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Rationale and Objectives: Glioblastoma multiforme (GBM) is the most common and deadly type of pri-
mary malignant tumor of the central nervous system. Accurate risk stratification is vital for a more per-
sonalized approach in GBM management. The purpose of this study is to develop and validate a
MRI-based prognostic quantitative radiomics classifier in patients with newly diagnosed GBM and to
evaluate whether the classifier allows stratification with improved accuracy over the clinical and qualita-
tive imaging features risk models.

Methods: Clinical and MR imaging data of 127 GBM patients were obtained from the Cancer Genome
Atlas and the Cancer Imaging Archive. Regions of interest corresponding to high signal intensity por-
tions of tumor were drawn on postcontrast T1-weighted imaging (post-T1WI) on the 127 patients (allo-
cated in a 2:1 ratio into a training [n = 85] or validation [n = 42] set), then 3824 radiomics features per
patient were extracted. The dimension of these radiomics features were reduced using the minimum
redundancy maximum relevance algorithm, then Cox proportional hazard regression model was used
to build a radiomics classifier for predicting overall survival (OS). The value of the radiomics classifier
beyond clinical (gender, age, Karnofsky performance status, radiation therapy, chemotherapy, and type
of resection) and VASARI features for OS was assessed with multivariate Cox proportional hazards
model. Time-dependent receiver operating characteristic curve analysis was used to assess the predic-
tive accuracy.

Results: A classifier using four post-T1WI-MRI radiomics features built on the training dataset could
successfully separate GBM patients into low- or high-risk group with a significantly different OS in train-
ing (HR, 6.307 [95% CI, 3.475-11.446]; p < 0.001) and validation set (HR, 3.646 [95% CI, 1.709�7.779];
p < 0.001). The area under receiver operating characteristic curve of radiomics classifier (training,
0.799; validation, 0.815 for 12-month) was higher compared to that of the clinical risk model (Karnofsky
performance status, radiation therapy; training, 0.749; validation, 0.670 for 12-month), and none of the
qualitative imaging features was associated with OS. The predictive accuracy was further improved
when combined the radiomics classifier with clinical data (training, 0.819; validation: 0.851 for 12-
month).

Conclusion: A classifier using radiomics features allows preoperative prediction of survival and risk
stratification of patients with GBM, and it shows improved performance compared to that of clinical and
qualitative imaging features models.
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GLRLM
Gray-level run-length matrix

LGLRE
Low gray-level run emphasis
INTRODUCTION
G lioblastoma multiforme (GBM) is the most frequent
and deadly type of primary malignant tumor of the
central nervous system. Through standard treatment

consisting of maximal surgical resection followed by adjuvant
chemotherapy and radiation therapy, the median survival time
of patients with GBM was significantly improved from 15.3
months to 21.7 months; however, the survival time varies
widely from 3 months to 12 years following diagnosis (1,2).
Thus, there is a need for accurate risk stratification toward a
more personalized approach in GBM management.
Recently, studies have identified many markers for GBM

(3�5), of which, genomic and proteomic characterization
improved the clinical assessment of GBM, such as the
description of distinct molecular gene expression profiles,
underlying genomic abnormalities, and epigenetic modifica-
tions (6). The implementation of these markers, however,
has been limited in routine clinical practice because biopsies
are invasive and are not able to characterize the heterogeneity
of the entire tumor (7). On the contrary, medical imaging
can noninvasively capture the entire tumor characteristics,
providing complementary information to the traditional tis-
sue biopsy (8). Currently, imaging is routinely used through
the treatment process. Therefore, it does not involve extra
cost to access this valuable information.
Magnetic resonance imaging (MRI) plays an important

role in neuro-oncology for the diagnosis and assessment of
treatment response (5,9�11). Previous studies have built
models to predict overall survival (OS) using feature combi-
nations which include preoperative tumor volume, Karnof-
sky performance status (KPS), involvement of eloquent brain
regions, volume of the nonenhanced tumor, extent of
edema, degree of necrosis, and degree of contrast enhance-
ment (5). However, most of these imaging features very
much depend on radiologists’ experience.
“Radiomics” is an emerging field that aims to utilize the full

potential of medical imaging by extracting a large number of
quantitative features, including tumor intensity, shape, and tex-
ture (12�14). A comprehensive and robust quantification of
the imaging phenotypes provides complementary and clinically
relevant information, which may lead to imaging biomarkers.
As shown in recent studies, quantitative imaging features have
prognostic value in predicting clinical outcomes or assessing
treatment response in several cancer types (4,15,16). For exam-
ple, Liu et al found that the performance of combined four
MR sequences (T1-weighted imaging [T1WI], T2-weighted
imaging, FLAIR and postcontrast T1WI [post-T1WI]) was
almost equal to that of only post-T1WI for survival stratifica-
tion (17). Therefore, in the present study, we extracted many
radiomics features from high signal intensity portions of the
tumor on post-T1WI in patients with newly diagnosed GBM
before treatment. The present study aimed to develop and vali-
date an MRI-based radiomics classifier to predict the OS in
patients with newly diagnosed GBM and to evaluate whether
the classifier allows stratification with improved accuracy over
that of clinical and qualitative imaging features risk models.
MATERIALS AND METHODS

Patients and Clinical Data

Clinical and MRI data of GBM were obtained from the Can-
cer Genome Atlas and the Cancer Imaging Archive (http://
cancerimagingarchive.net/), which is an imaging portal con-
sisting of images corresponding to the Cancer Genome Atlas
patients from four centers (Henry Ford Hospital, Emory Uni-
versity, University of California San Francisco, Maryland
Anderson Cancer Center). The studies were approved by
their local ethics committee and institutional review board.
We retrieved a total of 127 patients’ clinical information, pre-
surgical axial post-T1W images and their OS.

The parameters for post-T1WI were as following: TE/TR,
2.1�20 ms/4.94�3285.62 ms; slice thickness, 1�5 mm;
spacing between slices, 0.7�6.5 mm; matrix size, 256£ 256 or
512£ 512; and pixel spacing, 0.47�1.02 mm.

The 127 patients were semirandomly split into a training
set of 85 patients and a separate validation set of 42 patients
with stratification depending on survival time. Stratified sam-
pling was selected to reduce the limitation of the small sample
size and the skewed survival distribution, and to achieve an
approximately equal survival distribution of subjects between
the training and validation data. The split data were more
representative of the population than the random sampling.
Samples were sorted by survival in an ascending order. For
every three samples, the first and second samples were chosen
as the training set and the third sample was selected as the val-
idation set. Models were created in the training set and vali-
dated in the validation set.

The clinicopathologic features of the two groups are
shown in Table 1. OS as the clinical endpoint was defined as
the time from initial diagnosis to date of cancer-related death
or date of last follow-up examination.
Imaging Preprocessing

The white-stripe approach (18) was used to perform the
image intensity normalization to minimize the discrepancy of
intensity distributions between subjects. Then, images were
cropped and/or zero-padded to achieve a 24-cm field of
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view. Considering the various imaging parameters across the
four centers, all images were resampled using the cubic spline
interpolation. The resulted pre-processed images had a matrix
of size 256£ 256 and a slice thickness of 3 mm.
Tumor Imaging Segmentation

Two neuroradiologists (Reader 1 and Reader 2 with 8 years
and 21 years of experience, respectively) manually outlined the
regions of interest (ROIs) of high signal intensity portions of
tumors on the single image slice with the largest tumor volume
using 3D slicer (National Institutes of Health, Bethesda, Mary-
land). The vessels were carefully avoided when we drew ROIs
of the tumor (Fig 1). Reader 1 outlined the ROIs in all 127
cases, and Reader 2 outlined in 30 randomly selected cases to
evaluate interobserver agreement of radiomics features.
Radiomics Features Extraction

Radiomics features were calculated using an in-house Matlab
code (MATLAB 2014a MathWorks, Natick, Massachusetts).
Digital Imaging and Communications in Medicine files (MR
images and tumor contours) were imported into a computer
to extract the radiomics features. Four types of radiomics fea-
tures were calculated in our study, namely tumor intensity,
shape, texture, and Wavelet features, with a total of 3824 fea-
tures (Appendix A). Note that, all features were normalized
by a z score method into a standardized value range.
Imaging Review

The same two neuroradiologists reviewed the MR images
using in-house picture archive and communication system.
The VASARI feature scoring system for human gliomas
(https://wiki.cancerimagingarchive.net/display/public/VASARI
+Research+Project) was employed for the interpretation of the
MR images to ensure interobserver consistency. The reviewers
were blind to the clinical outcome of patients. The conclusion
of the final assessment was based on the agreement between
the two reviewers. MRIs were assessed for availability of rele-
vant sequences: T1WI, post-T1WI, FLAIR, and T2-weighted
imaging. Thus, a total number of 104 patients’ MR images
were reviewed considering the fact that the other patients
TABLE 1. Clinical Pathology Features Between Training and Valida

Characteristic Training

Gender (male/female) 53/3
Age (years, mean/SD) 57.78/1
KPS (�80/<80) 67/1
Radiation (yes/no) 79/
Chemotherapy (yes/no) 77/
Type of resection (biopsy/Tumor resection) 7/7
OS (days, median, and IQR) 342.0(165.

Note: Numbers in the columns of training and validation sets were patie
IQR, interquartile range; KPS, Karnofsky performance status; OS, overa
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missed one or more sequences of required four sequences. Fur-
thermore, although the VASARI scoring system includes 30
imaging features, we performed 26 features instead (see Sup-
plementary Table 1) because 3/30 features are assessed based
on the postoperative MRIs and 1/30 is based on diffusion
weighted imaging (DWI). Prior to analysis, the neuroradiolo-
gists were trained to determinate the VASARI features follow-
ing the Vasari MR Feature Guide v1.1 on 30 randomly
selected patients. Before statistical analysis, some features were
changed to maintain a better distribution subgroups or to
achieve a binary classification (see Supplementary Table 2).
Statistical Analysis

Study Population Demographics
Clinicopathologic variables between the training and validation
sets were compared using the Student’s t test for continuous
variables and the chi-squared (x2) test for categorical variables.
Interobserver Agreement of Radiomics Features Extraction
The interclass correlation coefficient (ICC) was used to esti-
mate the reproducibility of the extraction of radiomics fea-
tures from the independent segmentations of 30 patients by
two radiologists. An ICC larger than 0.75 was regarded as
good agreement (19).
Radiomics Features Selection and Radiomics Classifier Building
The radiomics features with ICCs larger than 0.75 were
ranked by the minimum redundancy maximum relevance
(mRMR) algorithm by calculating the mutual information
(MI) between a set of features and an outcome variable.
MRMR ranks the input features by maximizing the MI with
respect to survival time and minimizing the average MI of
higher ranked features. It allows an efficient selection of rele-
vant and nonredundant features.

To remove redundant imaging features with linear correla-
tion, only a small number of highest ranking features were
reserved. In this study, the top 40 highest-ranked radiomics
features were used as the input variables of the radiomics clas-
sifier building. The Cox proportional hazard regression classi-
fier was built based on the training set. To control for model
overfitting, the number of patients should usually exceed the
tion Sets

Set Validation Set p Value

2 29/13 0.586
3.53 60.02/13.75 0.142
8 34/8 0.963
6 38/4 0.893
8 37/5 0.901
8 5/37 0.732
0,600.0) 351.5(187.2,619.0) 0.757

nt numbers except for Age and OS.
ll survival; SD, standard deviation.
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Figure 1. Glioblastoma multiform (GBM) segmentation of tumor on postcontrast T1-weighted images of a 74-year-old GBM patient with an overall
survival of 110 days. Before (A) and after outlined tumor (B) image were shown for tumor segmentation. (Color version of figure is available online.)
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number of the included covariates by at least 10�15 times in
the multivariate analysis (20); therefore, the likelihood ratio
test with Akaike’s information criterion (AIC) was used as
the stopping rule for a backward step-wise selection, with the
lowest AIC value representing the “best approximating
model” (21). Then, a risk score was computed for each
patient according to the radiomics classifier.
Development and Validation of Prognostic Models
We selected the optimum cut-off score of the classifier to split
the data set into high-risk and low-risk groups by using the
“cutp” function of the “survMisc” R package, which define
the cut-off point objectively and have been proven to have
good properties in the case of survival analysis with death and
censored data.
Univariate Cox proportional hazards model was used to

assess the associations between survival and different individ-
ual categories of predictors including clinical variables and
qualitative imaging features. Predicting variables shown as
significant in the univariate Cox proportional hazards models
were retained and included in the multivariate Cox propor-
tional hazards models.
We used Kaplan-Meier method to analyze the correlation

between variables and OS and the log-rank test to compare
survival curves. Time-dependent receiver operating characteris-
tic curve (ROC) analysis was used to investigate the predictive
accuracy of variables, with the area under curve (AUC) calcu-
lated at different cut-off times (6, 12, and 18 months in this
study, respectively). A higher AUC value indicates a better
model in predicting OS.
To validate associations between survival and the models

(clinical features alone, imaging features alone, radiomics classi-
fier alone, and different combinations of the above stated mod-
els), the different models in the training set were used in the
validation set and the whole set to split the survival curves.
All statistical tests were performed with R software (ver-
sion 3.0.1; http://www.Rproject.org). The mRMR algo-
rithm was implemented in the mRMRe package, and the
optimum cut-off score for the radiomics classifier was per-
formed using the “cutp” function of the “survMisc” R pack-
age. The “survival ROC” package was used to perform the
time-dependent ROC curve analysis. Statistical significance
with two-sided tests was set at p < 0.05.
RESULTS

Study Population Demographics

Patients’ clinical characteristics are summarized in Table 1.
There were no significant differences in clinicopathologic
features between the training and validation sets (p =
0.142�0.963). Patients in the training (85 of 127, 67%) and
validation sets (42 of 127, 33%) were balanced for survival
(p = 0.757), with a median OS of 448 days [95% confidence
interval [CI]: 355�558 days] for the training set and 448 days
(95% CI: 346�638 days) for the validation set.
Interobserver Agreement of the Radiomics Features
Extraction

Of the 3824 radiomics features, 1167 demonstrated good
interobserver agreement, with ICCs ranging from 0.7502 to
0.9776, and the remaining 2657 with ICCs ranging from
0.1057 to 0.7499.
Radiomics Feature Selection and Prognostic Radiomics
Classifier Building

We developed a classifier from the 40 top-ranked radiomics
features using a Cox regression model with AIC, which
selected four radiomics features in the training set. Then, a
1295
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risk score for each patient depending on their individual fea-
tures values was calculated through a linear combination of
selected features weighted by their respective coefficients,
where risk score = (2.4611£ g.100_gab.25.2_GLCM_
correlation) + (1.3805£ g.050_gab.10.2_GLCM_difference_
entropy) + (2.375 £ g.050_gab.15.2_GLCM_entropy) +
(¡2.079£ g.100_orig_GLRLM_LGLRE).
Development and Validation of Prognostic Models

Correlation Between Radiomics Classifier and Survival
The optimum cutoff of risk score was 0.140. Patients with risk
scores of 0.140 or larger were classified into high-risk group,
and patients with risk scores less than 0.140 were classified into
low-risk group. Survival time of the high- and low-risk groups
from the training and validation sets is listed in Table 2. Distri-
butions of the risk score and survival status in the training set
and validation set were shown in Figure 2 (left panel). Patients
in the high-risk group had a shorter median OS than patients
in the low-risk group (603 vs 199 days; hazard ratio [HR],
6.307 [95% CI: 3.475�11.446]; p < 0.001; Fig 2, middle
panel). Similarly, patients with a high-risk score had shorter
median OS than patients with a low-risk score in the validation
set (256 vs 638 days; HR, 3.646 [95% CI, 1.709�7.779] p <
0.001) and in the whole set (221 vs 626 days; HR, 4.489 [95%
CI, 2.899�6.951] p < 0.001).
Correlation Between Clinical Variables, Imaging Features and
Survival
Univariate Cox proportional hazards model analyses demon-
strated that two clinical variables of KPS and radiation ther-
apy were significantly correlated to survival with p value <

0.050 in both training and validation sets (Table 3). Of 104
patients’ 26 VASARI imaging features, none was associated
with survival time except for pial invasion in validation set (p
= 0.021 for pial invasion; Supplementary Table 2).
Multivariate Cox Analysis of the Association Between Combined
Biomarker and Survival
The four-feature radiomics classifier was, along with clinical
variables of KPS and radiation therapy, the parameter within
TABLE 2. Overall Survival and Mortality of Patients With High- and

Training Set

High-Risk
Group

Low-Risk
Group

No. of patients (%) 35 (41.2) 50 (58.8)
OS (days) Median 199 603

95% CI 146,337 486,753
Mortality rate (%) 6 months 45.71 4.04

12 months 73.00 20.58
24 months 100.00 61.15

CI, confidence interval; OS, overall survival.
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a multivariate Cox regression model that consistently showed
independent significance for predicting OS in both training
(HR, 2.491[95% CI, 1.758, 3.528]; p < 0.001) and validation
(HR, 2.160 [95%: 1.211�3.853]; p = 0.009) set (Table 4).
The classifier also showed significantly higher prognostic
accuracy than any individual or combined clinical variables
(Fig 3). And the combined model including clinical variables
and radiomics classifier is the best predictor for OS (Fig 3).
When the models were used to the validation set, the same
conclusion was found that the combined model with AUC
of 0.851 was higher than that of 0.670 for clinical variables
model and 0.815 for radiomics classifier at 12 months. Thus,
the four-feature radiomics classifier can add prognostic value
to clinical variables.
DISCUSSION

In this study, we used radiomics approach to analyzed post-
T1W images of patients with newly diagnosed GBM. A total
of 3824 radiomics features were derived from each segmented
high signal lesion which can result in a high-dimensional
parameter space. A series features selection methods identified
a four-feature radiomics classifier in the parameter space to
noninvasively predict individual risk for each subject. The
radiomics classifier could successfully stratify patients into high-
and low-risk groups with significant differences in OS with
additive performance beyond clinical variables and standard
imaging features. Integrating the radiomics classifier into model
with clinical variables increased accuracy of the model.

Of the four features selected to the classifier, all features
were derived from texture features, which characterize the
gray-level heterogeneity of GBM. Any features related to
tumor shape and size were not contained in the final classifier.
The results indicate that local heterogeneity plays an impor-
tant role in overall survive. Consistent with our findings, Liu
et al (22) found that co-occurrence matrix and RLM-based
features which reflect the regional heterogeneity contributed
to prognosis differentiate between the long- and short-term
groups. Furthermore, Chaddad et al (23) suggested that mul-
titexture features can discriminate intratumoral niches with
underlying tumor biology and the texture features derived
from active tumor regions are the most associated with OS.
Low-Risk Scores in the Training, Validation, and Whole Sets

Validation Set Combined Set

High-Risk
Group

Low-Risk
Group

High-Risk
Group

Low-Risk
Group

24 (57.1) 18 (42.9) 59 (46.5) 68 (53.5)
256 638 221 626

164,442 546,1024 153,333 546,753
37.78 0.00 42.42 2.96
72.93 5.88 73.02 16.43
86.46 61.99 94.60 61.39



Figure 2. Risk score by the radiomics classifier (left panel), Kaplan-Meier survival (middle panel), and time-dependent receiver operation
curve analysis (right panel) in the training set (first line), validation set (second line), and whole set (third line). p values were calculated using the
log-rank test. (Color version of figure is available online.)
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Previous studies have identified that radiomics features are
associated to survival of patients with OS (16,24�27). Kyrre
et al (28) presented support vector machine models for gli-
oma survival association and evaluated the diagnostic accu-
racy of 6-month and 1-, 2-, 3-year using MR imaging-based
whole tumor relative cerebral blood volume histograms. In
this study, they developed four separate SVM modes of
rCBV histograms with different clinically relevant survival
ranges of 6 months and 1, 2, and 3 years using binary predic-
tion which was more complicated and difficult in clinical
practice. While we only developed one conventional contrast
enhanced MR radiomics classifier that does not rely on arbi-
trary thresholds and that predicts OS as a continuous variable.
In addition, Ingrisch et al (26) identified 20 features from 208
features in 66 patients with GBM which stratified the patients
into high and low predicted mortality revealed a significant
difference in OS. Kickingereder et al (25) built an eight-
feature radiomics signature that allowed to stratify OS in
both discovery and validation set. In our study, a better pre-
dictive accuracy was obtained using fewer features (four-
1297



TABLE 3. Correlation Between Clinical Features and Survival Time on Univariate Cox Analysis in Training and Validation Sets

Training Set Validation Set

Clinical Variables
Values
(Counts) Coefficient Hazard Ratio p

Values
(Counts) Coefficient Hazard Ratio p

Gender (male/female) 53/32 ¡0.051 0.951 (0.576�1.568) 0.842 29/13 ¡0.400 0.670 (0.311�1.445) 0.304
Age (�58/<58) 42/43 0.206 1.229 (0.757�1.995) 0.404 24/18 0.631 1.880 (0.871�4.057) 0.103
KPS (�80/<80) 67/18 ¡1.644 0.193 (0.094�0.399) <0.001 34/8 ¡1.270 0.281 (0.113�0.695) 0.003
Radiation (yes/no) 79/6 ¡1.835 0.160 (0.059�0.433) <0.001 38/4 ¡2.740 0.065 (0.017�0.251) <0.001
Chemotherapy (yes/no) 77/8 0.046 1.047 (0.471�2.332) 0.910 37/5 ¡0.662 0.516 (0.189�1.410) 0.191
Type of resection (resec-
tion/biopsy)

78/7 0.135 1.144 (0.519�2.521) 0.738 37/5 0.343 1.409 (0.486�4.083) 0.526

KPS, Karnofsky performance status.

TABLE 4. Correlation Between Variables and Survival Time on Multivariate Cox Analysis in Training and Validation Sets

Training Set Validation Set

Variables
Values
(Counts) Coefficient Hazard Ratio p

Values
(Counts) Coefficient Hazard Ratio p

KPS (�80/<80) 67/18 ¡1.133 0.322 (0.149�0.698) 0.004 34/8 ¡0.928 0.395 (0.139�1.121) 0.081
Radiation (yes/no) 79/6 ¡1.680 0.186 (0.068�0.513) 0.001 38/4 ¡1.943 0.143 (0.035�0.589) 0.007
Radiomics signature � 0.913 2.491(1.758�3.528) <0.001 � 0.770 2.389 (1.782�3.203) 0.009

KPS, Karnofsky performance status.
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feature radiomics classifier) for predicting OS. This is an
important result because it shows that only a few features
were used to evaluate prognosis for GBM patients with a less
chance of over-fitting and less computation time.

Several studies have evaluated the prognostic value of the
VASARI imaging features of GBM (6,29). A study by Nicolasjil-
wan et al of 30 VASARI imaging features, including 102 GBM
patients demonstrated the proportion of tumor enhancing and a
higher T1/FLAIR ratio of the tumoral signal abnormality were
Figure 3. Time-dependent ROC curves compare the prognostic accurac
validation(middle) and whole(right) sets. AUC, area under curve; KPS, Karno
version of figure is available online.)
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associated with poor outcome. In a recent retrospectively study of
189 patients with GBM by Peeken et al (29), 10 features of multi-
locality, satellites, ependymal invasion, deep wm invasion, defini-
tion of noncontrast enhanced tumor margin, proportion edema,
max lesion size, resection contrast enhanced tumor, resection
noncontrast enhanced tumor, resection edema were showed sta-
tistically significant associations for OS by univariate Cox propor-
tional models. In our study, we found none of the VASARI
imaging features were associated with OS. Those inconsistent
y of the four-radiomics classifier with clinical risk factors in training(left),
fsky performance status; ROC, receiver operator characteristic. (Color
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results may ascribe to the small samples and the fact that the
VASARI imaging features evaluated depend on the radiologists’
experiences and may be less reproducibility.
The potential clinical relevance of our study is the

advancement of the noninvasive method and the novel imag-
ing biomarkers that have not used in clinical routine. Radio-
mics as a noninvasive analysis approach can extracted more
comprehensive quantitative information from MRI beyond
imaging signs evaluated by naked-eye and do not depend on
the radiologist training experiences (12), which provides a
complementary perspective. In our study, the integrative
assessment of radiomics data is emphasized for predicting out-
come of patients with GBM. In addition, integration of
radiomics with multiscale information could yield valuable
insight into tumor progression (30) and allow early identifica-
tion of resistances (31). These could help a personalized
approach in GBM management.
In addition to the retrospective study design, several limita-

tions should be mentioned in our study. First, we evaluated
tumor features in the largest cross-sectional area rather than
performing whole-tumor analysis. Although tumor three-
dimensional texture analysis may provide more diverse internal
information than two-dimensional features (32), Lubner MG
et al found that single slice 2D texture analysis was adequate in
assessing pathologic features and clinical outcomes by using CT
texture features in hepatic metastatic colorectal cancer (33).
Second, Prasanna et al (16) found that peritumoral radiomics
features were predictive of long-term versus short-term sur-
vival. Although we only evaluated the high signal intensity
region of the tumor on post-T1WI, further studies are needed
to explore whether the other parts and sequences can be used
to predict the outcomes of patients with GBM. Meanwhile,
Chaddad et al found that three texture features from post-
T1WI were statistically significant for predicting OS, while
none of any features from edema and necrosis could predict
OS (34). Third, because of the retrospective nature of the
study, images were acquired over the course of several years
and from different institutions, and the imaging parameters
slightly varied. However, we controlled this with normalizing
each image to minimize the effect on our results. Finally,
advanced MR such as DWI and dynamic susceptibility contrast
perfusion showed the potentials in predicting OS (35,36), we
will further assess the value of advanced MR for OS prediction
in patients with GBM in future studies.
In conclusion, our study indicates that a four-feature radio-

mics classifier based on post-T1WI could predict OS and be
risk stratification in patients with GBM beyond clinical varia-
bles and imaging features. In the future, this method can be
integrated into other multiscale including clinical informa-
tion, laboratory, etc. to improve precision medicine of GBM.
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