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Abstract— Research on snores for Obstructive Sleep Apnea
Syndrome (OSAS) diagnosis is a new trend in recent years.
In this paper, we proposed a snore-based apnea and hypopnea
events classification approach. Firstly, we define the snores after
the apnea event and during the hypopnea event as apnea-event-
snore (AES) and hypopnea-event-snore (HES), respectively.
Then, we design a new feature from the trend of the amplitude
spectrum of snores. The newly proposed feature can be viewed
as an improvement of the Mel-frequency cepstral coefficient
(MFCC) feature, which is well-known for speech recognition.
The extracted features were fed to principle component analysis
(PCA) for dimension reduction and support vector machine
(SVM) for apnea and hypopnea events classification. The
experimental results demonstrate the efficiency of the proposed
algorithm in using snores to classify apnea and hypopnea events.

I. INTRODUCTION

The obstructive sleep apnea syndrome (OSAS) was first
recognized as a significant health problem in 1956 [1]. In
clinical practice, OSAS is scored by Apnea-Hypopnea Index
(AHI), the number of pathological respiratory events (apneas
and hypopneas) per hour during sleep. AHI is obtained
by Polysomnography (PSG), which is the golden standard
diagnostic technique for OSAS. PSG requires individual to
spend a whole night in a sleep laboratory and wear about
20 electrodes to record physiological signals (EEG, ECG,
EMG, EOG, SpO2, etc). It is poorly tolerated, inconvenient
and expensive. Furthermore, it may not truly reflect the
patients’ condition based on only one night record. Thus, an
environment friendly, comfortable, convenient and low cost
strategy for OSAS diagnosis is urgently required.

OSAS is caused by upper airway collapse during sleep
and one of its cardinal symptoms is snoring. Many studies
have shown that snoring carries information relating to the
degree of collapse of the upper airway [2-5].
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Considering the close linkage between snoring and OSAS,
snore recording is non-contact, non-invasive and easy to
operate. Snoring analysis has aroused great interest in recent
years. Pevernagie et al. [2] discussed the acoustic proper-
ties of snore. Drawing inspiration from automatic speaker
recognition (ASR), Hidden Markov models with Gaussian
observation probability distributions have been applied to
snorer group recognition [6, 7]. Artificial neural networks
have also been used for snore detection and classification
[8-11]. Although some of these models have achieved high-
accuracy for some tasks, their assumption can not meet the
clinical need. For example, In [12], their model performs
well for the classification of the excitation location of snores,
but the data they used can not reflect natural sleep. Because
the corpus are uncut recordings from Drug Induced Sleep
Endoscopy (DISE) examinations, this model might not be
able to directly used in clinic.

Hummel et al. [13] employed 16 acoustic features, in-
cluding 10 features for identifying basic breath sound (in-
spiration, expiration and snoring) and 6 features designed
based on sleep apnea pathophysiology, for classification of
obstructive and central sleep apnea with linear support vector
machine (SVM). It should be point out that their audio files
were 2.5 to 8 minutes (mean duration was 5.3 ± 0.7 minutes)
long that contained central or obstructive sleep apnea events,
which might contain more than one events in an audio file
leading to inaccurate AHI.

In this paper, to better capture the characteristics of repi-
ratory events in natural sleep and more accurately calculated
AHI. We define hypopnea-event-snore (HES) and apnea-
event-snore (AES) as the snores during the hypopnea event
and the first snore for a short time (within 5 seconds)
after an apnea event, respectively. As shown in figure 1,
(a) reprensents example of AES, (b) is a example of HES.
Furthermore, we propose a novel feature from the trend
of the amplitude spectrum of snores. Then the extracted
features were fed to principle component analysis (PCA)
and support vector machine (SVM) for apnea and hypopnea
events classification. The experimental results demonstrate
that our method performs well on both recall (sensitivity) and
precision (positive predictive value) on the test set collected
by ourselves.

II. METHOD
A. Feature extraction

According to the acoustic nature of snoring and the
definition of respiratory events, an apnea event is defined as
airflow drops by more than 90% of baseline at the mouth and
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Fig. 1. Examples of (a) obstructive sleep apnea event snore and (b)
hypopnea event snore. Apnea event snores were the first snore after an
apnea event. Hypopnea event snores were snores during a hypopnea event.

nose for 10 seconds or more and at least 90% of the event’s
duration meets the amplitude reduction criteria. While with
drops of airflow by more than 30% of baseline at least for
10 seconds and the desaturation of SpO2 is greater or equal
to 4% from the pre-event baseline are called hypopnea event
[14]. The human upper airway can be seen as a filter during
the production of snoring sounds, which can be simulated
by the following mathematical model:

s(n) = v(n) ∗ u(n) (1)

where n represents the n − th point of each sequence,
s(n) denotes snore, u(n) denotes the upper airway response
and v(n) is the source excitation sequence. The symbol ‘*’
denotes the linear convolution operation.

The “low frequency” component of the amplitude spec-
trum is a good representation of the filtering characteristics
of the human vocal tract. Because the spectral envelope of
the amplitude spectrum is a rough representation of the “low
frequency” component of the amplitude spectrum, it has
been transplanted to the Mel-frequency cepstrum coefficients
(MFCC) for speech recognition. The MFCC is derived by
computing the real cepstrum of a windowed short-time
signal derived from the Fast Fourier Transformation (FFT)
of that signal. The difference from the real cepstrum is
that a nonlinear frequency scale is used in Mel-spectrum.
The nonlinear frequency scale approximates the behavior
of the auditory system. Davis and Mermelstein [15] show
that the Mel-frequency scale representation beneficial for
speech recognition. In fact, MFCC is obtained by performing
the cepstral analysis on Mel-spectrum for the purpose of
characterizing the spectral envelope. Therefore, it can not
give a visual representation of the envelope. Experiments
reveal that the trend of the amplitude spectrum performs

better than envelope in terms of the representation of the
low frequency of the amplitude spectrum, thus, it is more
effectively to describe the filter characteristics of upper
airway.

Since extracting trend from an amplitude spectrum is a
signal separation problem, we use null space pursuit (NSP)
algorithm to extract it. The NSP approach [16]1, uses an
adaptive operator ΓS to decompose a signal S into two
subcomponents: U and R (S = U + R). It can be formulated
as an optimization problem:

min
R

{
‖ΓS(S −R)‖2 + λ1(‖R‖2 + γ‖S −R‖2) + F (ΓS)

}
,

(2)
where ΓS is adaptively estimated from the signal S, λ1 is
regularization parameter, γ is leakage factor, and the last term
is the Lagrange term for the parameters of the operator ΓS .
Minimizing the term ||ΓS(S − R)||2 ensures that S − R is
in the null space of the operator ΓS . The advantages of NSP
are that the design of the operator ΓS can be customized
to the target signal S, and that the operator’s parameters
and the Lagrangian multipliers can be adaptively estimated
[16]. More details about the NSP algorithm is available in
[16] on signal decomposition. Figure 2 shows an example of
extracting the trend from an amplitude spectrum.
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Fig. 2. Illustration of the trend of amplitude spectrum.

B. Null space pursuit coefficient (NSPC) Algorithm

The proposed NSPC algorithm consists seven steps as
follows:

1) Pre-process: Pre-emphasis technique is used in order
to compensate the high frequency loss in upper airway. Pre-
emphasis filter is generally set to

H(z) = 1− az−1, (3)

where a is a const.
The snores are framed into 1024 points frames, with

50% overlap between frames. Each frame is windowed with

1Source codes of NSP can be downloaded from:http://mda.ia.ac/
people/huxy/
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hamming window for reducing leakage in the frequency
domain

2) The spectrum S(k) of each frame s(n) is obtained by
applying the discrete fourier transform (DFT):

Si(k) =

N∑
n=1

si(n)h(n)e−2πjkn/N , 1 ≤ k ≤ K (4)

where N is 1024, h(n) is a N sample long hamming window,
and K is the length of the DFT.

3) The power spectral E(k) of s(n) is computed by:

Ei(k) = |Si(k)|. (5)

4) The trend of E(k), denoted as Tk, is extracted using
NSP operator:

Ti(k) = NSP (Ei(k)), (6)

5) After applying the Mel-frequency filter banks to the
extracted trend E(k), the first 13 coefficients are kept and
denoted as null space pursuit coefficient (NSPC).

6) Differential (first-order difference) and acceleration
(second-order difference) coefficients are used to represent
the dynamic information of snore. Differential coefficients is
obtained due to the following equation:

dt =

J∑
j=1

j(NSPCt+j −NSPCt−j)

2
J∑
j=1

j2
, (7)

where dt is the differential coefficient, NSPCt+j denotes
the (t + j)-th element of NSPC, J denotes 2. Acceleration
coefficients can be obtained in the same way by applying the
equation (7) to differential coefficients.

At last, a 39 long feature vector is obtained for each frame.
Due to the different length of snores, the number of frames
are not the same. We solve this problem by averaging frames
of each snore as its final feature.

7) Final feature is obtained by applying PCA on the
original 39 dimensional feature vector and then fed to SVM
for classification.

III. EXPERIMENTS AND RESULTS

A. Data acquisition and labelling

Since the study of snoring is still under development, there
are no open access dataset yet. According to the experiment
design we have built up a snore dataset, and will make it
public soon.

The data collection was conducted in the Sleep Center of
South Campus of Guang’anmen Hospital, China Academy of
Chinese Medical. The study is approved by the ethical com-
mittee of Guang’anmen Hospital, China Academy of Chinese
Medical. Simultaneous with PSG, an audio of overnight
breathing sound per patient was recorded by an iPhone 4.
The phone was placed on the table 50cm away left or right
side of the head of the patient, and the sampling frequency
was set as 44.1kHz with 16-Bit resolution. The PSGs were

scored by sleep technician according to the AASM score
manual [17]. According to the scored PSG, snores during
the hypopnea events (HES) or the first snore for a short time
(within 5 seconds) after an apnea event (AES) were extracted
manually. A sleep expert listened to each segment, identified
and labelled each snore as HES or AES manually.

We collected and annotated a dataset of 4062 snore
episodes from 14 men patients. The length of snore episodes
vary from about 0.2 seconds to 5 seconds. The demographic
information of patients is shown in Table I.

TABLE I
THE DEMOGRAPHIC INFORMATION OF THE 14 PATIENTS

Mean Std Range

Age (years) 39.93 10.32 26-65
AHI (events/h) 51.52 18.29 28.5-79.4

B. Experiment

We investigated the performance of the proposed method
for snore classification. SVM was employed to classify
snore episodes into categories of HES or AES. Radial basis
function (RBF) kernel was used. Parameters of kernel were
obtained by grid search. Original snores were segmented
into frames, and each frame contains 1024 points (50%
overlap). For each snore episode, a 39 dimensional vector
(static coefficients, differential coefficients and acceleration
coefficients) was extracted as its feature, which was fed to
SVM for classification.

The classification process consisted three steps. First, we
computed the classification hyperplane from the training set
of snores; then the snore in test set to be classified was
projected into the subspace spanned by PCA; finally, the new
snore was classified by the hyperplane.

The system performance was compared with the MFCC
method, the experimental results are shown in figure 3. Forty
percent, 50 percent, 60 percent, 70 percent, 80 percent,
and 90 percent snore episodes were randomly selected from
dataset for training and the remained were for testing. No
matter how many samples were trained, our method always
performs better than MFCC. With the number of training
samples increase, our method achieves higher accuracy,
however, the performance of MFCC starts to decrease at 80
percent (training samples). It indicates that our method is
more robust than MFCC, since our method discovers the
underlying relationship among different snores.

The more detailed comparison of recall rate, precison, F1,
accuracy between NSPC and MFCC are given in Table II.
From which, we can find that our NSPC feature outperforms
the MFCC feature for snore classification.

IV. CONCLUSION AND FUTURE WORK

we propose an approach based on NSP to extract trend
of amplitude spectrum of snores as feature to distinguish
apnea events and hypopnea events based on HES and AES.
Experimental results have shown the effectiveness of our
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Fig. 3. Comparision of classification accuracy of NSPC and MFCC versus
percentage of train samples.

TABLE II
THE DETAILS OF THE RESULTS OF EXPERIMENT

NSPC MFCC

HES AES HES AES

Recall 85.39 88.74 84.56 87.42
Precision 88.51 85.82 87.25 84.87

F1 86.89 87.29 85.93 86.18
Accuracy 87.05 85.97

method on both recall and precision. To the best of our
knowledge, this is the first devoted work on snore classi-
fication which explicitly considers the difference between
hypopnea-events-snore and apnea-events-snore based solely
on a snore episode. In the future, we will explore the
intrinsic components of two types snore episode with signal
separation.
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