
A GPU Based Parallel Genetic Algorithm for the Orientation
Optimization Problem in 3D Printing*

Zhishuai Li1,2, Gang Xiong1,3, Xipeng Zhang1, Zhen Shen†,1,4, Can Luo1, Xiuqin Shang1,
Xisong Dong1,4, Gui-Bin Bian1, Xiao Wang1,4 and Fei-Yue Wang1

Abstract— The choice of model orientation is a very impor-
tant issue in Additive Manufacturing (AM). In this paper, the
model orientation problem is formulated as a multi-objective
optimization problem, aiming at minimizing the building time,
the surface quality, and the supporting area. Then we convert
the problem into a single-objective optimization in the linear-
weighted way. After that, the Genetic Algorithm (GA) is used
to solve the optimization problem and the process of GA is
parallelized and implemented on GPU. Experimental results
show that when dealing with complex models in AM, compared
with CPU only implementation, the GPU based GA can speed
up the process by about 50 times, which helps to significantly
reduce the optimization time and ensure the quality of solutions.
The GPU based parallel methods we proposed can help to
reduce the execution time and improve the efficiency greatly,
making the processes more efficient.

Index Terms— Orientation Optimization; GPU; parallel com-
puting; genetic algorithm; Additive Manufacturing

I. INTRODUCTION

IN RECENT years, with the rise of intelligent manufacturing,
3D printing, which is almost the same with the Addi-

tive Manufacturing (AM), has attracted widespread attention
from academia and industry [1]–[3]. Unlike traditional turn-
ing, milling, stamping, and die-making processes, the 3D
printing uses a 3D model and builds products by stacking
materials layer by layer.

The choice of model orientation is a very important issue
in 3D printing. The orientation determines the height of
printed model which is an important indicator affecting the
printing speed. At the same time, It influences the structure
and quantity of the support, and the deformation and surface
roughness for printing model. Specific parameters and con-
straints of the layered manufacturing process must also be
considered when selecting the orientation. At present, there

*This work was supported in part by the National Natural Science
Foundation of China under Grants 61773382, 61872365, 61533019 and
61702519; Beijing Natural Science Foundation (No. 4182065); Dongguan’s
Innovation Talents Project (Gang Xiong); the 2018-2019 joint project
between Beijing Ten Dimensions Technology Co. Ltd. and Institute of
Automation, Chinese Academy of Sciences; Chinese Guangdong’s S&T
project (2017B090912001); 2017 Special Cooperative Project of Hubei
Province and Chinese Academy of Sciences.

1All the authors are with the State Key Laboratory of Management and
Control for Complex Systems, Institute of Automation, Chinese Academy
of Sciences, Beijing, 100190, China.

2Zhishuai Li is also with the School of Artificial Intelligence, University
of Chinese Academy of Sciences, Beijing, 100049, China.

3Gang Xiong is also with the Cloud Computing Center, Chinese Academy
of Sciences, Dongguan, 523808, China.

4Zhen Shen, Xisong Dong and Xiao Wang are also with the Qingdao
Academy of Intelligent Industries, Qingdao, 266113, China.

†Corresponding Author. E-mail: zhen.shen@ia.ac.cn

are two major kinds of methods for studying the problem of
model orientation while printing 3D models.

Heuristic method: Lan et al. optimized the surface quality
of the model in stereolithography printing technology by
selecting the minimum or maximum vertical surface area
of the print direction from several preselected directions [4].
Masood et al. used the method of measuring volumetric error
of the model to determine the orientation [5]–[7].

Optimization method: Pandey et al. used multi-objective
genetic algorithm to solve the orientation optimization of
the model, taking into account the mutual constraints of
construction time while printing and average surface rough-
ness [8]. Research on model orientation problems based
on optimization algorithms is gradually emerging and has
achieved effective refinements [9], [10].

To determine the best orientation of a model for majority
of approaches is a very difficult and time consuming task.
Therefore, how to optimize the target indicators in model
orientation and use a faster method to reduce calculation
burden is a meaningful study.

Intelligent optimization algorithms have been applied in
many engineering practice fields and have proved to be prac-
tical and usable optimization methods for solving problems
in complex systems in recent years [11]–[14]. Different from
Pandey et al. [8], we convert the problem into a single-
objective optimization problem in a linear-weighted way. The
requirement for personalized configuration of optimization
indicators can be satisfied, which is closer to the way
human think and decide. Furthermore, we use a parallel
genetic algorithm to solve the optimization problem of model
orientation.

As the calculation tool of this paper, the Graphic Process-
ing Unit (GPU) is used to solve the problem of high compu-
tational burden when optimizing, quantifying, and evaluating
model orientation. GPUs have played an important role in
scientific computing such as biopharmaceuticals, chemical
analysis, traffic simulation, and fluid mechanics [15]–[19].
By designing appropriate parallel algorithms used on GPU,
the calculation process can be significantly accelerated and
the problem of heavy calculation burden in the model orien-
tation evaluation process can be effectively solved.

The remaining parts of this paper are organized as follows.
In Section II, the problem formulation is presented, which
aims at minimizing the building time, surface quality and
supporting area. In Section III we further propose a problem
solving method based on the genetic algorithm for the model
orientation problem. In Section IV, the process of the genetic

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6027-0/19/$31.00 ©2019 IEEE 2786

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 07:53:15 UTC from IEEE Xplore. Restrictions apply.

algorithm is parallelized and implemented on the GPU to
accelerate the problem solving and the evaluation in model
orientation. In Section V, we present in detail experimental
verification process by using NVIDIA� GPU and CUDA
9.0, and give the experimental results and related analysis.
In Section VI, we summarize this paper.

II. MODEL ORIENTATION PROBLEM MODELING

A. The description of model orientation problem

Due to the properties of 3D printed layered manufacturing,
the rotation of the model around the z-axis has no effect on
the forming process. Therefore, considering the orientation
of the model, it is only necessary to consider the rotation
angle θx of the model around x-axis and θy around y-axis.

In three-dimensional Cartesian coordinate system, the ro-
tation matrix of the model is rotated by θx degrees around
the x-axis as shown in (1).

Rx(θx) =

⎡
⎣1 0 0
0 cos θx − sin θx
0 sin θx cos θx

⎤
⎦ (1)

θx is in the same direction as the right-handed spiral.
Similarly, the rotation matrix of the model is rotated by θy
degrees around the y-axis as shown in formula (2).

Ry(θy) =

⎡
⎣ cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy

⎤
⎦ (2)

Furthermore, we can get the model to rotate θx around
x-axis and then θy around y-axis. The rotation matrix M
for the model is (3).

M = Ry(θy)Rx(θx)

=

⎡
⎣ cos θy sin θx sin θy sin θy cos θx

0 cos θx − sin θx
− sin θy cos θy sin θx cos θy cos θx

⎤
⎦ =

⎡
⎣m1

m2
m3

⎤
⎦ (3)

In this paper, we assume that the initial orientation d0 as
the positive direction of the z-axis, i.e. d0 = [0 0 1]T, and
the orientation of the model after rotation is d.

d = Md0 = [sin θy cos θx − sin θx cos θy cos θx]
T (4)

The problem of model orientation optimization was sys-
tematically studied in [8], [20]. Here, we study the Stereo
Lithography (STL) model orientation to the optimization
problem combined with [9] and select three key factors,
including model building time, surface quality and support-
ing area as optimization indicators, which affect 3D printing
efficiency and finished product quality.

B. The relationship between model orientation and building
time

The orientation of the model will determine the height
of the model while printing, which in turn affects the
building time. If the triangular surface of the STL model
is used to obtain the height of the model, a large number of
redundant calculations will occur, reducing the efficiency of

the optimization algorithm. Here, we model the STL model
as a set of vertices.

T = {vj , j = 1, 2, ...,M}
vj = {[x y z]T |x, y, z ∈ R}

M represents the total number of vertices of the model. R is
the set of real number.

Our work is based on the 3D printing technology rep-
resented by Digital Light Processing (DLP), in which the
printing time is proportional to the height of the model, so
the relationship between the building time and the orientation
of the model is shown in (5).

f1(θx, θy) =
1

max {m3 · vj} −min {m3 · vi} (5)

Where vj and vi mean the coordinates of vertices i, j and we
find the maximum and minimum z values under the rotation
by M, respectively.

C. The relationship between model orientation and surface
quality

The step effect is the main factor affecting the surface
quality of the model. It causes a volumetric error between
the target model and printed model, which in turn affects the
surface quality of the printed model. But the volumetric error
can be reduced by adjusting the orientation of the model,
and the balance between the printing time and the surface
quality of the model can be obtained. As shown in Fig. 1, for
the printing of a simple three-dimensional object-triangular
prism, the volumetric error caused by different orientations is
also different, which causes the surface quality of the molded
part to be different.

1d

2d 3d

(a) (b) (c)

Fig. 1: Various directions lead to different surface quality

The influence of the step effect is a widely studied
problem in 3D printing [8], [9], [21], [22]. We adopt a
widely used step effect modeling method and quantify the
relationship between step effect and the orientation, which
uses the volumetric error between the STL model and printed
model to quantify the influence of the step effect. It can be
approximated as the volumetric error between all triangular
facets of STL model and the surface of printed model, as
shown in (6).

V =
n∑

i=1

Vi (6)

Where V is the volumetric error between the STL model
and the printed model, Vi is the volumetric error between
the triangular facets ti and the printed model, and n is the
total number of triangular facets.

The volumetric error between the triangular facets and
printed model can be regarded as the sum of several small

2787

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 07:53:15 UTC from IEEE Xplore. Restrictions apply.

volumetric errors ΔV , and each ΔV can be approximated
as a triangular prism, so there is (7).

Vi =
∑

ΔVi (7)

ΔVi =
1

2
×ΔSi × h (8)

Where ΔS is the area where triangular facets is sandwiched
between the layer heights u, and h is the height correspond-
ing to the bottom surface ΔS of the triangular prism. (9) and
(10) can be available from the two-dimensional simplified
diagram in Fig. 2. ni is the normal vector of facet ti.

u

i
�

i
V�

i
n

d

u
h

d
i
n

i
�

(a) (b)

Fig. 2: Volumetric error in triangular facets and its two-
dimensional simplified diagram

h = u× | cos θi| (9)

cos θi =
d · ni

|d| × |ni| (10)

Substituting (8) and (9) into (7), we can obtain (11).

Vi =
∑ 1

2
× u× | cos θi| ×ΔSi

=
1

2
× u× | cos θi| ×

∑
ΔSi

=
1

2
× u× | cos θi| × Si

(11)

Where Si is the area of the triangular facets ti, and the
Cartesian coordinates of the three vertices in triangular facets
ti are A(x1, y1, x1), B(x2, y2, z2), C(x3, y3, z3), then Si can
be calculated by (12).

Si =
1

2

∣∣∣−−→AB ×−→
AC

∣∣∣
=

1

2

∣∣∣∣∣∣
i j k

x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣
(12)

From (6), (10) and (11), we can get the volumetric error
V caused by the step effect of the STL model under the
orientation d as (13).

V =
1

2
× u×

n∑
i=1

|d · ni|
|d| × |ni| × Si (13)

When both d and ni are unit vectors, (13) can be further
simplified to (14).

V =
1

2
× u×

n∑
i=1

|d · ni| × Si (14)

Then the relationship between surface quality and orien-
tation for the model can be obtained as (15).

f2(θx, θy) =
n∑

i=1

|d · ni| × Si × δ1,i (15)

Where
δ1,i =

{
0, arccos(d · ni) = 0, π.
1, else.

(16)

In (16), δ1,i is a threshold function of the volumetric error,
indicating that volumetric error is 0 when the normal vector
of facet ni is the same or opposite to the orientation.

D. The relationship between model orientation and support-
ing area

The influence of model orientation on designing support
is enormous, and different model placements will result in
completely different support structures and shaping effects.
In STL model, supporting areas can be judged according to
the orientation of the triangular facets. As (17) shows.

δ2,i =

{
1, arccos(d · ni) > α.
0, arccos(d · ni) ≤ α.

(17)

Here α is the critical angle in the support generation,
indicating that when the angle between the normal vector
of facet and the printing direction is greater than α, it is
necessary to add support to the triangular facet.

The contacting area between the triangular facets ti and
the support in the model can be measured by the projected
area of the triangular facets to the working platform, that is:

Si⊥ = Si × |d · ni| × δ2,i (18)

Further, it can be obtained that the total contacting area
between the model and support is the sum of the contacting
areas supported by all the triangular facets, as (19) shows.

ST =

n∑
i=1

Si × |d · ni| × δ2,i (19)

The goal of optimization is to find an orientation d
that minimizes the amount of support required to print the
finished model. So the indicator between model orientation
and supporting area is (20).

f3(θx, θy) =

n∑
i=1

Si × |d · ni| × δ2,i (20)

III. SOLVING MODEL ORIENTATION PROBLEM BY USING
GENETIC ALGORITHM

Using GA to find the best orientation was proposed in
[8], considering about surface roughness and building time.
Different from them, we concern supporting area as well.
Furthermore, we choose to convert the problem from a
multi-objective optimization problem into a single-objective
optimization problem and accelerate the algorithm by using
GPU. It is necessary to re-describe the problem as (21).

min
∑3

i=1 wisi

s.t. θx, θy ∈ [0, 2π)
(21)

2788

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 07:53:15 UTC from IEEE Xplore. Restrictions apply.

Where wi is the weight of the optimization indicator si
respectively, and there is (22).

3∑
i=1

wi = 1, wi ≥ 0 (22)

While si, i = 1, 2, 3 are the normalized forms of building
time f1, surface quality f2 and supporting area f3, which are
obtained by previous section, and the normalized formula is:

si(θx, θy) =
fi(θx, θy)−minfi(θx, θy)

maxfi(θx, θy)−minfi(θx, θy)
, i = 1, 2, 3

(23)
Since we need to obtain the maximum value for each opti-
mization indicator, the fitness function of each optimization
indicator is as (24).

Fi(θx, θy) = 1− si(θx, θy), i = 1, 2, 3 (24)

So the comprehensive fitness function F (θx, θy) can be
writen as (25).

F (θx, θy) =
3∑

i=1

wi × Fi(θx, θy)

= 1−
3∑

i=1

wi × si(θx, θy), i = 1, 2, 3

(25)

Similar to [18], [23], the specific steps of the GA used in
our work are as Algorithm 1 shows, which are in favor of
parallelization on GPU.

Algorithm 1 The Pseudo-code of GA
Input: Vertices and triangular facets of the STL model,

the population of model orientation schemes P , fitness
function F , maximum number of iterations N , crossover
probability pc and mutation probability pm.

output: The best orientation in the last population θx, θy .
1: Generate initial population of the orientation schemes P ;
2: Calculate the fitness of all orientation schemes in P by

using the evaluation indicators calculation formula;
3: while “NOT yet converged” do
4: For the orientation scheme Ii (i is the index of the

individual Ii in P) in population P , we randomly select
another orientation Ij in P , where i �= j. The crossover
operator is applied to Ii and Ij on the basis of satisfying
pc, and the generated child individual I ′i is added to the
child generation population Q;

5: For each orientation scheme I ′i in Q, the mutation
operator is applied to I ′i based on the probability pm;

6: Calculate the fitness of all orientation schemes in Q;
7: Compare the fitness function F of each orientation

scheme Ii in P and I ′i in Q. If there is F (I ′i) > F (Ii),
replace Ii with I ′i to write the i position in P , otherwise
retain Ii;

8: end while
9: return The orientation scheme (θx, θy) with the highest

fitness function in current population P .

GA can usually find a satisfactory solution in a reasonable
time. However, as the models become more complex, the bur-
den of computation and solution time are rapidly increasing.
Therefore, it is very important to parallel the GA to improve
its efficiency.

IV. PARALLEL IMPLEMENTATION OF THE GA ON GPU

As the parallel implementation of the genetic algorithm
needs to be synchronized in each iteration, the main com-
putational node (CPU) is required to control the iterative
process of the GA and the convergence condition judgment.
In our work, the master-slave fine-grained hybrid model is
used to realize the parallelization of the GA. The CPU is
responsible for optimizing the module, mainly controlling
the execution flow of the GA and performing the operation
of selecting cross-compilation. The GPU is responsible for
evaluating the module and calculating in parallel by taking
the individual as the computing unit. Many evolutionary
algorithms were implemented in parallel with the emergence
and development of GPU [24], [25]. There is also a growing
interest in GPU-Based parallel GA [18], [23]. It has been
used in such areas as traffic signal control [26], dynamic sub-
area division [27]. We apply it to the parallel optimization
for model orientation problem. The principle of parallel
computing experiment in our work is shown in Fig. 3.

The evaluation of the building time while printing is based
on the vertices of STL model as the basic unit of operation,
while the evaluation of the surface quality and supporting
area are based on the triangular facets of the STL model
(Section II), so the two parts of the calculation need to
be placed in different kernel functions. It can significantly
reduce the computing burden of CPU terminal and improve
the realization efficiency of the algorithm by using GPU
to evaluate the model orientation schemes. The GPU can
effectively shorten the running time of the scheme and im-
prove the calculation efficiency of the evaluation module by

Generate the initial

population of the model

orientation schemes

CPU Code GPU Code

Load the model print time

parallel evaluation module

Evaluate the printing time of

all oriented schemes in the

population in parallel

Selection, crossover,

mutation operation

Generate a new

population with the model

orientation schemes

Satisfy exit

criterion?

Output the best model

orientation scheme in

current population

Y

N

Evaluation

module

Optimization

module

Load the model surface

quality and supporting area

parallel evaluation module
Evaluate the surface quality

and support area in parallel

Kernel
Function 1

Kernel
Function 2

Fig. 3: Flow chart of GPU based parallel GA

2789

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 07:53:15 UTC from IEEE Xplore. Restrictions apply.

effectively decomposing the evaluation tasks and designing
a reasonable parallelization method.

It can be seen from (5)(15)(20) that if the operations of
product and point multiplication result are regarded as a
whole, the calculation of the printing time optimization indi-
cator involves taking the maximum and minimum operations
for a group of elements, while calculating the surface quality
and supporting area optimization indicators is the cumulative
sum of a set of elements. This computational process is
called “reduction” operation, which refers to the process of
reducing the number in a set to one number by using a binary
operation with two inputs and one output.

The GPU version of the reduction operation plays an
important role in many GPU scientific computing fields [28]–
[30]. The calculation of indicators in our optimization prob-
lem is the general case of the reduction operation. However,
considering there are usually hundreds of thousands or even
millions elements (vertices or facets in the STL model)
involved in the operation, it may be necessary to perform
multiple reduction operations to obtain the final optimization
indicators value because of the limitation of the amount of
threads in a block. After several reduction operations, the
atomic operation plan and the parallel “reduction” plan must
be weighed to select the most efficient solution because of
the decreasing of participating reduction elements.

V. EXPERIMENT AND RESULT ANALYSIS

A. Hardware configuration and programming environments
This experiment uses a tower-type high-performance GPU

desktop server as a parallel computing experimental plat-
form. The server includes a six-core Intel Xeon E5-2620
processor running at 2.0 GHz, 128G DDR3 ECC memory,
and a NVIDIA� TITAN Xp GPU connected via PCIe 16x
bus. In terms of software, the server is equipped with the
Windows Server 2012 R2 operating system and the NVIDIA
graphics driver with version number 375.66. The server uses
Visual Studio 2013 professional for CPU code compilation
and NVIDIA CUDA 9.0 for GPU code compilation.

B. Experiment design
Before the experiment, we first introduce the test models

used in this experiment. We have selected 5 models that

2. Bat skull1. Dragon fruit 3. Heart

5. Turbine engine4. Glock 17

Fig. 4: Models used in our experiment

TABLE I: Parameters of models used in our experiment

Number Model name Vertex number Facet number

1 Dragon fruit 44 k 88 k

2 Bat skull 92 k 185 k

3 Heart 108 k 217 k

4 Glock 17 1044 k 2090 k

5 Turbine engine 1527 k 3059 k

are difficult to directly determine the orientation as shown
in Fig. 4. The specific information of the model is shown
in TABLE I. These models are available for free from the
Pinshape and Print Tiger online 3D printing communities
[31], [32]. In order to understand the difference between
the best orientation of different models, we “align” these
models by determining the enveloping cuboid under the
initial orientation of the models and moving the model to the
place where the center of these enveloping cuboid overlapped
with the origin of coordinates, the model vertex coordinate
translation formula is,

v′i = vi − [
xmin + xmax

2

ymin + ymax

2

zmin + zmax

2
] (26)

Where v′i is the vertex coordinates after the model trans-
formation, vi is the vertex coordinates before the model
translation, and xmin, xmax, ymin, ymax, zmin and zmax

are coordinate minimum and maximum values respectively
on the x, y and z axis before the translation of models.

The GA used in our experiment has a population size
of 100 individuals, and the number of iteration calculations
which is used as the termination criterion of GA is 200.
Due to the evolutionary strategy of parent-child competition
in our experiment, when the child is exactly the same as
the parent, repeated evaluation of the feasible solution will
occur, resulting in redundant calculation. Therefore, in order
to improve the computational efficiency, we set the crossover
probability pc=1 to ensure that the offspring individuals are
as different as the parent individuals, and the mutation prob-
ability is 0.1 in this experiment. The optimization variables
θx and θy are encoded and decoded by binary code. Each
optimization variable is represented by a 10-bit binary code,
so the minimum of angle error between θx in the feasible
solution is about 0.351, and θy is also the same.

In thread configuration of parallel implementation of GA
on GPU, the size of block is set to BlockSize = 1, 024
in our experiment, and two reductions are used to calculate
the optimization indicators. Specifically, under this block
size setting, if each thread performs the specification of
one element, the two reductions can collectively deal with
BlockSize×BlockSize elements. Assume that the number
of elements participating in the optimization indicators cal-
culation is N . When there is N<BlockSize×BlockSize,
the calculation of the optimization indicators can be cal-
culated by the first N threads participating in reduction,
and each thread can reduce one element. When there is

2790

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 07:53:15 UTC from IEEE Xplore. Restrictions apply.

TABLE II: The comparison of orientation angle and fitness between serial and parallel operation results

Model
number

θx(/◦) θy(/◦) F1 F2 F3 F

Serial Parallel Serial Parallel Serial Parallel Serial Parallel Serial Parallel Serial Parallel

1 140.6 135.7 24.3 30.4 0.99 0.94 0.96 0.98 0.96 0.98 0.97 0.97

2 10.5 10.2 0 359.6 0.71 0.73 0.97 0.97 0.97 0.97 0.88 0.89

3 46.4 44.3 25.3 26.7 0.85 0.86 0.92 0.89 0.92 0.88 0.90 0.88

4 1.4 1.4 270.0 271.4 0.12 0.12 1.0 0.99 1.0 0.99 0.71 0.70

5 270.0 272.5 86.5 86.3 1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.99

N>BlockSize × BlockSize, each thread calculates the
reduction of k elements, and the reduction of k+1 elements
is calculated by the former N−(BlockSize×BlockSize×k)
threads. Where k is defined by (27).

k = � N

BlockSize×BlockSize
� (27)

Where �·� represents a floor function. In the calculation of
building time optimization indicator, N is the number of ver-
tices in printed model. In the calculation of the model surface
quality and the supporting area optimization indicator, N is
the number of facets in printed model.

We normalize each optimization indicator according to
(23), and set the weights of the building time, the model
surface quality and the supporting area as w1 = 0.33, w2 =
0.33, w3 = 0.34.

C. Result analysis

The variation curve of comprehensive fitness F (θx, θy)
calculated by (25) in the iterative process of each model
genetic algorithm are shown in Fig. 5, and the optimization
results are shown in TABLE II.

It can be seen from Fig. 5 that the GA set the weights of
in a few iterations, and has certain performance advantages
in solving the problem. Taking advantage of the parallel
acceleration optimization on GPU, the parallel GA method
for the model orientation problem is performed. We have
timed the evaluation of orientation in a single iteration.
TABLE III shows the consumed computational time of five
different models and speedup ratio. The results in table are
obtained from the average of 20 independent executions.

TABLE III: Comparison between Serial and Parallel imple-
mentation

Model

Number

Serial

implementation(/s)

Parallel

implementation(/s)

Speedup

ratio

1

2

3

4

5

2.147

4.084

5.283

50.413

70.021

0.050

0.094

0.112

0.876

1.108

42.9

43.4

47.1

57.5

63.2

� �� �� �� ��� ��� ��� ��� ���

��	
�����

���

���

���

���

���

���

�
��

��
�
�
��

�
�

��	���

��	���

��	���

��	���

��	���

Fig. 5: The change of comprehensive fitness for each model

Compared with the CPU implementation, the GPU based
parallel method can achieve a speedup ratio of about 50
times on complex models, which effectively reduces the
solution time of the model orientation optimization problem
and improves the solution efficiency. It also shows that as
the model becomes more and more complex, the speedup
ratio increases, which further validates the effectiveness of
the GPU parallel implementation method of the proposed
GA in our orientation optimization problem.

VI. CONCLUSION

In this paper, we propose to use GPU based parallel
genetic algorithms to solve the multi-objective optimiza-
tion problem of the 3D model orientation. Based on the
mathematical relationship between model orientation and
optimization indicators such as the building time, the surface
quality and the supporting area, we present in detail how to
formulate the problem and convert it to a single-objective
optimization problem. The problem solving method of GA
is implemented on the GPU in parallel. The experimen-
tal results show that when dealing with complex models,
compared with CPU only implementation, the GPU based
parallel GA can speed up the process by about 50 times. By
GPU based methods, we can have a better solution within
the same time.

2791

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 07:53:15 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] G. Xiong and X. Shang, “Intelligent manufacturing for personalized
product: Upgrade from mass customization to social manufacturing,”
Automation Panorama, vol. 33, no. z1, 2016.

[2] J. Karjalainen and G. Xiong, “Social manufacturing and business
model innovation,” in IEEE International Conference on Service
Operations and Logistics, and Informatics, 2016, pp. 18–23.

[3] F.-Y. Wang, D. Zeng, Z. Shen, S. Li, Y. Zhao, H. Gao, et al., “Cloud
computing-based additive manufacturing resource scheduling system
and corresponding methods,” China Patent CN103 414 792A, 2013.

[4] P. Lan, S. Chou, L. Chen, and D. Gemmill, “Determining fabrication
orientations for rapid prototyping with stereolithography apparatus,”
Computer-Aided Design, vol. 29, no. 1, pp. 53–62, 1997.

[5] W. Rattanawong, S. Masood, and P. Iovenitti, “A volumetric approach
to part-build orientations in rapid prototyping,” Journal of Materials
Processing Technology, vol. 119, no. 1-3, pp. 348–353, 2001.

[6] S. Masood, W. Rattanawong, and P. Iovenitti, “Part build orientations
based on volumetric error in fused deposition modelling,” The Interna-
tional Journal of Advanced Manufacturing Technology, vol. 16, no. 3,
pp. 162–168, 2000.

[7] S. Masood, W. Rattanawong, and P. lovenitti, “A generic algorithm for
a best part orientation system for complex parts in rapid prototyping,”
Journal of materials processing technology, vol. 139, no. 1-3, pp. 110–
116, 2003.

[8] P. M. Pandey, K. Thrimurthulu, and N. V. Reddy*, “Optimal part
deposition orientation in FDM by using a multicriteria genetic algo-
rithm,” International Journal of Production Research, vol. 42, no. 19,
pp. 4069–4089, 2004.

[9] J. Zhao, L. He, W. Liu, and H. Bian, “Optimization of part-
building orientation for rapid prototyping manufacturing,” Journal of
Computer-Aided Design & Computer Graphics, vol. 18, no. 3, pp.
456–463, 2006.

[10] H. S. Byun and K. H. Lee, “Determination of the optimal build
direction for different rapid prototyping processes using multi-criterion
decision making,” Robotics and Computer-Integrated Manufacturing,
vol. 22, no. 1, pp. 69–80, 2006.

[11] J. Y. Jung, G. Blau, J. F. Pekny, G. V. Reklaitis, and D. Eversdyk, “A
simulation based optimization approach to supply chain management
under demand uncertainty,” Computers & Chemical Engineering,
vol. 28, no. 10, pp. 2087–2106, 2004.

[12] F. Yu, H. Liu, and J. Dai, “Grey particle swarm algorithm for multi-
objective optimization problems,” Computer Applications, vol. 26,
no. 12, pp. 2950–2952, 2006.

[13] L. Wang, H. Wu, F. Tang, D. Zheng, and Y. Jin, “Hybrid quantum
genetic algorithms and performance analysis,” Control and Decision,
vol. 20, no. 2, pp. 156–160, 2005.

[14] W. Zhu, L. Jia, and X. Wu, “The control of the urban main road traffic
flows based on multi-objective optimization,” Journal of Shandong
University, vol. 34, no. 3, pp. 72–76, 2004.

[15] T. Narumi, R. Sakamaki, S. Kameoka, and K. Yasuoka, “Overheads
in accelerating molecular dynamics simulations with GPUs,” in Ninth
International Conference on Parallel and Distributed Computing,
Applications and Technologies. Otago, New Zealand: IEEE, 2008,
pp. 143–150.

[16] J. Tölke, “Implementation of a Lattice Boltzmann kernel using the
Compute Unified Device Architecture developed by nVIDIA,” Com-
puting and Visualization in Science, vol. 13, no. 1, p. 29, 2010.

[17] A. Benso, S. Di Carlo, G. Politano, and A. Savino, “GPU acceleration
for statistical gene classification,” in Automation Quality and Testing
Robotics (AQTR), 2010 IEEE International Conference on, vol. 2,
IEEE. Cluj-Napoca, Romania: IEEE, 2010, pp. 1–6.

[18] S. Tsutsui and N. Fujimoto, “Solving quadratic assignment problems
by genetic algorithms with GPU computation: a case study,” in
Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers,
ACM. Montreal, Canada: ACM, 2009, pp. 2523–2530.

[19] Z. Shen, K. Wang, and F. Zhu, “Agent-based traffic simulation and
traffic signal timing optimization with gpu,” in 2011 14th International
IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE.
Washington, DC, USA: IEEE, 2011, pp. 145–150.

[20] D. T. Pham, S. S. Dimov, and R. S. Gault, “Part orientation in
stereolithography,” International Journal of Advanced Manufacturing
Technology, vol. 15, no. 9, pp. 674–682, 1999.

[21] Y. Gong, C. Chen, M. Xia, and E. Song, “Step effect analysis of FDM
3D printing model surface,” Manufacturing Technology and Machine
Tools, no. 4, pp. 27–30, 2016.

[22] G. Li, “Effect of fdm rapid prototyping process parameter on step
effect,” Mechanical engineering & Automation, no. 6, pp. 131–132,
2017.

[23] R. Arora, R. Tulshyan, and K. Deb, “Parallelization of binary and
real-coded genetic algorithms on gpu using cuda,” in Evolutionary
Computation, 2010.

[24] G. Wilson and W. Banzhaf, “Deployment of cpu and gpu-based
genetic programming on heterogeneous devices,” in Proceedings of
the 11th Annual Conference Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers. New York, NY,
USA: ACM, 2009, pp. 2531–2538.

[25] M. L. Wong and T.-T. Wong, “Implementation of parallel genetic
algorithms on graphics processing units,” Studies in Computational
Intelligence, vol. 187, pp. 197–216, 2009.

[26] K. Wang and Z. Shen, “A gpu-based parallel genetic algorithm for
generating daily activity plans,” IEEE Transactions on Intelligent
Transportation Systems, vol. 13, no. 3, pp. 1474–1480, 2012.

[27] Z. Shen, K. Wang, F.-Y. Wang, and C. L. P. Chen, “Gpu based
genetic algorithms for the dynamic sub-area division problem of the
transportation system,” IFAC Proceedings Volumes, vol. 47, no. 3, pp.
5115–5120, 2014.

[28] S. Tomov, R. Nath, and J. Dongarra, “Accelerating the reduction to
upper Hessenberg, tridiagonal, and bidiagonal forms through hybrid
GPU-based computing,” Parallel Computing, vol. 36, no. 12, pp. 645–
654, 2010.

[29] Y.-H. Kim and S.-K. Lee, “Fast GPU implementation for the solution
of tridiagonal matrix systems,” Journal of KIISE: Computer Systems
and Theory, vol. 32, no. 11 12, pp. 692–704, 2005.

[30] G. Franceschetti, R. Guida, A. Iodice, D. Riccio, and G. Ruello,
“Efficient simulation of hybrid strip-map/spotlight SAR raw signals
from extended scenes,” IEEE Transactions on Geoscience & Remote
Sensing, vol. 42, no. 11, pp. 2385–2396, 2004.

[31] P. Tiger. (2018) 3D printing community and marketplace. [Online].
Available: http://www.dayinhu.com/

[32] Pinshape. (2013) 3D printing community and marketplace. [Online].
Available: https://pinshape.com/

2792

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2022 at 07:53:15 UTC from IEEE Xplore. Restrictions apply.

