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Abstract— Motor imagery (MI) based Brain-Computer Inter-
face (BCI) is an important active BCI paradigm for recognizing
movement intention of severely disabled persons. There are
extensive studies about MI-based intention recognition, most of
which heavily rely on staged handcrafted EEG feature extrac-
tion and classifier design. For end-to-end deep learning meth-
ods, researchers encode spatial information with convolution
neural networks (CNNs) from raw EEG data. Compared with
CNNs, recurrent neural networks (RNNs) allow for long-range
lateral interactions between features. In this paper, we proposed
a pure RNNs-based parallel method for encoding spatial and
temporal sequential raw data with bidirectional Long Short-
Term Memory (bi-LSTM) and standard LSTM, respectively.
Firstly, we rearranged the index of EEG electrodes considering
their spatial location relationship. Secondly, we applied sliding
window method over raw EEG data to obtain more samples
and split them into training and testing sets according to
their original trial index. Thirdly, we utilized the samples and
their transposed matrix as input to the proposed pure RNNs-
based parallel method, which encodes spatial and temporal
information simultaneously. Finally, the proposed method was
evaluated in the public MI-based eegmmidb dataset and com-
pared with the other three methods (CSP+LDA, FBCSP+LDA,
and CNN-RNN method). The experiment results demonstrated
the superior performance of our proposed pure RNNs-based
parallel method. In the multi-class trial-wise movement inten-
tion classification scenario, our approach obtained an average
accuracy of 68.20% and significantly outperformed other three
methods with an 8.25% improvement of relative accuracy on
average, which proves the feasibility of our approach for the
real-world BCI system.

I. INTRODUCTION

Brain-Computer Interface (BCI) can provide an alternative
communication channel and environmental control capability
for severely disabled persons [1]. The Motor imagery (MI) is
the only BCI paradigm that does not require external stimuli,
which is actively controlled by the user and reflects the
user’s voluntary movement consciousness. EEG-based MI
BCI system is popular because it is non-invasive, inexpensive
and easily applied to human beings [2].

Recognizing the movement intention of a human from
scalp EEG data is an open challenge, which has garnered
significant attention since the early days of BCI. Researchers
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have generally approached intention recognition with per-
forming handcrafted feature extraction and classifier learning
separately [3]. However, the feature extraction leads to
information loss and the two-stage approaches are difficult
to optimize simultaneously.

With the development of deep learning, the intention
recognition accuracy has been enhanced by replacing tradi-
tional classifier with deep neural network [4][5][6]. Further-
more, end-to-end deep learning approaches are used to learn
feature representation and perform classification directly
from raw EEG data. For example, Supratak et al. used CNNs
to extract time-invariant features and used LSTMs to encode
temporal information for automatic sleep stage scoring [7].
Schirrmeister et al. utilized pure CNNs for learning temporal
and spatial representation step-by-step [8][9]. Zhang et al.
used convolutional-recurrent neural networks (CNN-RNN)
to learn the spatio-temporal representation of raw MI-based
EEG data [10]. The existing end-to-end methods encode
spatial information with CNNs. Compared with CNNs,
RNNs are typically more expensive but allow for long-range
lateral interactions between features in the same feature map
[11]. In addition, the training and evaluation samples of
machine learning methods should be independent identically
distributed (i.i.d.) [12][13]. To obtain adequate samples, deep
learning based methods generally segment the raw EEG data
into clips by sliding window method [8][10][14]. However,
some MI-based intention recognition researches shuffled all
the clips and split them into training set and testing set
[10][14]. By this way, the samples of training and testing
sets are identically distributed but not independent.

To satisfy the i.i.d. character of samples and fully exploit
the potential of RNNs in the context of EEG-based intention
recognition, we propose the following items, and evaluate
them empirically in the MI-based eegmmidb dataset. First,
we rearrange the index of recorded electrodes according to
their spatial positions so that the data can be viewed as spatial
sequential streams, as shown in Fig. 1. Second, instead of
shuffling all the samples, we split the samples according
to the trial index to obtain i.i.d. training set and testing
set. Third, we propose a parallel RNNs model, containing
bidirectional-LSTM for modeling spatial sequential stream-
s and standard LSTMs for modeling temporal sequential
streams, illustrated schematically in Fig. 2.

In summary, we make the following three contributions:
• We transform the EEG data into spatial sequence to

learn more valuable information, which alleviates the
problem of insufficient data.

• We are the first to introduce RNNs for modeling
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EEG-based spatial sequential data. Experimental results
demonstrate the practicability of the method.

• Our proposed approach significantly outperforms many
methods by over 8.25% in intention recognition accu-
racy.

II. THE PROPOSED METHOD

In this section, we introduce the data organization, train-
ing and testing strategies and the proposed parallel RNNs
architecture.

A. Data Organization

We preprocess the raw data to obtain more samples for
training deep networks. The overall preprocessing flowchart
of our proposed method is shown in Fig. 1. As shown in the
Fig. 1 EEG electrode map example, the recorded electrodes
start from electrode FC5 and end to electrode Iz without
an obvious orientation. The order of the recorded electrodes
can be rearranged from frontal lobe (e.g. FP1) to occipital
lobe (e.g. Iz), which considers the spatial location-relation
between before and after electrodes.

Typically, after rearranging the channels, the given datasets
can be denoted as Di = {(X1, y1), ..., (XNi , yNi)}, where
Ni denotes the total number of recorded trials for subject i.
The input matrix Xj ∈ RC×T of trial j, where 1 ≤ j ≤
Ni, contains the signals of C recorded electrodes and T
discretized time steps recorded per trial. The corresponding
class label of trial j is denoted by yj .

The sliding window approach is applied to divide the
trial data into individual samples, which are used for later
processing. Each sample has a fixed length S, with 50%
overlapping between continuous neighbors.

A sample can be denoted as follow:

xj
k = rmn ∈ RC×S , yjk = yj (1)

where 1 ≤ j ≤ Ni, 1 ≤ m ≤ C, 1 ≤ n ≤ S and 1 ≤ k ≤
[ T
(S/2) ]− 1.

There are two separate viewpoints of a sample:
A single sample can be viewed as S temporal se-
quential one-dimensional (1D) data vectors, denoted as
[r1n, r2n, ..., rCn]

′ ∈ RC×1, each element of which contains
C elements corresponding to C electrodes. These S vectors
can be fed into temporal sequential model. From another
point of view, there are C spatial sequential 1D data vectors,
denoted as [rm1, rm2, ..., rmS ] ∈ R1×S , each element of
which contains S elements corresponding to S time stamps.
These C vectors can be fed into spatial sequential model to
improve the whole network performance.

B. Training and Testing strategy

In order to clarify the form of data input, the training and
testing strategies are listed as follows:

1) Trial-Wise Training Strategy: In training, using trials
Di = {(X1, y1), ..., (XNi , yNi)} as input.

2) Sample-Wise Training Strategy: In training, using sam-
ples {(x1
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Fig. 1. The overall preprocessing flowchart. First, the electrode indexes
are rearranged to make full use of the spatial location information. Second,
the sliding window approach is applied to the trial data for obtaining more
training samples. Finally, the temporal sequences are transposed to spatial
sequences.

3) Trial-Wise Testing Strategy: While training with trial-
wise strategy, we evaluate the models with trial data Xj and
get pred yj for the trial-wise accuracy. While training with
sample-wise strategy, we evaluate the models with sample
data xj

k , use the majority vote rule to fuse k predicted sample
labels pred yjk into predicted trial label pred yj and compute
the trial-wise accuracy.

4) Sample-Wise Testing Strategy: While training with
sample-wise strategy, we evaluate the models with sample
data xj

k and get pred yjk for sample-wise accuracy.

C. Standard and Bidirectional Long Short-Term Memory

RNN is a class of neural network that maintains internal
hidden states to model the dynamic temporal behaviour of
sequences through directed cyclic connections between its
units. LSTM extends RNN by adding three gates to an RNN
neuron, which enable LSTM to learn long-term dependency
in a sequence, and make it easier to optimize [15]. There
are spatial and temporal sequential information containing
in the EEG data. Therefore, LSTM is an excellent model for
encoding sequential EEG data.

In a standard LSTM, information only flows in the forward
time direction. The standard LSTM can be used for encoding
temporal sequential EEG data. A bidirectional LSTM (bi-
LSTM) [16] is a combination of two normal LSTMs, which
allows dependencies in the reverse direction. So the temporal
and spatial information of the segment data can be learned
and combined through parallelling the standard LSTM and
the bi-LSTM, as shown following.

D. Whole Parallel Architecture

The parallel architecture is illustrated in Fig. 2. It con-
tains two parts, temporal LSTMs and spatial bi-LSTMs,
for temporal and spatial feature extraction, respectively. We
introduce a dense layer to denoise the temporal input vectors
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Fig. 2. The parallel architecture contains two parts, temporal LSTMs and
spatial bi-LSTMs, for temporal and spatial feature extraction, respectively.
The dense layers before softmax layers are normalized separately and added
element-wise, along with another softmax layer to give the final predicted
class label.

before feeding them to the LSTM cells. Then the temporal
LSTMs model the denoised data sequentially and the last
sequential output is connected to a dense layer. As for
the spatial bi-LSTMs, it takes the raw spatial sequential
data as input. All the sequential outputs of bi-LSTMs are
concatenated and connected to a dense layer. Each dense
layer after the output of LSTMs is followed by another size
n (n is the number of target classes) dense layer, along with
softmax output layers to generate the class labels.

The outputs of the two size n dense layers are normalized
separately and added element-wise, along with another soft-
max layer to finally give the final predicted class labels, as
shown in the middle of Fig. 2.

III. EXPERIMENTS AND RESULTS

Experiments are conducted on the publicly available EEG
Movement/Imagery Database (eegmmidb) [17] of multi-class
scenario for movement intention recognition. And the 7-
fold cross validation experimental trial-wise results show that
the proposed method yields relatively higher classification
accuracies compared with a set of methods. Meanwhile, the
component performance of the proposed method is shown to
illustrate their necessities for making up the whole architec-
ture.

A. Dataset

The eegmmidb dataset is collected using BCI2000 in-
strumentation [18]. The EEG signals were recorded using
International System 10-20 with 64 electrodes placed on
the scalp and 160Hz sampling rate. We select the first 12
subjects to carry out our study. Each subject contains 98
trials (C = 64, T = 651), including 14, 21, 21, 21 and
21 trials, belonging to five classes of eye closed (baseline),
imagining moving both feet, both fists, left fist and right
fist, respectively. The 98 trials are split into training set
and testing set by 7-fold cross-validation so there are 84
training trials and 14 testing trials in each fold. Each trial is
segmented into 129 samples by sliding window of length 10,
with 50% overlap. The total 10,836 samples in the training
set are shuffled to train the proposed method. The 1,806
samples for testing, on the contrary, keep their order to vote
for the trial-wise predicted labels and gain accuracies.

B. Implementation details

The whole neural networks were implemented with the
TensorFlow framework and trained on a Nvidia 1080Ti
GPU from scratch in a fully-supervised manner. The Adam
algorithm is used to optimize the cross-entropy loss function
with a learning rate of 0.5∗10−4. The dropout probability is
0.5. The hidden states number of the LSTM cell is 16. All
fully connected layers have the same size of 512.

C. Model Evaluation

We compared our method with two baseline methods
and a latest deep learning method for MI-based intention
recognition. The overall trial-wise performance of all the
methods is shown in table I. All the results were obtained
by seven-fold cross-validation, which consists of dividing
the 94 trials of one subject into seven different training
and testing sets, so that each trial is included in one of the
testing sets only once. Overall, our proposed parallel method
outperforms these methods. In addition, the components’
performance of our proposed method also indicates their
necessities for making up the whole architecture.

1) Comparison with baseline methods: Both of Common
Spatial Pattern (CSP) [19] and Filter Bank Common Spatial
Pattern (FBCSP) [20] compute spatial filters that enhance
class-discriminative band power features contained in the
EEG.

The features are followed by a classifier such as Support
Vector Machine (SVM) and Linear Discriminant Analysis
(LDA) to finally perform the recognition.

FBCSP was the best-performing method for many EEG
decoding competitions [8]. Therefore, we consider FBCSP
with LDA classifier (FBCSP+LDA) as adequate baseline
algorithm for the evaluation in the present study. In addition,
CSP performs better than FBCSP for some subjects’ data, so
we consider CSP with LDA classifier (CSP+LDA) as another
baseline method. Both of the baseline methods are trained
and tested in trial-wise strategy.

Overall, our proposed method significantly outperforms
the CSP+LDA and FBCSP+LDA methods with accuracy
improvement of 9.19% and 8.25%, respectively (both p <
0.05). The results demonstrate that, given adequate input
samples, the end-to-end deep learning method can reach
or even exceed the performance of classical methods for
intention recognition. Compared with classical methods, end-
to-end deep learning methods can learn from raw MI-based
EEG data adequately and optimize the feature extraction and
classifier design steps simultaneously to obtain more stable
and better performance.

2) Comparison with the newest method: We also compare
the performance of our approach with the most recent pub-
lished approach [10], proposed by Zhang et.al. Although they
didn’t evaluate their proposed CNN-LSTM architecture with
i.i.d. samples, there are still some reasons for supporting their
proposed models to work, such as converting one-dimension
EEG sequences to two-dimension EEG meshes according to
electrode distribution, learning spatial and temporal simul-
taneously. So we consider their parallel CNN-LSTM model
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TABLE I
OVERALL PERFORMANCE. THE ACCURACIES ARE GIVEN IN PERCENT TRIAL-WISE.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 Mean
CSP+LDA 70.41 63.27 65.31 53.06 60.20 41.84 94.90 54.08 52.04 42.86 59.18 51.02 59.01

FBCSP+LDA 69.39 62.24 64.29 61.22 57.14 44.90 88.78 60.20 48.98 46.94 63.27 52.04 59.95
Zhang et al. 2017 53.06 61.22 66.33 44.90 59.18 63.27 79.59 46.94 53.06 57.14 46.94 58.16 57.48

Temporal-RNN 44.90 58.16 70.41 43.88 58.16 68.37 77.55 51.02 59.18 63.27 52.04 67.35 59.52
Spatial-RNN 53.06 65.31 71.43 52.04 47.96 66.33 60.21 50.00 62.25 53.06 54.08 65.31 58.42

Our Method-Parallel 65.31 72.45 74.49 61.23 60.20 70.41 82.65 65.31 65.31 67.35 61.22 72.45 68.20

as compared method. We utilize their open source code to
reproduce the work and evaluate it with the same strategy as
our proposed method (see section II).

The compared deep learning method acquires a average
accuracy of 57.48%, and our proposed method outperforms
it with a significant accuracy difference of 10.72% (p <
0.01). In the other way, the number of parameters in our
model is much less than that of the compared method, so
less computing resources are needed. Therefore, compared
with the parallel CNN-RNN methos, our proposed method
is better suited to further on-line BCI systems.

3) Component evaluation: The component performance
of our parallel method is also shown in table I. Both spatial
part and temporal part perform no significant differences
with the three compared methods (all p > 0.05). Fusing the
prediction of these two parts significantly improves the clas-
sification accuracy (both p < 0.01). These results indicate
that the parallel model can learn useful and distinguishing
feature representations through two pathways, by being fed
with different organization data of same samples.

IV. CONCLUSION AND FUTURE WORK

In this paper, we address the EEG-based intention recogni-
tion problem. We introduce a novel viewpoint for EEG data
to easily expand the data for further process. To make full use
of the limited data, we propose a parallel LSTMs network
for learning spatial and temporal information simultaneously.
By 7-fold cross-validation evaluation, our proposed method
outperformed a set of methods in trial-wise multi-class sce-
nario. Since the training and testing sets are split trial-wise,
our improved results demonstrate that, the proposed method
gains better generalization between trials, which is critical
to the feasibility of our method for real-world BCI system.
In the future, we will further study the spatial and temporal
information containing in the raw EEG data, improve our
proposed method on the EEG data with a little channels,
and apply it to online system.
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