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ABSTRACT

For polarimetric synthetic aperture radar (PolSAR) image
classification, each pixel can be represented by multiple fea-
tures from different perspectives, such as polarimetric feature
(PF), texture feature (TF) and color feature (CF). Both multi-
view canonical correlation analysis (MCCA) and multi-view
spectral embedding (MSE) are two unsupervised multi-view
subspace learning methods which search for different pro-
jection matrices for different features to combine multiple
features in a common low-dimensional feature space. How-
ever, MCCA emphasizes the correlation of multiple features
and MSE learns the complementarity of multiple features.
To deeply learn the relation of multiple features, we incor-
porate MCCA with MSE based on the label information and
a symmetric version of revised Wishart (SRW) distance for
supervised PolSAR image feature extraction. Experimental
results confirm that the proposed method can improve the
classification performance.

Index Terms— multiple features, MCCA, MSE, feature
extraction, PolSAR image classification

1. INTRODUCTION

Polarimetric synthetic aperture radar (PolSAR) uses multiple
channels to obtain abundant information of objects. Land
cover classification is an important application for PolSAR
[1, 2]. Feature extraction is a crucial factor of PolSAR image
classification. The classification performance largely depends
on whether the extracted features are appropriate. This paper
deals with supervised PolSAR image feature extraction based
on the label information.

Some previous works directly use the PolSAR data as the
feature for image classification [1]. Afterwards, many param-
eters produced by target decomposition methods such as Free-
man decomposition, Krogager decomposition, Pauli decom-
position and Huynen decomposition are applied as the feature
[3, 4]. We call the above feature as polarimetric feature (PF)
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which mainly describes the scattering and physical character-
istics of targets.

Texture feature (TF) is an important visual feature and
has also served as the feature for PolSAR image classifica-
tion [5, 6]. Moreover, TF was usually incorporated with PF
for PolSAR image classification [5, 6]. Recently, color fea-
ture (CF) has also been used for PolSAR image classification
[7]. In [7], Uhlmann et al. summarized the aforementioned
three features and evaluated the role of CF for PolSAR image
classification. CF was extracted from the Pauli RGB image
[1] and experimental results showed that CF helped improve
the classification performance [7].

To deal with multiple features, some conventional dimen-
sionality reduction methods concatenated multiple feature
vectors together as a new vector, such as principle compo-
nents analysis (PCA) [8], independent component analysis
(ICA) [9], Laplacian eigenmaps (LE) [3] and supervised
graph embedding (SGE) [10], which ignored the correla-
tion and difference of multiple features. To this end, some
multi-view subspace learning methods have been proposed to
learn the relation of multiple features [11, 12, 13]. Canon-
ical correlation analysis (CCA) was a typical unsupervised
multi-view subspace learning method for two features, which
searched for two projection matrices to separately project two
features to a common low-dimensional space by maximiz-
ing the correlation of the two features [11]. In our previous
work [14], we proposed local discriminant canonical corre-
lation analysis (LDCCA) to extract features based on PF and
TF of PolSAR images. LDCCA exploited the label infor-
mation and preserved the local structure of the data, which
resulted in a good classification performance. Multi-view
CCA (MCCA) [12] extended CCA to multiple features by
maximizing the total correlations between any two features.
Multi-view discriminative analysis (MvDA) [13] used the
label information and also dealt with multiple features. Xia
et al. proposed multi-view spectral embedding (MSE), which
utilized adaptive weights to explore the complementarity of
different features [15]. And MSE has been used to combine
multiple features for hyperspectral remote sensing image
classification [16].
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In this paper, we propose a novel method to combine PF,
TF and CF for supervised PolSAR image classification. We
firstly modify MSE to make it appropriate for the PolSAR da-
ta by using the label information and a symmetric version of
revised Wishart (SRW) distance. Then the modified MSE is
combined with MCCA to learn deeply the relation of multi-
ple features. Experimental results show the superiority of the
proposed method.

2. THE PROPOSED METHOD

We exploit three features (i.e., PF, TF and CF) for supervised
PolSAR image classification. The details of PF and TF can be
found in our previous work [14]. Moreover, CF which is ex-
tracted from the Pauli RGB image [1] consists of six descrip-
tors (mean, variance, skewness, kurtosis, energy and entropy)
of the RGB color histogram and the HSV color histogram
(6× 3 × 2 = 36); the four dominant color ratios of the HSV
color histogram [7]. Therefore, the number of CF is 40. Sim-
ilarly to TF, CF is also computed in a sliding 11× 11 window
[14]. Therefore, PF, TF and CF are denoted as X1 ∈ R58×n,
X2 ∈ R56×n and X3 ∈ R40×n for n samples, i.e. n pixels.
We aim to search for three projection matrices W1,W2,W3

to project X1, X2, X3 to a common low-dimensional feature
space for the final classification. In the following description
of the proposed method, we use v features instead of 3 fea-
tures for general cases.

We use v matrices {Xi ∈ RDi×n}vi=1
to represent v fea-

tures for n samples, where Di is the dimensionality for the ith
feature. The proposed method aims to search for v projection
matrices {Wi = [wi1, wi2, · · · , wid] ∈ RDi×d}vi=1

(d < Di),
where d is the reduced dimensionality.

Similar to MSE, we firstly construct graphs to represen-
t the structure information of the data. MSE constructs v
graphs corresponding to v features based on the Euclidean
distance. That is, the neighboring samples of each pixel are
sought based on the Euclidean distance of different feature
vectors. However, for the PolSAR data, the Wishart distance
which is derived from the distribution of the PolSAR data is
commonly used for PolSAR image classification. Then it is
more appropriate to use the Wishart distance to construct the
graph [1]. Specifically, we exploit a symmetric version of re-
vised Wishart (SRW) distance to seek for neighbouring sam-
ples and then construct the common graph for different fea-
tures [14, 17]. The detailed definition of the SRW distance
can be found in [17]. For pixel i and j, which can be char-
acterized by p × p covariance matrix Ci and Cj , the SRW
distance is computed as follows:

dSRW (Ci, Cj) =
1

2
(tr(C−1

i Cj) + tr(C−1

j Ci))− p. (1)

In addition, to exploit the label information, the neighbor-
ing samples are searched in one class. We search for k neigh-
bouring samples of each pixel based on the SRW distance in

one class. If sample j is one of sample j’s k neighbouring
samples, Gij = 1, else Gij = 0. Then, the modified MSE
based on the SRW distance and the label information is as
follows:

min
{Wi}v

i=1
,{αi}v

i=1

∑

i

αr
i tr

(
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i XiLX

T
i Wi

)

s.t.
∑

i

αi = 1, αi ≥ 0 (2)

where L = D − G, D is a diagonal matrix and Dii =
∑n

j=1
Gij . α1, α2, · · · , αv are weights for v features which

are employed to learn the complementarity of different fea-
tures. A larger αi means that the ith feature plays a more
important role in PolSAR image classification. r is a param-
eter and usually r > 1. If r = 1, the solution will be αi = 1
corresponding to the minimum tr

(

WT
i XiLX

T
i Wi

)

and other
view weights equal to 0.

Afterwards, problem (2) is combined with MCCA by the
parameter β. Therefore, the final objective function of the the
proposed method is:

min
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s.t. WT
i XiX

T
i Wi = I, i = 1, 2, · · · , v

∑

i

αi = 1, αi ≥ 0 (3)

In the above problem, both the v projection matrices
W1,W2, · · · ,Wv and v weights α1, α2, · · · , αv need to be
solved. It is difficult to solve problem (3) directly. Therefore,
we adopt an alternating optimization method to obtain a solu-
tion by iteratively updating {Wi}

v
i=1

and {αi}
v
i=1

. Initially,
αi = 1/v, i,= 1, 2, · · · , v. Then the alternating process is as
follows:

1) Fix {αi}
v
i=1

and optimize {Wi}
v
i=1

. The problem (3)
becomes

min
{Wi}v

i=1

tr
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T
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v
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s.t. WT
i XiX

T
i Wi = I, i = 1, 2, · · · , v (4)

For arbitrary column vectors w1, w2, · · · , wv correspond-
ing to v projection matricesW1,W2, · · · ,Wv, the Lagrangian
function is

L({wi}
v
i=1, µ) =

∑

i

αr
iw

T
i XiLX

T
i wi − β

v
∑

i<j

wT
i XiX

T
j wj−

µ(wT
1 X1X

T
1 w1 − 1)− · · · − µ(wT

v XvX
T
v wv − 1) (5)

where µ is the is the Lagrangian multiplier. Set ∂L/∂wi = 0,
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i.e.,

∂L
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The above equation can be written in a matrix form as fol-
lows:

Aw = 2µB (7)
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Through the eigenvalue decomposition, we acquire d
eigenvectors for smallest d eigenvalues. W1,W2, · · · ,Wv

are generated as follows:
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2) Fix {Wi}
v
i=1

and optimize {αi}
v
i=1

. The problem (3)
is equivalent to

min
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Without regard to αi ≥ 0,
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whereλ is the Lagrangian multiplier. Sequently, set ∂L/∂αi =
0, i.e.,
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∂αi

=
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i tr
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)

− λ = 0 (10)

Table 2. Classification accuracies on two data sets based on
PF, TF and CF

Flevoland San Francisco Bay
PF 0.8420 0.8390
TF 0.8777 0.7445
CF 0.8641 0.8100

Additionally,
∑

i αi = 1, then we obtain

αi =

(

tr
(
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T
i Wi

))
1

1−r
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(
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(11)

Moreover, tr
(

WT
i XiLX

T
i Wi

)

≥ 0, thus the result meet-
s the the non-negative condition. The convergence and the
computational complexity analysis of the proposed can refer
to previous works [18, 15, 13].

Finally, we get the projection matrices {Wi}
v
i=1

via the
above alternative optimization algorithm. Based on the
obtained v projection matrices, we concatenate the v low-
dimensional features like [WT

1 X1,W
T
2 X2, · · · ,W

T
v Xv]

T

for the following classification.

3. EXPERIMENTAL RESULTS

Experiments are conducted on two PolSAR data sets. The
first data set is the Flevoland data set with size 200 × 320
pixels. This data set is a part of the cropland from Flevoland,
which consists of nine classes of land covers: rapeseed, grass,
stem beans, lucerne, winter wheat I, potatoes, winter wheat II,
bare soil, sugar beat. The Pauli RGB image and the ground
truth are displayed in Figs. 1(a-b). The second one is the
San Francisco Bay data set consisting of 900 × 1024 pixels.
We consider four classes of land covers (grass, buildings, sea
and mountains). Some pathes from four classes are used for
experiments as shown in Fig. 2(a). The ground truth is shown
in Fig. 2(b). The refined Lee filter is utilized to denoise two
data sets in a window of size 7× 7 [1]. 100 pixels from each
class are used as the training set and the rest of pixels are used
as the testing set.

Firstly, PF, TF and CF are separately used for PolSAR
classification with the nearest neighbor (NN) classifier and the
classification accuracies are shown in Tab. 2. Furthurmore,
we employ MCCA, MSE, MvDA and multi-view LDCCA
(MLDCCA), supervised Wishart classifier (SWC) to compare
with the proposed method. MLDCCA is the multi-view ex-
tension of our LDCCA [14] like MCCA. SWC is always used
as a baseline when comparing the performance of PolSAR
image classification methods. About some parameters, we
empirically set d = 10, r = 10, k = 10 for a good perfor-
mance. In addition, β = 1 for the the first data set. β = 5
for the second one. The numerical and visual results of the
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Table 1. Classification accuracies comparison on the Flevoland data set
Method Potatoes Grass Beet Lucerne Wheat I Wheat II Stem beans Bare soil Rapeseed Accuracy
MCCA 0.9923 0.8294 0.9895 0.5405 0.9190 0.9856 0.9967 1.0000 0.8750 0.9067
MSE 0.9849 0.8178 0.9942 0.7549 0.9777 0.9940 0.9767 1.0000 0.9649 0.9298

MvDA 0.9919 0.8319 0.9935 0.7654 0.9519 0.9952 0.9967 1.0000 0.9825 0.9318
MLDCCA 0.9911 0.9608 0.9931 0.8875 0.9410 0.8194 1.0000 1.0000 0.8180 0.9565

SWC 0.9814 0.8636 0.9971 0.7524 0.9013 0.9880 1.0000 1.0000 0.9803 0.9268
The proposed

method
0.9929 0.9779 0.9967 0.9304 0.9690 0.8876 0.9867 1.0000 0.9276 0.9750

Table 3. Accuracies comparison on the San Francisco Bay
data set

Method Sea Mountains Grass Buildings Accuracy
MCCA 0.9996 0.6341 0.7481 0.9123 0.8639
MSE 0.9907 0.7042 0.8122 0.9145 0.8855

MvDA 1.0000 0.6693 0.7289 0.9407 0.8747
MLDCCA 1.0000 0.9213 0.7075 0.9390 0.9117

SWC 0.9999 0.5231 0.9228 0.8824 0.8691
The proposed

method
0.9989 0.8355 0.8499 0.9673 0.9335

first data set are shown in Tab. 1 and Fig. 1. And those of the
second data set are shown in Tab. 3 and Fig. 2.

From these experimental results, it can be seen that the
combination of three features indeed improves the classifica-
tion performance. Moreover, MSE and MvDA perform near-
ly and better than MCCA. MCCA does not utilize the label
information and mainly considers the correlation of different
features. Although MSE is also unsupervised, it considers the
preservation of the structure information of the data and ex-
plores the complementarity of different features. MLDCCA
performs better than MSE and MvDA because it can preserve
the correlation of different features, the label and local struc-
ture information of the data. But it neglects the complemen-
tarity of different features. The proposed method outperforms
other comparing methods because 1) we adopt the multi-view
subspace learning method to take full advantage of three fea-
tures and their relations between each other; 2) the proposed
method combines MCCA and MSE to learn deeply the rela-
tion of different features.

4. CONCLUSION

This paper proposes a multi-view subspace learning method
to combine PF, TF and CF for supervised PolSAR image clas-
sification. By introducing the label information and the SRW
distance, MSE is modified and then combined with MCCA
to preserve the correlation and complementarity of differen-
t features. Finally the classification accuracies and the visi-
ble classification results show the superiority of the proposed
method. In addition, we will extend the proposed method for
other types of multi-channel images in the future work.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Classification results comparison on the Flevoland da-
ta set: (a) the denoised image, (b) the ground truth, (c) MC-
CA, (d)MSE, (e) MvDA, (f) MLDCCA (e) SWC and (f) the
proposed method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Classification results comparison on the San Francisco
Bay data set: (a) the denoised image and some experimental
areas, (b) the ground truth, (c) MCCA, (d)MSE, (e) MvDA,
(f) MLDCCA (e) SWC and (f) the proposed method.
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