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Abstract—Cognitive radio (CR) has great potential to improve
the spectral efficiency of future wireless networks. This paper
focuses on maximizing the sum-capacity of cognitive wireless
networks based on signal to leakage noise ratio (SLNR) pre-
coding and hybrid opportunistic spectrum access scheme. We
propose a globally optimal power allocation scheme based on a
combination of the Branch and Bound framework (B&B) and
convex relaxation technique to maximize the sum capacity of
all secondary users (SUs). Simulation results indicate that, with
the proposed power allocation scheme, the sum capacity of the
secondary network can be improved compared to conventional
SLNR-precoding-based power allocation schemes.

Index Terms—Power allocation, cognitive radio (CR), signal to
leakage noise ratio (SLNR) precoding.

I. INTRODUCTION

New applications operating on the mobile internet network
demand for higher speed wireless communications. However,
the spectrum authorized by Federal Communications Com-
mission (FCC) is limited, and then, utilizing the spectrum
efficiently has been an important and challenging task for
wireless communications. Cognitive radio (CR) is proposed
and taken as a acknowledged potential technology that will
be used in the future standard to improve the spectrum
efficiency [1], [2]. To further improve the spectrum efficiency,
a hybrid opportunistic spectrum access scheme is proposed in
reference [3].

Multiple antenna technique provides some improvements
for the spectrum efficiency due to the space utilization. In
multiple antenna system, especially the multi-user system,
precoding is applied to combat fading and suppress inter-
ference from other antennas and other users [4], [5]. Thus,
the spectrum efficiency can be ensured from a certain point
of view. Considering the characteristic of cognitive radio, the
traditional precoding can be expanded to CR system [6], [7].
Additionally, in the precoding design, the transmit signals
and the norms of the precoding matrix are generally all
normalized, which means that equal power is allocated at the
transmitter. Therefore, there still exists improvement space for
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the precoding-based system through power allocation. Some
schemes that jointly considered precoding and power allo-
cation were proposed in multi-user MIMO downlink [8],[9],
cognitive radio networks [10] and cooperative communications
scenario [11].

In reference [12], Sadek et al. proposed a new precoding
scheme with the help of a new concept signal-to-leakage-and-
noise ratio (SLNR) and got the designed precoding in mul-
tiuser MIMO downlink. Furthermore, some improved schemes
such as jointly considering the dirty paper coding (DPC) [13]
and SLNR precoding research in MIMO-OFDM system [14]
enriched the study of SLNR precoding. We find that, from
a certain perspective, the SLNR precoding is suit to be used
in the CR system especially. To be specific, the objective of
the SLNR precoding is to increase the power ratio between
the intending signal and the leakage signal plus noise. This
is rather helpful in CR networks, where the secondary users
need to reduce the interference to the primary user to satisfy
the interference temperature constraint. Therefore, we focus
on the SLNR-precoding-based CR systems and investigate the
further improvements of spectrum efficiency through power
allocation.

In this paper, we concentrate on multi-carrier cognitive wire-
less networks with the objective of improving the spectrum
efficiency through jointly considering the effects of spectrum
access mode, interference suppression and power controlling.
To be specific, for the SLNR-precoding-based cognitive wire-
less networks where hybrid opportunistic spectrum access
is applied, we propose a globally optimal power allocation
scheme for the SUs to maximize their sum capacity. We
formulate the power allocation problem as a non-convex opti-
mization problem, which is hard to be solved by the traditional
convex optimization method. To overcome this, we design
an algorithm based on branch and bound (B&B) framework
together with convex relaxation technique, and acquire the
globally optimal solution. Simulation results indicate that the
proposed power allocation can achieve some sum-capacity
improvements compared to three existing power allocations
according to the SLNR precoding.

The rest of the paper is organized as follows. In Sec-
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Fig. 1: System Model
tion II, we introduce the system model and in Section III, we
formulate the problem of sum capacity maximized through
power allocation. In Section IV, we describe the proposed
globally optimal power allocation scheme. Simulation results
are presented in section V. Finally, we draw some conclusions
in Section VI.

Notations: VH, �V� and V−1 represent the conjugate
transpose, the norm and inverse transformation of matrix V,
respectively. Matrix I denotes the identity matrix. |v| denotes
the absolute value of scalar v.

II. SYSTEM MODEL

In this paper, we consider a cognitive radio networks shown
in Fig. 1. A single antenna primary user transmitter commu-
nicates with a receiver equipped with a single antenna in the
licensed frequency, which is divided into N sub-channels,
denoted by N . Each sub-channel is taken as a flat fading
channel with constant channel coefficients in a time block.

The secondary user system is modeled as a multi-user
multiple-input single-output (MISO) system and accesses the
sub-channels following the hybrid opportunistic spectrum ac-
cess (H-OSA) scheme referred in [3], based on which the SUs
access the idle sub-channels with no constraints and the sub-
channels where the PUs exist under the interference constraint.
A secondary base station with Nt antennas serves a set of K
single antenna secondary receivers denoted as K.

We focus on the downlink communication where SLNR-
based precoding is processed on each subcarrier at the sec-
ondary base station. Then, the transmitted signal xj before
power allocation on subcarrier j ∈ N writes

xj =
∑
k∈K

wk,jsk,j , ∀j ∈ N , (1)

where wi,j ∈ CNt×1 is the SLNR precoding vector, which
will be discussed later in Section III and si,j is the trans-
mitted symbol of secondary user i, i ∈ K on sub-channel j.
Without loss of generality, both the precoding vectors and the
transmitted signals are normalized. Then, the total transmitted
power is taken as Pt = K ×N .

The full channel state information including the secondary
user system and the licensed user can be perceived and
obtained at the secondary transmitter. Considering both the
large scale loss and small scale loss simultaneously, we for-
mulate the wireless channel on each subcarrier as a flat fading

Rayleigh model. The parameters ρ
(s,s)
i,j , ρ

(l,s)
i,j and ρ

(s,l)
j are

taken to denote the large scale loss caused by path loss effect
according to the channels from the secondary base station to
the secondary user i, from primary transmitter to the secondary
user i, and from secondary base station to primary receiver
on the subcarrier j. In addition, we denote the interference
channel vector from the secondary base station to the primary
receiver as gj ∈ C1×Nt , the channel component from the
primary user to the secondary receiver i as hl,s

i,j ∈ C1×1 and the
channel vector from the secondary transmitter to the secondary
user i as hi,j ∈ C1×Nt to measure the small scale loss caused
by multipath effect on the subcarrier j. Every element of
the channel vectors referred above is an independent complex
gaussian variable with zero-mean together with unit-variance.
Then, the path-loss factors can be denoted as

ρ
(s,s)
i,j = (ds,si,j )

−α, ∀i ∈ K, ∀j ∈ N , (2)

ρ
(l,s)
i,j = (dl,si,j)

−α, ∀i ∈ K, ∀j ∈ N , (3)

ρ
(s,l)
j = (ds,lj )−α, ∀j ∈ N , (4)

and the channel vectors write as

ĥi,j =

√
ρ
(s,s)
i,j hi,j , ∀i ∈ K, ∀j ∈ N , (5)

ĥl,s
i,j =

√
ρ
(l,s)
i,j hl,s

i,j , ∀i ∈ K, ∀j ∈ N , (6)

ĝj =

√
ρ
(s,l)
j gj , ∀j ∈ N . (7)

where α is the pass loss exponent while d is the corresponding
distance.

Then, we denote the interference from the licensed trans-
mitter to the secondary user i on the sub-carrier j by μi,j and
the power of μi,j can be quantized as follows

I
(l,s)
i,j = θjP

(l)
tj ρ

(l,s)
i,j |hl,s

i,j |2, (8)

where P
(l)
tj is the primary transmitter power on the sub-

carrier j and the parameter θj denotes whether the primary
user occupies the subcarrier j. This parameter is set one when
the primary user occupies the subcarrier j and otherwise, the
parameter is set zero.

After the power allocation, the signal at the receiver i on
the subcarrier j can be shown as

yi,j = ĥi,j
√
pi,jwi,jsi,j + ĥi,j

∑
k∈K/i

√
pk,jwk,jsk,j + μi,j + ni,j ,

(9)

where pi,j is the power allocated to the user i on the subcarrier
j. The term ni,j denotes the additive noise at the receiver i
on the subcarrier j with zero-mean and variance σ2

i,j .
In addition, the power of the interference from the secondary

system to the primary receiver is denoted as

I
(s,l)
j =

∑
k∈K

|ĝjwk,j |2pk,j . (10)
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III. PROBLEM FORMULATION

With the help of the notation leakage, the SLNR precoding
has been proposed in the reference [12]. In our communication
model, the SLNR defined when equal power is allocated to
each user can be denoted as (11)

SLNRi,j =
|ĥi,jwi,j |2

σ2
i,j + I

(l,s)
i,j + |ĝjwi,j |2 +

∑
k∈K/i |ĥk,jwi,j |2

,

(11)
By maximizing (11), the normalized precoding vector, ex-
pressed as wi,j , can be got by the method in [12], i.e.,
the normalized eigenvector corresponding to the maximum
eigenvalue of the matrix defined in (12),

((σ2
i,j + I

(l,s)
i,j )I+ ĝH

j ĝj +
∑

k∈K/i

ĥH
k,jĥk,j)

−1ĥH
i,jĥi,j (12)

For a fixed subcarrier, the existence state of the primary user
leads to the different precoding vectors.

Our objective is to search for the power allocation scheme
based on the precoding vector acquired with equal power
allocation that can maximize the sum capacity of all the
secondary users on the whole bandwidth. On the subcarrier
j with bandwidth Bs, in a certain time block, the SINR for
user i after the power allocation writes as

SINRi,j =
pi,j |ĥi,jwi,j |2

σ2
i,j + I

(l,s)
i,j +

∑
k∈K/i pk,j |ĥi,jwk,j |2

, (13)

and the corresponding capacity can be expressed as

Ci,j = Bs log(1 + SINRi,j), (14)

where all the channel vectors are constant and known. 1

We use the set notation N1 to cover all the subcarriers
where the primary user occupies and the notation N0 to
include the subcarriers idle in a certain time block. Then, with
P = [(pi,j)i∈K,j∈N ] denoted as the notation to represent the
power allocation scheme, the sum capacity of all the users on
all the subcarriers can be expressed as

C(P) =
∑
j∈N

∑
i∈K

Ci,j =
∑

j1∈N1

∑
i∈K

Ci,j1 +
∑

j0∈N0

∑
i∈K

Ci,j0 ,

(15)

and the optimization problem can be formulated as
Given :hi,j ,wi,j ,gj , σ

2
i,j , h

l,s
i,j , Pt, P

(l)
tj , Qj , Bs (16)

ρ
(s,s)
i,j , ρ

(l,s)
i,j , ρ

(s,l)
j , θj , �, ∀i ∈ K, ∀j ∈ N (17)

Find :pi,j , ∀i ∈ K, ∀j ∈ N (18)
Maximize :C(P) (19)

Subject to :
∑
j∈N

∑
i∈K

pi,j ≤ Pt (20)

pi,j ≥ �, ∀i ∈ K, ∀j ∈ N (21)

Is,lj ≤ Qj , ∀j ∈ N1, (22)

1The capacity in (14) is defined by the natural log function and with the
unit nats per second per hertz (nps/Hz). This makes the descriptions about
the derivation of the log curve in the IV-B more convenient and makes no
difference on the pursuit of the optimal power allocation compared with the
capacity defined with the unit bits per second per hertz (bps/Hz).

where a positive number � small enough compared to zero
is used to replace zero in the constraint (21) to make this
constraint compact. In addition, the constraint (22) denotes
that the interference to the primary receiver should be kept
below the interference temperature constraint Qj defined in
advance when the primary user exists on the subcarrier j.

IV. GLOBALLY OPTIMAL POWER ALLOCATION SCHEME

The formulated problem is a nonlinear nonconvex problem
and can not be solved by the traditional convex optimization,
In our paper, with the help of the branch and bound (B&B)
framework and the convex relaxation technique, we design
a globally optimal power allocation algorithm to achieve the
maximized sum capacity of all the secondary users. The
readers can be referred to [15] and [16] for more details
about branch and bound framework and relaxation technique.
The following introduction of the designed algorithm will
be started by the structure of the main algorithm and then
continued with the key steps in the main algorithm, including
the convex relaxation processing, bounds determining, together
with the variable space partitioning.

A. Structure of the Designed Algorithm

The designed globally optimal power allocation scheme is
on the basis of the branch and bound framework. Through the
convex relaxation technique, the formulated problem defined
in (16)-(22) can be transferred to a linear programming, which
can be solved by the traditional convex optimization and lead
to a upper bound of the primitive problem. On the other hand,
this transformation will bring some relaxation errors which
will tend to be smaller as the variable space decreases and
this leads to smaller differences between relaxed optimal and
actual optimal. These two aspects make the branch and bound
framework take a role and converge. The detailed description
of the convex relaxation technique about this problem will be
described in the next subsection.

The objective of the designed algorithm is to obtain a
solution f∗ close to the primitive optimal f according to C(P)
defined in (19) at any precision. The precision can be measured
by the parameter ε and this relationship between f∗ together
with f can be denoted as

f∗ ≥ f(1− ε). (23)

Under the branch and bound framework, both the globally
upper bound (UBglb) and the globally lower bound (LBglb)
of f can be acquired. In our designed algorithm, we use the
relatively stricter criterion

LBglb ≥ (1− ε)UBglb. (24)

to replace the inequality defined in (23) as the flag to terminate
the algorithm and take the corresponding LBglb as the obtained
f∗ when (24) is satisfied.

We define the initial variable space as S1, which represents
the original search space for the globally optimal power
allocation (including all the possible power allocation schemes
for different users on each subcarrier). In the initial variable
space, the whole variable space is taken as one variable set,
denoted as S1

1 , and, as the branch and bound framework
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continues, after each iterative step, certain variable set in the
variable space at the last iterative step will be partitioned into
two new generated variable sets. We denote the variable space
at the iterative step t as

St = {Ss
t , s = 1, 2, · · · t}, (25)

which consists of t variable sets denoted as S1
t · · · St

t . At
this iterative step t, through the relaxed linear programming,
according to every variable set Ss

t in the variable space St,
both the upper bound UB(Ss

t ) and the lower bound LB(Ss
t )

can be acquired. The convex relaxation technique and bound
determining will be introduced in detail in the IV-B.

A key procession of the globally optimal algorithm is to
determine the globally upper bound UBglb and the globally
lower bound LBglb. At the iterative step t, all the variable
sets corresponding to the iterative step t lead to a complete
but narrower relaxed space to search for the upper bound of
the primitive optimal compared with the variable sets at the
iterative step (t− 1), which can be well understood after the
subsection IV-B. Due to this, we take the maximum upper
bound according to the variable sets at this variable space St

as UBglb, which is larger than the maximum of the primitive
objective function and non-increased as the iterative algorithm
based on branch and bound framework continues, i.e. ,

UBglb = max{UB(Ss
t ), s = 1, 2, · · · t}. (26)

In addition, due to the method to determine the lower bound
for each variable set, which will be introduced in the sub-
section IV-B, we choose the maximum lower bound in all
the computed variable sets since the algorithm begins. So, the
LBglb is non-decreased as the algorithm continues, i.e. ,
LBglb = max{LB(Ss

u), u = 1, 2, · · · t, s = 1, 2, · · ·u}. (27)

Then, the convergence of the algorithm can be ensured.
After each iterative step, the criterion in (24) will be checked

to decide whether the algorithm should be continued. If the
criterion in (24) is satisfied, the LBglb is taken as the maximum
C(P) and the corresponding power allocation is used as the
optimal power scheme. Otherwise, certain variable set at this
iterative step should be chosen and partitioned to continue
the branch and bound framework, which will be introduced at
length in IV-C.
B. Convex relaxation and bounds determining

The capacity expression for the user i on the subcarrier j
defined in (14) can be expressed as

Ci,j =Bs log(σ
2
i,j + I

(l,s)
i,j +

∑
k∈K

pk,j |ĥi,jwk,j |2)

−Bs log(σ
2
i,j + I

(l,s)
i,j +

∑
k∈K/i

pk,j |ĥi,jwk,j |2)
︸ ︷︷ ︸

(�)

. (28)

In (28), the term (�) makes the optimization problem a non-
convex problem and hard be solved by the traditional convex
optimization. Therefore, we construct some new variables
and with the help of these variables, reform the primitive
nonconvex problem into a linear programming problem.

Fig. 2: Illustration of the Linear Relaxation
To be specific, we take an illustration to express the main

idea of convex relaxation. As described in Fig. 2, a standard
log curve log x between xL and xU can be restricted and
expressed by the triangle region ABC which is constructed by
the tangents at the (xL, log xL) together with (xU , log xU ),
and the secant linked them. This relaxation operation brings
some relaxation errors. After the variable space is partitioned,
the primitive log curve can be further represented by the
triangle regions BDE and ADF, which will lead to smaller
relaxation errors compared to the primitive relaxation. Because
the relaxed triangle regions to obtain optimal are enlarged and
include the primitive log curve, the maximum acquired by
the relaxed triangle regions is not lower than the maximum
of the primitive combination of log curves. So, we use the
optimal value got by the relaxed linear programming as the
upper bound of primitive log function. In addition, the upper
bound of the primitive function acquired by the relaxed linear
programming is non-increased after the variable space is
partitioned because of the smaller relaxation errors.

In allusion to our formulated problem, we use several
new variables corresponding to the relaxed linear regions to
substitute the log function in (28) and, then, the optimization
objective is transferred into a linear problem. To be specific,
firstly, we construct the new variables as

ai,j = σ2
i,j + I

(l,s)
i,j +

∑
k∈K

pk,j |ĥi,jwk,j |2 (29)

xi,j = σ2
i,j + I

(l,s)
i,j +

∑
k∈K/i

pk,j |ĥi,jwk,j |2. (30)

The variables defined in (29)-(30) can be expressed by the
variables pi,j , which are named core variables, and then,
the variables defined in (29)-(30) can be bounded through
bounding the core variables, i.e.,

pi,j ≤ pUi,j , ∀i ∈ K, ∀j ∈ N (31)

pi,j ≥ pLi,j , ∀i ∈ K, ∀j ∈ N . (32)

Using the relaxation technique introduced above, we use the
variables bi,j and yi,j to substitute the corresponding log(ai,j)
together with log(xi,j) successively. Then, the primitive opti-
mization objective C(P) defined in (19) can be written as

Ĉ(P) = Bs

∑
j∈N

∑
i∈K

(bi,j − yi,j), (33)

and the new variables should be constrained by the secant
constraints,
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bi,j ≥ log aL
i,j +

log aL
i,j − log aU

i,j

aL
i,j − aU

i,j

(ai,j − aL
i,j), ∀i ∈ K, ∀j ∈ N ,

(34)

yi,j ≥ log xL
i,j +

log xL
i,j − log xU

i,j

xL
i,j − xU

i,j

(xi,j − xL
i,j), ∀i ∈ K, ∀j ∈ N ,

(35)

together with the corresponding tangent constraints,

bi,j ≤ log aL
i,j +

ai,j − aL
i,j

aL
i,j

, ∀i ∈ K,∀j ∈ N (36)

yi,j ≤ log xL
i,j +

xi,j − xL
i,j

xL
i,j

,∀i ∈ K, ∀j ∈ N (37)

bi,j ≤ log aU
i,j +

ai,j − aU
i,j

aU
i,j

, ∀i ∈ K,∀j ∈ N (38)

yi,j ≤ log xU
i,j +

xi,j − xU
i,j

xU
i,j

,∀i ∈ K, ∀j ∈ N . (39)

Then, for each variable set in every variable space, the
optimization defined in (16)-(22) can be transformed as

Given :hi,j ,wi,j ,gj , σ
2
i,j , h

l,s
i,j , Pt, P

(l)
tj , Qj , Bs, (40)

pLi,j , p
U
i,j , P

(l)
tj , ρ

(s,s)
i,j , ρ

(l,s)
i,j , ρ

(s,l)
j , θj , (41)

aLi,j , a
U
i,j , x

L
i,j , x

U
i,j , �, ∀i ∈ K, ∀j ∈ N (42)

Find :pi,j , ∀i ∈ K, ∀j ∈ N (43)

Maximize :Ĉ(P) (44)
Subject to :(20), (22), (31), (32), (34)− (39). (45)

Through solving the new constructed optimization problem
defined in (40)-(45), we can acquire the upper bound according
to every variable set and the corresponding power allocation.
Afterwards, we substitute the acquired power allocation to the
primitive objective function C(P) defined in (19) and take the
result as the lower bound according to this variable set. Due to
the process above to obtain the lower bound for each variable
set, the LBglb will be chosen as the maximum lower bound
in all the variable sets at all the iteration steps.
C. Variable Space Determining and Partitioning

In the initial variable space S1, all power variables according
to each user on each subcarrier can be achieved in the scope
from � to Pt− (KN −1)� and they construct the sole variable
set in the initial variable space. According to each variable set
at every iterative step, both the corresponding upper bound
and lower bound would be acquired. After each iterative step,
based on the solved upper bounds and lower bounds, a certain
variable set at this iterative step will be chosen and partitioned
to construct the variable space at the next step.

At the iterative step t, for certain Ss
t ∈ St, we denote the

scope of the variable pi,j as [pLi,j , p
U
i,j ] and substitute all the

pLi,j to ai,j together with xi,j to acquire the aLi,j together with
xL
i,j . In addition, we obtain aUi,j together with xU

i,j through
designing a linear programming, which is constructed to solve
the upper bounds of ai,j together with xi,j under both the
scope constraint of related power variables and the total power
constraint. Then, for this variable set, through the optimization
problem defined in (40)-(45), both the upper bound UB(Ss

t )

and the lower bound LB(Ss
t ) can be acquired. The other

variable sets in St can be processed in the same way.
Because every ai,j together with xi,j can be represented

and expressed by the power variables, we partition the power
variable scope to continue the branch and bound algorithm
if (24) can not be fulfilled. The objective of partitioning is to
decrease the globally upper bound and we can find the smaller
variable scope brings the smaller relaxation errors in the last
subsection. Therefore, we choose the power variable with the
largest scope in the variable set corresponding to the UBglb

at this iterative step t for further partitioning, i.e.,
s∗ = arg max

s∈{1,2,···t}
UB(Ss

t ), (46)

i∗, j∗ = arg max
i∈K,j∈N

(p
U(s∗)
i,j − p

L(s∗)
i,j ), (47)

and then, divide the power variable scope [p
L(s∗)
i∗,j∗ , p

U(s∗)
i∗,j∗ ] from

the middle value (p
L(s∗)
i∗,j∗ + p

U(s∗)
i∗,j∗ )/2 and keep the scopes of

other power variables unchanged to generate two new variable
sets. We combine the two new variable sets and the other
variable sets excluding the chosen variable set at iterative step
t to construct the new variable space at iterative step (t+ 1).

V. SIMULATION RESULTS

In this section, we simulate the performance of the proposed
power allocation. The relative distance of the components
in simulated communication topology, including a pair of
PU and a three user SU MISO system, is represented by
the coordinates. We assume the distance between SU base
station and SU1 as the normalized distance. Correspondingly,
the relative locations of SU base station, SU1, SU2, SU3,
PU transmitter and PU receiver are respectively positioned
at the coordinates (0,0), (1,0), (0,1), (1,1), (0,2) and (2,2).
The frequency band is divided into four unit-bandwidth sub-
carriers and the path loss exponent is set as α = 4. In our
simulation, we assume the sub-carriers 1, 3 are used by the
primary user and the sub-carriers 2, 4 are idle. The additive
noise is set the same variance σ2 for each user on every
subcarrier, and the sum capacity curves are plotted versus
the received SNR of SU1 with normalized distance in the
communication topology, i.e., 10 × log(1/σ2). The power of
the primary transmitter on each subcarrier is predefined same
and with the value 4. The minimum power � is set 10−4 and the
termination flag ε is set 0.05, which means that the sum capac-
ity solved by the algorithm proposed is greater than or equal
to 95% of the actual optimal. The proposed power allocation
is evaluated comparing with three existing power allocations
based on SLNR precoding in the multi-user MIMO system,
including: i) the equal power allocation, ii) the proportional
power allocation scheme in [8] based on the reciprocal of the
SLNRi,j value when the equal power is allocated to each user,
and iii) the proportional power allocation scheme in [9] based
on the reciprocal of the trace of the matrix hH

i,jh
H
i,j . Fig. 3 (a)

and Fig. 3 (c) are acquired through averaging over 500 channel
realizations while Fig. 3 (b) is got by 100 channel realizations.
The convex optimizations referred in the simulation are solved
by the CVX Matlab package [17].
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Fig. 3: Performance of the proposed power allocation. (a) Sum-capacity comparation in the case of Nt = 4 (b) Sum-capacity comparation
in the case of Nt = 2 (c) Sum-capacity comparation with different interference constraints.

From the Fig. 3 (a) and the Fig. 3 (b), equipped with
four and two transmit antennas at the secondary transmitter
respectively, we can see that the proposed power allocation
can provide some sum-capacity performance improvements
compared with the three existing power allocations under the
interference constraint on each subcarrier 0.1. In the simula-
tions, both the equal power allocation and the proportional
power allocations in [8], [9] are designed without considering
the interference constraint set by the licensed user. If this
factor is taken into consideration, part of the sub-carriers can
not be accessed by the SUs and the sum-capacity will be
worse than the corresponding simulation curves. In addition,
larger transmit antenna number can lead to better sum-capacity
performance because that more transmit antennas can support
more space dimensions for the signal transmission.

The sum-capacity based on the hybrid opportunistic spec-
trum access mode is affected by the tolerance extent of primary
user. As the interference temperature constraint predefined
becomes lower, stricter restrictions for the secondary system
should be satisfied. Then, the sum-capacity performance will
be decreased and the simulations in the Fig. 3 (c) verify
this judgement in the case of four transmit antenna with the
interference constraint on each subcarrier 0.1 and 10−4.

VI. CONCLUSION

In this paper, we have investigated a sum-capacity maxi-
mization power allocation scheme for the SLNR-precoding-
based cognitive wireless network where hybrid opportunistic
spectrum access is applied. The power allocation problem is
formulated as a nonconvex optimization and with the help
of branch and bound framework (B&B) together with the
convex relaxation technique, we proposed the globally optimal
power allocation algorithm which can maximize sum-capacity
of all the secondary users. Simulation results showed that the
proposed power allocation could provide some improvements
on sum-capacity performance compared with the three existing
SLNR-precoding-based power allocations.
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