevant label )(m
iy , lower-ranking relevant label      )(m

jy and 

top-ranking irrelevant label )(m
ky , get their predicted score )(m

iz , )(m
jz  and )(m

kz  respectively. 

        compute the joint loss according to (6) and perform backpropagation 
    Until all the top-ranking relevant labels are scaned 

Until validation error does not improve 
 
Assuming the feature maps in the last convolutional layer are 1 2{ , , , , }lp p p p=   , the 

input feeding into the  first fully-connected layer is: 
 'attention l l l lp p pα− = +   (7) 

where lα is trained to enchance or weaken the current feature maps, 'l lPα is the output of the 
Self-Attention layer. In order to make the network easier to be optimized, we adop residual 
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structure to combine the input lP and 'l lPα  to feed into the fully-connected layer, 
},,,,{ 21  lattentionattentionattentionattention pppP −−−= . Comparing with the original feature maps, 

the proposed Self-Attention layer can tune the attention of the network to target local region 
precisely without accurate bounding box provieded. 
 

Table 1. Configuration of evaluation datasets 
Dataset COCO 2014 IAPR TC-12 NUSWIDE  
No. of Images 122585 19627 209347 
No. of Labels 80 291 81 
No. of  Train Images 82081 17665 125449 
No. of Test Images 40504 1962 83898 
No. of Average Labels 
per Image 

2.9, [1, 18] 5.7, [5, 23] 2.4, [1, 12] 

5. Experiments 

5.1 Datasets 
To make a comprehensive evaluation, we conduct our experiments on three popular datasets, 
COCO 2014, IAPR TC-12, and NUSWIDE, respectively, which are widely used in the image 
annotation domain. Their configurations are shown in Table 1. Here, we list the No. of  
Images and Labels, Train and Test Images, and Average Labels per Images of above datasets. 
Specially, in order to better understand the ditributions of labels, we also show the minimum 
and maximum number of labels per images [minimum, maximum].  

5.2 Metrics 
The performances of automatic image annotation on above datasets have been measured by 
different metrics. Therefore, following the previous works, we assign a fixed number of labels 
to each image, and report the precision and recall of the predictions. Table 1 shows that these 
datasets have an uneven distribution in labels per image, i.e. for each image, even though it has 
at least 1 label and at most 18 labels in the ground-truth, we only take top k labels (for COCO, 
k=3) as our final results. Consequently, it will bring a paradox that even though both model A 
and model B correctly predict different k labels in ground-truth, their performance measured 
by recall and precision can be very different. Therefore, in this paper, we also adopt mean 
Average Precision (mAP) as an important evaluation metric. 

5.3 Related Methods 
Give consideration to different configurations and preconditions of different approaches, we 
carefully pick some of them, according to the different dependencies they use, to compare with 
our model: 
1. Softmax [23]: it used regression to model the image/label dependency 
2. Logistic [25]: it transformed the multi-label problem to multiple one-vs-all classification 
problem, which only modeled the image/label relationship.  
3. KCCA [25]: it mapped the image and label into a shared features using kernel based 
Canonical Correlation Analysis method, and used image/label dependency. 
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4. SVM [25]: for each label, a binary linear SVM classifier was trained using 2L regularized 
least square regression, it modeled the image/label dependency. 
5. BCE [23]: our baseline, it possesses discriminative ability to model the image/label 
dependency.  
6. WARP [23]: this model mainly cared about the pairwise relationships between labels, i.e. 
label/label dependency. Based on the previous Pairwise loss, it came up with Weighted 
Approximately Ranked Pairwise loss, which gave different weights to labels according to their 
positions in the ranked list.  
7. kNN [25]: this approach first computed the 2L  distance between CNN features of each test 
image and the training images, and then used voting strategy according to its neighborhoods. It 
utilized both image/label and image/image dependencies.  
8. 2PkNN [25]: it used two-phase strategy to search for the neighborhoods of the query image 
based on the visual features, using image/image dependency. 
9. TagRel [25]: it proposed a relevance measure based on the consideration that if several 
people label visually similar images using the same labels, and these labels were more likely to 
reflect objective aspects of the visual content.  
10. Tagprop [25]: this model automatically found the optimal metric that maximize the 
likelihood of a probablistic model, which modeled the image/image dependency. 
11. CNN-RNN [23]: this model utilized CNN to model the image/label relationships and RNN 
to model high-order label/label relationship.  

5.4 Results 
In our implementation, we adopt VGG16 [38] network pre-trained on ImageNet [39] as the 
image extractor, which is also used in related methods. At the beginning of training, we use 
only BCE loss to train the model, so as to get these visually easy-to-detect targets, i.e. the 
top-ranking relevant tags for each image. In the next phase, we build the triplet sampler that 

will randomly choose a tag iy  from those top-ranking relevant tags, e.g. person in the 3rd 

column of Fig. 2; select a lower-ranking relevant tag jy , which has not yet been detected, e.g. 

skateboard or bicycle;  select a top-ranking irrelevant tag ky , e.g. car, for each image every 
time. After the selection is done, we perform joint training according to (6). As the process 
goes on, the scores of those visually hard-to-find relevant tags begin to increase, and those 
relevant tags begin to decrease. But we find that not all the relevant tags could be detected in 
this way, knife, fork and cake, in the 2nd colomn in Fig. 2, can not be depressed, since they are 
closely correlated with the picture, and need more samples to distinguish them from those 
relevant tags. Besides, from the Fig. 2, we can observe that the scores of the some relevant tags 
would decrease in the final stage, which is due to the random selection of the triplets. So, in the 
final stage, we adopt the hard sample detection method that choose the triplets maximizing the 
TM loss. For the training processes, we use ADAM to optimize our model, and set the learning 

rate in feature layer 
31 10−× and classifier layer 

41 10−× , weight decay rate 
5101 −×  and 

dropout rate 0.5. All the parameters involved are obtained through cross-validation. For the 
missing results on some datasets, we reimplement BCE and WARP methods. 

We show the image annotation results on COCO 2014, IAPR TC-12 and NUSWIDE 
datasets in Table 2, 3 and 4, respectively. In order to make an overall analysis on different 
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dependencies, we carefully choose some models to compare the with proposed method: 
Softmax, Logistic, KCCA and BCE consider the image/label dependency; WARP gives 
consideration to the label/label dependency; kNN, 2PkNN, TagRel and TagProp addresses the 
image/image dependency. In order to confirm the advantages of dependeny fusion, we also 
compare the performance of fusion of above methods: KCCA + kNN, KCCA + 2PkNN, 
KCCA + TagRel and KCCA + TagProp combine image/label and image/image dependencies. 
CNN-RNN takes both image/label and label/label dependency into account. Since it is more 
powerful to extract discriminative features, which is very important for the majority of the 
targets, methods based on image/label dependency get better performance than those based on 
image/image and label/label. BCE outperforms 3% on COCO 2014 and IAPR TC-12, and 
12% on NUSWIDE in mAP. For those giving consideration to multiple dependencies, their 
performances get extra promotion: on IAPR TC-12 and NUSWIDE, combing KCCA with 
kNN, 2PkNN, TagRel, Tagprop and SVM can obtain 2% - 7% promotion, which proves that  
mutiple dependencies can help to boost the detection performances. 

 

Table 2. Image annotation results on COCO 2014 (k = 3) 
Method Precision@k Recall@k mAP@10 mAP 
Softmax  59.00% 57.00% 47.40% 50.65% 
BCE  59.30% 58.60% 55.73% 57.90% 
WARP  59.30% 52.50% 49.20% 54.80% 
CNN-RNN 66.00% 55.60% 61.2% - 
BCE + Self-Attention 63.50% 53.30% 59.45% 61.47% 
BCE + TM 67.35% 53.56% 62.54% 64.33% 
AAAM 
(BCE + TM + Self-Attention) 

68.62% 55.00% 63.88% 65.35% 

 

Table 3. Image annotation results on IAPR TC-12 (k = 5) 
Method Precision@k Recall@k mAP@10 mAP 
SVM 31.00% 29.00% - 34.00% 
BCE 40.18% 32.95% 35.58% 37.36% 
WARP 36.72% 27.78% 32.78% 34.99% 
kNN 39.00% 29.00% - 36.00% 
2PkNN 41.00% 39.00% - 41.00% 
TagRel 34.00% 35.00% - 35.00% 
TagProp 40.00% 32.00% - 38.00% 
KCCA + kNN 44.00% 34.00% - 40.00% 
KCCA + 2PkNN 49.00% 38.00% - 43.00% 
KCCA + TagRel 41.00% 37.00% - 40.00% 
KCCA + TagProp 44.00% 37.00% - 41.00% 
BCE + Self-Attention 45.42% 36.30% 37.36% 39.74% 
BCE + TM 49.35% 37.56% 39.74% 42.55% 
AAAM 
(BCE + TM + Self-Attention) 

52.33% 40.66% 42.87% 44.98% 
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    As for our method, we train our model using image/label and label/label dependency at the 
same time, the BCE loss can quickly detect those visually easy-to-detect targets, the TM loss 
can find those visually hard-to-detect but related to the easy-to-detect ones. BCE + TM 
increases the mAP by 7%, 5% and 2% in three datasets respectively, compared to the baseline 
BCE.  

Table 4. Image annotation results on NUSWIDE (k = 3) 

  
In order to illustrate the effect of two dependencies to the prediction path, we show how 

the predictions change over time under 3 cases: (1) label/label (2) image/label and (3) 
image/label + label/label. Fig. 2 depicts the prediction path of WARP, BCE and our proposed 
BCE+TM models, respectively. Specially, after obaining the predictions of each method for 
the query images (the 1st row), we show how these predictions change over time: the red lines 
represent the ground-truth labels and the green lines the top-ranking irrelevant ones. The 
predictions of WARP (the 2nd row) focus more on the relationship between labels, its 
inferences often tend to be the semantic similar labels, such as sandwitch, cake and donut (in 
the 2nd query image), which leads to incorrect results. In contrast, BCE (the 3rd row) can 
distinguish simantic similar objects, but its inferences often contain visually similar objects 
such as suitcase , backpack and handbag (in the 1st query image), and often cannot detect 
those visually hard-to-detect objects such as bicycle (in the 3rd query image). Due to the 
double regularizations between relevant and irrelevant tags imposed by BCE and TM, our 
model is more discriminative, where all the probabilities of irrelevant labels are suppressed in 
a lower level (the green lines) and the distances between those relevant labels (the red lines) 
are much farther. Besides, as TM considers the relations between relevant tags, some visually 

Method Precision@k Recall@k mAP@10 mAP 
Logistic 40.90% 43.12% - 45.78% 
SVM 34.60% 60.60% - 50.20% 
BCE 41.14% 42.87% 49.40% 51.03% 
WARP 31.65% 35.60% 37.66% 39.21% 
kNN 39.60% 44.00% - 49.30% 
2PkNN 39.70% 52.20% - 48.00% 
TagRel 32.10% 50.30% - 49.20% 
TagProp 41.30% 44.60% - 50.90% 
KCCA + kNN 40.20% 50.50% - 51.70% 
KCCA + 2PkNN 53.00% 47.00% - 50.70% 
KCCA + TagRel 34.40% 57.20% - 51.40% 
KCCA + TagProp 45.20% 49.20% - 52.20% 
CNN-RNN 40.50% 30.40% - - 
BCE + Self-Attention 45.34% 42.12% 50.66% 52.20% 
BCE + TM 47.10% 44.56% 51.52% 53.66% 
AAAM 
(BCE + TM + Self-Attention) 

54.33% 47.25% 52.68% 53.98% 
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Fig. 4. Comparison between the baseline and AAAM on image annotation, where red texts represent 

the relevant labels and green ones the irrelevant labels. 

hard-to-detect objects such as bicycle, can also be successfully detected. Fig. 4 depicts the 
probability distribution of some of our predictions, we can see clearly the discriminative 
power and effective generalization, our method can further increase the prediction probability 
of the relevant labels (red texts)and decrease the irrelevant ones (green texts). Therefore, 
comparing with baseline, our method can significantly improve the annotation performance. 

Apart from the advantage of the dependency fusion, we also make an analysis of the 
impact of the proposed Self-Attention layer on the performance. Fig. 5 shows the activation 
maps [40] of the baseline and proposed model. We compare their performance by their class 
activation maps of the ground truth labels, which are readily comprehensible to us, and the 
results of the same label are shown in the same column for each group. In the 1st group, the 
high-response regions of people and police are concentrated on the human body for our model 
(the 2nd row). While for the baseline (the 1st row), they expand their region to the road by 
mistake. In the 2nd group, the high-response area of bird and animal locate in the same region 
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for our model (the 2nd row), since they have the same semantic meaning in this image. While 
for the baseline (the 1st row), they locate at different areas. As far as the mAP results, with the 
Self-Attention layer, AAAM outperforms the state-of-the-art method by 2 - 3%. The above 
results show that the proposed Self-Attention layer can remarkably improve the regional 
features ability of the baseline, and achieve the semantic consistency of the labels. 

6 Conclusion 
In this paper, we propose the AAAM model for image annotation. To detect those visually 
hard-to-detect targets, we fuse image/label and label/label dependencies, where apply BCE 
and TM loss to model two dependencies respectively. Specially, we use BCE to find these 
visually easy-to-detect targets, and then find those hard-to-detect ones based on the label/label 
dependencies between them. This procedure forms an adaptive prediction path. Besides, in 
order to improve the ability to extract regional feature representations, we propose the 
self-attention layer, which enhances the relevant regions and restrains those irrelevant ones. 
Experimental results on the three datasets demonstrate that the proposed approach achieves 
superior performance to the state-of-the-art methods. However, predicting abstract annotation 
is still challenging due to the great chasm between visual and semantic information. We will 
investigate that in our future work. 
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