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Abstract—In spite of various observation tools, tongue shapes 

are still scarce resource in reality. Autoencoder, a kind of deep 
neural networks (DNN), performs well on data reduction and 
pattern discovery. However, since autoencoder usually needs 
large scale data in training, challenges exist for traditional 
autoencoder to obtain tongues' motion patterns only from tens or 
hundreds of available tongue shapes. To overcome this problem, 
we propose a two-steps autoencoder, where we first construct a 
stacked denoising autoencoder (dAE) to learn the essential 
presentation of the tongue shapes from their possible 
deformations; then an additional autoencoder with small number 
of hidden units is added upon the previous stacked autoencoder, 
and used for dimensionality reduction. Experiments run on 240 
vowels' tongue shapes obtained from Chinese speakers' 
pronunciation X-ray films, and the proposed model is compared 
with traditional dAE and the classical principal component 
analysis (PCA) on dimensionality reduction and reconstruction in 
details. Results validate the performance of the proposed tongue 
model. 
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I.  INTRODUCTION 

In spite of various techniques, it is still difficult to observe 
tongue contours directly as most parts of tongue are hidden 
inside the oral cavity. As a soft-tissue structure, tongue 
produces large deformation, which contributes to complex 
vocal tract configuration. As the tongue plays a crucial role in 
the transformation process from articulatory configuration to 
speech acoustics, it is important to model tongue shape and its 
configuration in speech production research.  

In traditional experimental phonetics, various tongue 
models have been proposed to investigate the relationship 

between vocal tract configuration and speech production. 
Early in the 70 years of the last century, linguists and speech 
pathologists labeled tongue contours manually from X-ray 
films and used PCA to obtain the dominant patterns of tongue 
motion [1, 2]. It is reported that in vowel production, the first 
top two principal components explain over 90% variance, 
which means that vowel tongues’ deformation could be 
described by the first two dimensionality parameters.  

Parallel factor analysis (PARAFAC) is elegant tool for 
tongue shape analysis [3-7]. With PARAFAC on 13 cross 
sections for 10 English vowels, it was found that tongue 
movement could be described in terms of two factors, one 
generates a forward movement of tongue root accompanied by 
an upward of the front part of tongue, the other generates an 
upward and backward of whole tongue body [3]. However, 
PARAFAC did not consider tongue shape reconstruction from 
low-dimensional factors [7, 8].   

There are some others tongue shape models, such as 
manifold representation of vowels [9], visualization of tongue 
trace [10, 11], speech driven tongue surface [12-14], and RBF 
based B-spline fitting [15]. These tongue models mainly focus 
on estimating global tongue movement trajectory from text, 
recorded speech or noised images, where tongue shape 
reconstruction and contributions of different tongue parts to 
speech production were not mentioned.  

A high-performance tongue model includes two essential 
characteristics: low dimensionality and accuracy [5, 16-18]. 
Low dimensionality representation of tongue shape helps to 
reveal tongue motion patterns. Accurate reconstruction of 
tongue shape from low dimensionality parameters benefits to 
discover the mapping relationship between tongue motion 
patterns and articulatory configuration. In spite of various 
tongue models in history, researchers always try to achieve 
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(a)                                                                                  (b) 
Fig. 1. Pipeline of the proposed two-steps autoencoder tongue model. (a) TS-dAE; (b) TSDR-AE. 

tongue model with higher performance of dimensionality 
reduction and reconstruction ability. 

It was reported that dAE performed well on data reduction 
and pattern discovery [19, 20]. However, as far as we known, 
there is still no work discussing whether DNN or autoencoder 
is suitable for modeling tongue shapes. One important reason 
for this situation is that autoencoder usually needs large scale 
data in training process, while tongue shapes are usually 
scarce resource in reality. We also want to know to what 
extent performance autoencoder would achieve if it could be 
used for dimensionality reduction of tongue shapes from a 
small amount of, i.e. only tens or hundreds of, tongue shapes. 
This paper aims to construct a high performance tongue model 
using autoencoder. And we are looking forward that 
autoencoder is efficient on dimensionality reduction of tongue 
shapes by comparing it with those of classical tongue models 
on shapes reduction and reconstruction.   

DAE has been well reported for its high performance on 
data reduction [19, 21, 22], where corruption or dropout noise 
technique is used to enlarge the training data and contributes 
to the performance improvement from an amount of real data 
[19, 23, 24]. While in human pronunciation, the front parts of 
tongue movements are more dominant in vocal tract 
configurations than the latter parts of tongues. Therefore, the 
traditional corruption and dropout techniques may not fit 
tongue shapes denoising. To realize high performance of 
tongue shapes dimensionality reduction, we propose a two-
steps autoencoder tongue model, where a large-scale noise 
shapes are first constructed from possible physiological 
deformation and is used to train an n-layer stacked 
autoencoder; then at the second step, a final autoencoder with 
small number of hidden units is added upon the previous 
stacked autoencoder, and is fine-tuned with real tongue shapes, 

which is similar to the idea of depth augmented network 
presented in article [25]. However, the proposed two-steps 
autoencoder differs with the traditional depth augmented 
network on that we aims to reconstruct tongue shapes using 
only a few available resources. We denote the first steps as 
Tongue Shapes Denoising Autoencoder (TS-dAE) and the 
second step as Tongue Shape Dimensionality Reduction 
Autoencoder (TSDR-AE) respectively. The overview of the 
proposed tongue model is presented in Fig. 1, where TS-dAE 
is given as Fig. 1(a) and TSDR-AE Fig. 1(b). The difference 
between TS-dAE and TSDR-AE is that noise shapes are used 
to train the n-layer TS-dAE, while real tongue shapes are used 
to fine-tune the (n+1)-layer TSDR-AE. 

The remainder of the paper is organized as follows: 
Section II first outlines the framework of the proposed method, 
tongue shapes’ normalization procedures and the design 
principles of networks; Section Ⅲ gives the experiments and 
section IV concludes this paper. 

II. MODEL TONGUE SHAPE WITH NEURALL NETWORK 

A. Tongue Shape Normalization 

Similar to the presentation in [1, 3], shown as Fig. 2(a), 
vocal tract is characterized in terms of a set of reference lines 
shown in Fig. 2(b)(c)(d), before they are inputted to network. 
The cross-sections were divided by 18 grid lines in [3], where 
only the grid lines 4 to 17 (a total of 13 cross-sections) were 
used to describe the vocal tract configuration. The procedure 
to generate 13 reference grid lines in this work is as follows. 
Firstly, the tip point of upper teeth and palate are confirmed. 
Then the contour from teeth tip point along palate to epiglottis 
is taken as the reference background for different vocal tract 
configurations. Finally, normalized cross sectional distances 
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Fig. 3. An example of point deformation: the final position (in gray) 
caused by a random constraint force f୧

ୡ୭୬  (in white) appended to 
control point 𝑠௜ at its original position (in black).  

between tongue surface and palate are taken as networks’ 
input. For these 13 grid lines, the line segment lengths from 
reference background to tongue surface, which is orthotropic 
to background, were used for tongue factor analysis. 

Being different from that 13 grid line lengths are directly 
used in PARAFAC [3], the normalized values of these grid 
lines, which belong to [0, 1], are used in network training. Eq. 

(1) presents the normalization procedure. In Eq. (1), 𝑖 ሺ𝑖 ∈
ሾ1,13ሿ) presents the 𝑖-th tongue line grid; 𝑓 and 𝑗 are the  𝑓-th 
frame of the 𝑗-th phoneme in tongue shape data set;  ℧ is the 
widest cross-section distance of the vocal tract in mid-sagittal 
plane. In this work, ℧  is set to 45mm, which follows the 
configuration of ℧ in [3]. ζ௜௙௝ and Γ௜௙௝ are the normalized and 
un-normalized grid line length; 𝜂 is real tongue length from 
tongue tip to tongue root. The whole tongue length of adult is 
about 175mm for male and 140mm for female [26]. 𝐺௜௙௝ and 
𝑉௜௙௝ are length of grid line and tongue length in pixels, which 
can be obtained directly from X-ray films. Finally, the gridline 
length Γ௜௙௝  and the corresponding normalized value ζ௜௙௝  are 
obtained. 

Fig. 2(b) shows length distribution of these 13 cross 
sections for the 32-th frame of phoneme /a/, which is similar 
to the set of reference lines introduced in [3] or in Fig. 2(a). 
Fig. 2(c) presents the tongue shape in tube model style from 
tongue tip to tongue root, which presents vocal tract 
configuration caused by tongue movement intuitively from a 
side view. The normalized lengths of 13 grid line ζ௜,ଷଶ,௔ሺ𝑖 ∈
ሾ1,13ሿ) from tongue tip to tongue root are listed in Fig. 2(d), 
which are the input of TSDR-AE in the proposed tongue 
model. 

B. Tongue Shapes Deformation 

At the first step of the proposed model, TS-dAE aims to 
generate high performance presentation of tongue shapes 
using denoising technique. To this end, a large scale noise 
shapes are constructed by adding noises to the original small 
real tongue shape set. As what we have introduced in the first 
paradigm of this section, traditional dAE use corruption or 
dropout noise technique to enlarge the training data [19, 23, 
24], and these skills do not fit the vocal tract configuration in 
pronunciation. Therefore, we consider tongues’ possible 
physiological deformations in TS-dAE training which are 
generated by active shape mode (ASM). 

ASM is an efficient tool in simulating possible 
physiological deformation of tongue shapes [27, 28]. We use 
ASM to generate tongue shapes’ deformations following the 

description in [27, 28]. The deformations are described as Eq. 
(2).  In Eq. (2), 𝑆 means a tongue contour and 𝑠௜ (1 ൑ i ൑ m) 
is the 𝑖 -th control point on 𝑆 , where 𝑚  is total number of 
control points. For 𝑠௜, 𝐸௜௡௧ሺ𝑠௜ሻ presents the energy for internal 
forces from adjacent points 𝑓௜ିଵ

௜௡௧ , 𝑓௜ାଵ
௜௡௧ ; 𝐸௘ௗ௚௘ሺ𝑠௜ሻ is the edge 

force from original edge or contour 𝑓௜
௘ௗ௚௘ , and 𝐸௖௢௡ሺ𝑠௜ሻ 

presents the constraint force 𝑓௜
௖௢௡  from user respectively. 

These forces are demonstrated in Fig. 3. In Fig. 3, the random 
external constraint force f୧

ୡ୭୬  at s୧  contribute to s୧  an initial 
deviation to s୧

ୡ୭୬ . And the final position of  s୧  at s୧
୤୧୬ୟ୪  is 

obtained by solving Eq. (2). References [27, 28] present the 
solution in details. 

C. TS-dAE 

The ASM based deformation shapes contribute to a large-
scale noise shape data set, which is partly shown as the curves 
in solid line at middle bottom of Fig. 1(a). Based on these 
noise shapes, a tongue shapes denoising autoencoder is 
obtained. With its encoding and decoding procedure, the 
reconstructed shapes, showed as the curves in dotted line at 
right bottom of Fig. 1(a), are close to the original tongue 
shapes, namely the curves in solid line at left bottom of Fig. 
1(a). The differences between the reconstructed tongue shapes 
and the original tongue shapes are requested as small as 
possible. 

a.      c.  

b.    d.  
 

Figure 2: Tongue shape normalization. (a) the total 18 grid lines 
presented in [3], where the tongue shape contains the cross-
section segments from grids 4 to 17; (b) the 13 cross-sections in 
the proposed model for the 32-th frame of /a/; (c) normalized 
cross-sections for (b) in vocal tract; (d) the normalized values of 
13 units for (b) and (c) in 2D coordinate system. 

ζ௜௙௝ ൌ Γ௜௙௝/ max௜,௙,௝൫𝐽, Γ௜௙௝൯ and Γ௜௙௝ ൌ ሺ𝐺௜௙௝/𝑉௜௙௝ሻη        (1)

Eሺ𝑆ሻ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ൣ𝐸௜௡௧ሺ𝑠௜ሻ ൅ 𝐸௘ௗ௚௘ሺ𝑠௜ሻ ൅ 𝐸௖௢௡ሺ𝑠௜ሻ൧௠
௜ୀଵ         (2)
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(a)                                         (b) 

Fig. 4. The average values, maximal values, minimum values and
variance range of  𝑃𝐶𝐶 and 𝑅𝑀𝑆𝐸 for 13-15, 13-150-15, 13-150-
30-15 and 13-150-60-24-15 stacked autoencoder with 5000
deformation shapes training. (a) P𝐶𝐶;  (b) 𝑅𝑀𝑆𝐸.  

D. TSDR-AE 

The output of TS-dAE is still of high dimensionality. A 
final autoencoder with small number of hidden units is further 
stacked at the top of TS-dAE, which contributes to the (n+1)-
layer TSDR-AE. The training processing of TSDR-AE is 
shown as Fig. 1(b). The structure of the TSDR-AE is 
considered as following procedure. First, 13 segments are 
sampled at intervals from tongue tip (TT) to tongue root (TR). 
Then the normalized cross-sections distances of these 13 
segments are taken as input units of TSDR-AE. Supposing 
that the number of visible and hidden units of the 𝑖-th layer 
autoencoder are ℓ௜

௩  and ℓ௜
௛ , where ℓ௜

௛ ൌ ℓ௜ାଵ
௩ ሺ1 ൑ 𝑖 ൑ 𝑛ሻ and 

ℓଵ
௩ ൌ 13, and the ሺ𝑛 ൅ 1ሻ-th layer autoencoder contains ℓ௡ାଵ

௩  
visible units and ℓ௡ାଵ

௛  hidden units, where  ℓ௡ାଵ
௛ ≪ ℓ௡

௛   and  
ℓ௡ାଵ

௛ ≪ ℓଵ
௩  (the symbol “ ≪ ”means far less than), and the 

ሺ𝑛 ൅ 1ሻ -th layer autoencoder realizes tongue shape 
dimensionality reduction. The reconstructed shapes, namely 
the dotted line curves at the right bottom of Fig. 1(b) are close 
to the original input shapes, the solid line curves at the left 
bottom of Fig. 1(b). Finally, a high dimensional tongue shape 
could be represented by the values of the units at the top layer 
of TSDR-AE:  ℓ௡ାଵ 

௛ . 

III. EXPERIMENTS 

A. Data Preparation 

Despite radiation harm, X-ray remains an important 
technique in studying speech production for its higher time 
resolution [29-31]. In this study, the tongue shapes were taken 
from a pronunciation X-ray films spoken by Chinese females 
[32]. The video contained 20 phonemes (including mandarin 
vowels) and 181 syllables. The resolution for X-ray image is 
640 ൈ 480. The speakers’ tongue shapes are normalized 
uniformly with Eq. (1). Each vowel lasts about 35 to 50 
frames, and time for each frame is about 30ms. Five typical 
vowels (/a/, /i/, /u/, /e/, /o/) are taken into account to verify the 
proposed model in tongue shapes’ dimensionality reduction 
and visualization. The middle part frames in pronunciation 
period present the essential and the steady pronunciation 
characteristics of vowels. 24 frames in the middle part frame 
are selected at intervals for each vowel. Finally, the picked 
tongue shapes (total 240 tongue shapes for 5 vowels) and their 
deformation shapes are used as training and test data.  

 Since large deformations usually happen at the font parts 
of tongue, the deformation units are most arranged at the 
previous sixth items in total 13 units. In total about 6000 

deformation shapes, which is equal to 120∗ ∑ ቀ
௛

ଵଷ
ቁସ

௛ୀଵ , are 

constructed from 120 real tongue shapes, among which 5000 
shapes are used to train the neural networks, and the remaining 
1000 shapes are used to evaluate TS-dAE. In TSDR-AE step, 
the previous 120 real tongue shapes are used to fine-tune 
TSDR-AE, and the remaining 120 tongue shapes are used for 
TSDR-AE evaluation. 

B. Structure of TS-dAE and TSDR-AE 

It is important to achieve a good balance between the TS-
dAE, TSDR-AE structure and their performances. We follow 
the training guidelines proposed in [24, 33] to optimize 
network structure. 

Autoencoder is able to fit arbitrary data distribution in the 
case of enough units are provided in hidden layer [34]. For a 
practical reconstruction problem, the autoencoder usually 
archives good results when the number of hidden units is set to 
be about ten times of input units number [24]. As the input 
vector contains 13 units, and the final size of output layer of 
TSDR-AE is needed to be small, then the number of hidden 
units for the first layer autoencoder is restricted to 15 or 150 in 
this work. Then autoencoders with 10, 5 and 2.5 times 
decreasing for hidden units’ number are used to construct 
multi-layer network step by step. In this way, TS-dAE is 
possibly constructed as 13-15, 13-150-15, 13-150-30-15 and 
13-150-60-24-15 networks. Fig. 4 gives the Pearson 
Correlation Coefficient (𝑃𝐶𝐶) and Root Mean Square Error 
( 𝑅𝑀𝑆𝐸 ) measured by the original tongue shapes and the 
reconstructed tongue shapes obtained by 13-15, 13-150-15, 
13-150-30-15, 13-150-60-24-15 networks respectively. And 
we can see from Fig. 4 that 13-150-15 obtains relatively 
highest performance of 𝑃𝐶𝐶 and 𝑅𝑀𝑆𝐸 among these networks. 
Then 13-150-15 network is used to construct the (n+1)-layer 
TSDR-AE.  

To validate the performance and to benefit the 
comparison of the proposed model with the traditional models 
on two factors, we add an additional 15-2 autoencoder on the 
top of 13-150-15 TS-dAE and a stacked 13-150-15-2 TSDR-
AE comes into being. We compare the proposed two-steps 13-
150-15-2 autoencoder with PCA model in two factors, a 
standard two-layer (13-2) autoencoder, a standard 13-150-15-2 
dAE with dropout skill and a 13-150-15-2 dAE using the 
proposed shapes deformation skill on tongue shapes 
reconstruction.  

To facilitate the writing, we denote the two factors PCA 
model as PCA_2D; the standard 13-2 autoencoder as 13-2 AE; 
the standard 13-150-15-2 dAE with dropout skill as 13-150-
15-2 dAE (DRPT), where “DRPT” mean dropout; and the 13-
150-15-2 dAE using deformation denosing as 13-150-15-2 
dAE (DEFRM), where “DEFRM” means deformation. The 
PCA_2D model, the 13-2 AE and the 13-150-15-2 dAE 
(DRPT) are trained on 120 real tongues with dropout 
technique. The 13-150-15-2 dAE (DEFRM) is trained with 
5000 deformation tongues. The training procedure of TSDR-
AE is similar to that of 13-150-15-2 dAE (DEFRM), except 
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(a)                                             (b) 

Fig. 5. The average values, maximal values, minimum values and
variance range of 𝑷𝑪𝑪 and 𝑹𝑴𝑺𝑬 for PCA_2D, 13-2 AE, 13-150-15-
2 dAE using dropout skill, 13-150-15-2 dAE using deformation
shapes and the proposed two-steps 13-150-15-2 model on 120 test
tongue shapes. (a) 𝑷𝑪𝑪; (b) 𝑹𝑴𝑺𝑬. 

 

 

(a)  (b) 
Fig. 6. Visualization of the reduction points in 2D coordinate system 
obtained by (a) PCA_2D and (b) the proposed two steps 13-150-15-2 
autoencoder. 

that TSDR-AE owns the second fine-tuning step using real 
tongue shapes.  

Fig. 5 lists the average values, maximal values, minimum 
values and variance range of 𝑃𝐶𝐶 and 𝑅𝑀𝑆𝐸 for these models. 
In Fig. 5(a), the proposed 13-150-15-2 network obtains similar 
𝑃𝐶𝐶 scores to that of PCA_2D and these two models achieve 
higher scores than other models. Fig. 5(b) shows that the 
proposed 13-150-15-2 network obtains obviously better 
performances on 𝑅𝑀𝑆𝐸 than PCA_2D and other models. 

C. Visualization of Tongue Shapes in 2D Coordinate System 

We map all 240 tongue shapes to 2D coordinate system 
using the proposed two-steps 13-150-15-2 autoencoder and 
PCA_2D model. Fig. 6(a) and Fig. 6(b) present all 240 points 
in 2D coordinate system obtained by PCA_2D and the 
proposed 13-150-15-2 network respectively. Points for 
different vowels are marked with different symbols, e.g., 
points in red plus correspond to the transformed tongue shapes 
of /e/ in 2D coordinate system.   

In Fig. 6(a), most points of /i/ are separated from other 
points. This kind of distinguish is good for pronunciation 
labels. However, there are considerable number points of /u/ 
and /e/ which are overlapped together. And nearly half parts of 
/a/ are overlapped with points of /o/. It means that quit a few 
of tongue shapes obtained by PCA_2D, for instance, /a/ and 
/o/, /u/ and /e/ could not be distinguished in 2D coordinate. 
While in Fig. 6(b), there are obviously five clusters, and the 
points of /i/ and those of /a/ are clearly separated. Only small 
parts of /u/ are adjacent to the boundary points of /e/ and /o/. 
Fig. 6 demonstrates that the points obtained by the two-steps 
13-150-15-2 network are better visualized and distinguished 
than those of PCA in 2D coordinate system. 

D. Discussions  

The deformation based 13-150-15-2 dAE (DEFRM) 
network is compared with 13-2 AE, 13-150-15-2 dAE (DRPT) 
on tongues’ shapes reconstruction in Fig. 5. It shows that the 
deformation 13-150-15-2 dAE (DEFRM)  obtains nearly 0.09  

increasing on PCC, and at the same time, nearly 0.013 
decreasing on RMSE respectively than those of 13-2 AE and 
13-150-15-2 dropout autoencoder. The experiments show that 
the proposed deformations denoising skill really increases the 
performance against the single layer autoencoder and 
traditional dropout autoencoder. It is because that the 
physiological mechanism based denoising contributes to a 
large-scale deformation data set. And it makes TS-dAE be 
robust to the small changes of input data, which are irrelevant 
to the large deformations at the font parts of tongue in speech 
pronunciations. 

 After a new additional autoencoder fine-tuning on real 
tongues shapes, the extra stacked autoencoder improves the 
lower bound of the probability approximation for input data, 
bringing higher reconstruction performance of the (n+1)-layer 
TSDR-AE than the traditional standard denosing autoencoder 
trained on deformation shapes. We can see from Fig. 5 that 
TSDR-AE obtains nearly 0.07 increasing on correlation 
coefficient, and nearly 0.01 decreasing on RMSE respectively 
than the deformation 13-150-15-2 dAE (DEFRM) network. It 
demonstrates that a new additional autoencoder continues to 
improve the performance from the standard denosing 
autoencoder trained on deformation shapes.  

Fig.6 demonstrated that TSDR-AE outperformed 
PCA_2D on tongue shapes reduction and visualization in 2D 
coordinate system. The points obtained by TSDR-AE are 
better visualized and clustered than those of PCA in 2D 
coordinate system. The high reconstruction performance and 
good dimensionality reduction capacity of TSDR-AE ensure a 
more intuitive bi-directional mapping between tongue 
articulatory configurations and low-dimensionality parameter 
representations than PCA. 

In general speaking, with the physiological deformations 
denosing skill and deep architecture, the proposed two-steps 
autoencoder contributes a novel tongued model, which own 
competitive performance against classical PCA tongue model. 
In spite of scarce resources of tongue shapes in reality, the 
proposed two-steps model obtains satisfactory performance of 
tongue shape reconstruction and dimensionality reduction. 

IV. CONCLUSIONS 

In this work, we discuss and confirm the possibility of 
using deep learning in vowels’ tongue shapes reduction and 
visualization by a two-steps autoencoder. As far as we known, 
there is no work discussing whether DNN or autoencoder is 
suitable for modeling tongue shapes before. The main 
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contributions of the proposed two-steps autoencoder are: (1) it 
realizes a deep architecture for tongue shapes dimensionality 
reduction and reconstruction from scarce tongue resources. 
Because of large-scale deformation shapes denosing, the 
network is able to learn the essential representations which are 
robust to small irrelevant changes for tongue shapes. (2) it 
provides an bi-directional mapping mechanism between 
tongue shapes’ articulatory configuration and its low 
dimensional parameters space. The proposed model is 
compared in details on tongue shape reconstruction 
performance with the traditional stacked autoencoder and PCA. 
Experiments indicate that the proposed model outperforms the 
traditional models mentioned above. The autoencoder 
construct process in this work could be widely and potentially 
used in the speech production research fields, such as 
visual/articulatory speech synthesis, computer-assisted 
pronunciation learning, etc. 
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