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Abstract. Brain-Computer Interface (BCI) is a powerful technology
that allows human beings to communicate with computers or to control
devices. Owing to their convenient collection, non-invasive Electroen-
cephalography (EEG) signals play an important role in BCI systems.
Design of high-performance motion intention recognition algorithm based
on EEG data under cross-subject and multi-category circumstances is a
crucial challenge. Towards this purpose, a convolutional recurrent neural
network is proposed. The raw EEG streaming is transformed into im-
age sequence according to its location of the primary sensorimotor area
to preserve its spatiotemporal features. A Convolutional Long Short-
Term Memory (ConvLSTM) network is used to encode spatiotemporal
information and generate a better representation from the obtained im-
age sequence. The spatial features are then extracted from the output
of ConvLSTM network by convolutional layer. The convolutional layer
along with ConvLSTM network is capable of capturing the spatiotem-
poral features which enables the recognition of motion intention from
the raw EEG signals. Experiments are carried out on the PhysioNet
EEG motor imagery dataset to test the performance of the proposed
method. It is shown that the proposed method can achieve high accu-
racy of 95.15%, which outperforms previous methods. Meanwhile, the
proposed method can be used to design high-performance BCI systems,
such as mind-controlled exoskeletons, prosthetic hands and rehabilitation
robotics.
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1 Introduction

Brain science is one of the most challenging frontier research fields in the twenty-
first century. The Brain-Computer Interface (BCI) is a kind of technology that
helps human beings to communicate with computers or to control devices. Non-
invasive [1] Electroencephalography (EEG) is regarded as one of the most conve-
nient signal sources for BCI systems in practice. When a person is doing mental
preparations of motor activity without any muscular motion, appropriate motor
related EEG rhythms fluctuate from their scalp [2]. Many promising EEG-based
BCI systems have been developed in the literature, such as mind-controlled ex-
oskeletons [3], prosthetic hands [4], and rehabilitation robotics [5]. Therefore,
EEG-based intention recognition has become a significant topic because of its
industrial and medical applications.

Although a large number of scientists are trying to recognize motion in-
tentions by analyzing EEG signals, this technology is facing several challenges.
The first challenge in EEG-based intention recognition is the collected EEG sig-
nals themselves because of the low signal-to-noise ratio, coupled with a large
quantity of noise, including external noise and physiological noise. The noise
definitely presents a severe difficulty for interpretation and analysis of the EEG
signal. Also, a typical EEG-based BCI system suffers from the high price, toler-
ability of the end user, so there are limited public EEG datasets compared with
audio, image and video data. More over, most EEG-based intention recognition
mainly focuses on manual feature selection, which is time-consuming and highly
relys on human experience. For examples, some methods use multiscale princi-
pal component analysis [6] to eliminate noise or discrete wavelet transform [7]
to extract features followed by a classification model. Finally, many research
projects have a terrible classification accuracy, though they just classify EEG
signals under the intra-subject or binary circumstances. Few research projects
involve cross-subject and multi-category classifications, which is more consistent
with real-world applications.

Recently, deep learning [8] has shown strong capability when dealing with
text, image, audio and video signals. Some researchers are trying to solve EEG-
based intention recognition problem by using deep convolutional network or
recurrent neural network. However, these methods only focus on spatial infor-
mation [9] or temporal information [10]. Thus, current approaches can’t deal well
with EEG signals. To achieve high-performance BCI systems, an end-to-end con-
volutional recurrent neural network is proposed to recognize human intentions.
We formulate EEG-based intention recognition as a spatiotemporal sequence
classification problem. In particular, we transform the spatially distributed EEG
signals into 2-D images by projecting the corresponding location of electrodes
from a 3-dimensional space onto a 2-D surface [11]. The ConvLSTM network
is used to encode EEG signals from spatiotemporal EEG movie. Several con-
volutional layers are applied to extract spatial features from the output of the
ConvLSTM network. The major contributions of this paper can be outlined as
follows:
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• Firstly, we propose an end-to-end deep neural network model to recognize
motion intentions based on raw spatiotemporal EEG data.

• It is shown that the proposed convolutional recurrent neural network is
capable of encoding the spatiotemporal features from the raw EEG streaming
and recognizing motion intentions under cross-subject and multi-category clas-
sification circumstances.

• The experimental results demonstrate that the proposed method outper-
forms previous methods and achieves high accuracy of 95.15% for EEG-based
intention recognition.

The remainder of this paper is organized as follows: The detail of the proposed
framework is demonstrated in Sect. 2. The data processing, model training, and
the result analysis are discussed in Sect. 3. Lastly, we conclude this paper in Sect.
4.

2 Methods

The goal of the proposed convolutional recurrent neural network is to recognize
motion intentions based on spatiotemporal EEG data. Fig. 1 shows an overview
of the proposed method. The network is composed of a ConvLSTM layer for en-
coding spatiotemporal information and generating a better representation from
raw EEG data and several convolutional layers for extracting spatial information.
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Fig. 1. The proposed convolutional recurrent neural network architecture.
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2.1 Design of the Input Images from EEG Streaming

Neuroscience research found that the event-related desynchronization (ERD)
starts before the motor imagery over the contralateral hemisphere then becomes
bilaterally symmetrical with movement execution [12]. Specifically, when a per-
son executes motor imagery, the specific area of the primary sensorimotor area
is activated, in which the Rolandic mu and beta rhythms amplitude will de-
crease, resulting in event-related desynchronization [13]. The electrodes mea-
sure the EEG rhythms fluctuated from different areas of the brain. Hence, we
transform the spatially distributed EEG signals into 2-D images by projecting
the corresponding location of electrodes from a 3-dimensional space onto a 2-
D surface [11]. Taking time into account, we can obtain a sequence of spatial
information-preserving images. The detail will be discussed in Sect. 3.

2.2 Convolutional LSTM

By using the sliding window approach, the obtained image sequence can be
divided into individual movie clips. The goal of the end-to-end deep neural net-
work model is to classify motion intentions based on spatiotemporal features
from EEG movie clips. For a model to recognize motion intentions based on
EEG movie clips, it should be capable of identifying how the activated area of
the primary sensorimotor is changing with time. Convolutional neural networks
(CNN) is able to generate a spatial representation. Recurrent neural networks
can encode temporal changes. Since the model should be able to deal with spa-
tiotemporal information, ConvLSTM is a suitable option.
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Fig. 2. The inner structure of a ConvLSTM cell [14].

ConvLSTM can encode spatiotemporal information and generate a better
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representation. The convLSTM model was first introduced to deal with precipi-
tation nowcasting [15] due to its capacity of extracting spatiotemporal informa-
tion. Fig. 2 shows the inner structure of a ConvLSTM cell. Different from Long
Short-Term Memory (LSTM) network, the input feature of a ConvLSTM cell is a
3-D spatiotemporal tensor, and the state-to-state and input-to-state transitions
are related to convolutional operations. The key equations of the ConvLSTM
are shown as follows:

ft = σ (Uf ∗Xt +Wf ∗ ht−1 + bf ) (1)

it = σ (Ui ∗Xt +Wi ∗ ht−1 + bi) (2)

ot = σ (Uo ∗Xt +Wo ∗ ht−1 + bo) (3)

Ct = ft ◦ Ct−1 + it ◦ tanh (Uc ∗Xt +Wc ∗ ht−1 + bc) (4)

ht = ot ◦ tanh (Ct) (5)

In the equations, it, ot, ft are the outputs of input gate, output gate and
forget gate at time step t. ht stands for the hidden state of a cell at time step
t. Ct stands for the cell output at time step t. The symbol “∗” stands for the
convolution operator, and “o” stands for the Hadamard product.

2.3 Network Architecture

After the spatial information-preserving image sequence is obtained, the end-
to-end model is used to classify motion intentions based on the obtained image
sequence. Fig. 1 shows an overview of the proposed method. By using the sliding
window approach, which can preserve valuable spatiotemporal information, we
divide the obtained image sequence into individual movie clips. The length of
each clip is fixed, and there are overlapping between nearby neighbors, avoiding
losing significant information. Then the proposed model is used to recognize
the motion intentions form the EEG movie clips. ConvLSTM network has the
capability to encode spatiotemporal information in its memory cell based on
the obtained EEG movie clips. In the ConvLSTM, 256 filters are applied in
all the gates, and the filter size are 3 × 3 with stride 1. Convolutional layers
receive the output of the last time step of the ConvLSTM layer, and feeds to
the fully connected layer, ending up with a softmax layer for motion intention
prediction. ReLU is used as the non-linear activation function for the output of
each convolutional layer.

3 Experiments

3.1 Dataset

Experiments are carried out on the PhysioNet EEG motor imagery dataset [16],
which contains 109 subjects. The dataset contains five motion intentions with
eye closed, imagining moving both fists, both feet, right fist and left fist. And the
dataset is collected by the BCI2000 instrumentation system, and this system has
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64 channels and the sampling rate is 160 Hz. Each subject performed baseline
runs and task runs.
Task 1: The subject will see an object either on the right or the left side of the
monitor, and he should imagine closing and opening the corresponding fist until
the object vanishes.
Task 2: The subject will see an object either on the bottom or the top of the
monitor, and he should imagine closing and opening both feet if the object is on
the bottom or imagine closing and opening both firsts if the object is on the top
until the object vanishes.

3.2 Implementation Details

The collected EEG data has 64 channels, and we transform the EEG streaming
into image sequence by projecting the corresponding location of electrodes from
a 3-dimensional space onto a 2-D surface at each sampling moment. The obtained
EEG image sequence is divided into clips with 10 sampling points and 5 sampling
points overlap. Three-quarters data are chosen in random as the training set, and
others are used as the validation set. The ConvLSTM layer is used to extract the
spatiotemporal information, and several convolutional layers are used to extract
spatial information. All experiments are established in Tensorflow framework
with batch size 200. We adopt the Adam optimizer with 0.0005 learning rate.

3.3 Experiment Results

The performance of the proposed convolutional recurrent neural network is
shown in this section. We compare the results with previous methods to evalu-
ate the performance of the proposed model. Five convolutional recurrent neural
network variants and the comparison models are shown in Table 1.

Table 1. Comparison between convolutional recurrent neural network and previous
methods.

Method Multi-class Validation Accuracy (%)

Wang [17] Multi(3) Intra-Sub 84.62
Sasweta Pattnaik [7] Binary Cross-Sub 80.71
Kbra Saka [18] Binary Cross-Sub 88.87
Pouya Bashivan [11] Multi(4) Cross-Sub 91.11
Jasmin [6] Binary Intra-Sub 92.80

ConvLSTM + 2 Conv layers Multi(5) Cross-Sub 89.39
ConvLSTM + 3 Conv layers Multi(5) Cross-Sub 94.05
ConvLSTM + 4 Conv layers Multi(5) Cross-Sub 95.15
ConvLSTM + 5 Conv layers Multi(5) Cross-Sub 95.10
ConvLSTM + 2 Conv + 2 pooling layers Multi(5) Cross-Sub 83.18

As is shown in Table 1, the proposed convolutional recurrent neural net-
work achieves high accuracy of 95.15% and outperforms the previous methods.
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ConvLSTM network along with four convolutional layers to extract spatiotem-
poral features can hit the best performance. Although Jasmin [6] centers on the
intra-subject and binary circumstance, the proposed model still achieves higher
accuracy than their method. Their model requires decomposing raw EEG sig-
nals, which may lose significant features while extracting the higher order statis-
tic features. What’s more, we add a max-pooling layer after the convolutional
layer, but the validation accuracy decreases. Max-pooling layer may make con-
volutional recurrent neural network achieve translation invariance. Thus, the
proposed model can not distinguish which area of the primary sensorimotor is
activated.

The accuracy of the proposed method lies in the range between 89% and
95.15%. A ConvLSTM layer with four convolutional layers to extract spatial in-
formation can reach the best performance, with an improvement of 2.35% over
the previous methods [6]. The validation accuracy of ConvLSTM layer with dif-
ferent convolutional layers to extract spatial features are shown in Fig. 3.
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Fig. 3. The validation accuracy of three model variants based on the PhysioNet dataset.
The horizontal axis stands for the number of epochs, and the left longitudinal axis
stands for validation accuracy.

It can be seen from Fig. 3 that the validation accuracy of three convolutional
recurrent neural network variants increases rapidly from the first epoch; the val-
idation accuracy increases slowly when the epoch is from 15 to 70; all model
variants converge after several fluctuations. Although the ConvLSTM network
with four convolutional layers doesn’t perform well after the first epoch, its con-
vergence rate is faster than the other two model variants. With four convolutional
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layers to extract spatial features, the proposed model can achieve high accuracy
of 95.15%.

Fig. 4. Confusion matrix illustrating the per-class validation accuracy.

The result of best model variant is used to calculate the confusion matrix,
which is shown in Fig. 4. When distinguishing both feet and both fists classes or
left fist and right fist classes, the proposed model may make mistakes. However,
the proposed model outperforms previous methods. The results show that the
proposed model is capable of recognizing motion intentions under cross-subject
and multi-category classification circumstances.

Table 2. The per-class performance of convolutional recurrent neural network.

Class F1 (%) Precision (%) Recall (%)

eye closed 98.08 97.40 98.77
both feet 93.44 93.79 93.10
both fists 93.54 94.27 92.82
left fist 93.17 92.86 93.48
right fist 93.35 93.96 92.74
Mean±Std 94.32±3.0 94.46±2.0 94.18±4.0

What’s more, F1 score, precision and recall are used to evaluate the per-class
recognition performance. Precision can reflect the sensitivity of the proposed
model. Recall is used to show the classifier’s completeness. F1 score is the har-
monic mean of precision and recall. It can be seen from Table 2 that for each
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class, F1 score, precision and recall are quite high with mean values of 94.32%,
94.46% and 94.18%, respectively.

4 Conclusion

The work is motivated by the goal of achieving high-performance motion in-
tention recognition algorithm under cross-subject and multi-category circum-
stances. The EEG streaming is transformed into image sequence according to
its location of the primary sensorimotor area to preserve its spatiotemporal fea-
tures. A convolutional recurrent neural network is proposed to learn features
from raw EEG data. The proposed convolutional recurrent neural network is
trained on PhysioNet EEG motor imagery dataset, and the results demonstrate
that the proposed model outperforms the previous methods by achieving high
accuracy of 95.15%. This results show that the proposed model can be used
to design high-performance BCI systems, such as mind-controlled exoskeletons,
prosthetic hands and rehabilitation robotics.
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