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Background: Current fMRI-based classification approaches mostly use functional connectivity or spatial maps
as input, instead of exploring the dynamic time courses directly, which does not leverage the full temporal
information.
Methods:Motivated by the ability of recurrent neural networks (RNN) in capturing dynamic information of time
sequences, we propose a multi-scale RNN model, which enables classification between 558 schizophrenia and
542 healthy controls by using time courses of fMRI independent components (ICs) directly. To increase interpret-
ability, we also propose a leave-one-IC-out looping strategy for estimating the top contributing ICs.
Findings:Accuracies of 83·2%and 80·2%were obtained respectively for themulti-site pooling and leave-one-site-
out transfer classification. Subsequently, dorsal striatum and cerebellum components contribute the top two
group-discriminative timecourses,which is true evenwhenadoptingdifferent brain atlases to extract time series.
Interpretation: This is the first attempt to apply a multi-scale RNNmodel directly on fMRI time courses for classi-
fication of mental disorders, and shows the potential for multi-scale RNN-based neuroimaging classifications.
Fund: Natural Science Foundation of China, the Strategic Priority Research Program of the Chinese Academy of
Sciences, National Institutes of Health Grants, National Science Foundation.
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1. Introduction

Functional magnetic resonance imaging (fMRI), as a non-invasive
imaging technique, has been extensively applied to study psychiatric
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disorders [1]. Due to the high-dimensional and low signal-to-noise
ratio properties of the fMRI data, efficient feature selection procedures
are usually required to reduce the redundancy before modeling. Two
types of approaches, data-driven [2] and seed-based [3], have been ex-
tensively applied to decompose 4D fMRI data, resulting in spatial brain
regions/independent components (ICs) and their corresponding time
courses (TCs). Currently, existing fMRI-based classification models
mostly adopt either subject-specific spatial maps [4] or functional
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

Current fMRI-based classification approaches mostly use func-
tional connectivity or spatial maps as input, instead of exploring
the dynamic time courses directly, which does not leverage the
full temporal information. In addition, the excellent feature-
representation ability of deep learning methods provides us a
way to capture spatiotemporal information from time courses.

Added value of this study

In the present study, we contributed a new deep learning-based
frameworkwhich can directly work on fMRI time courses for iden-
tifying brain disorders. In addition, by using our proposed deep
learning-interpretation method, dorsal striatum and cerebellum
are discovered as the top two discriminative brain regions.

Implications of all the available evidence

To the best of our knowledge, this is the first attempt to enable
deep learning directly to work on time courses of fMRI compo-
nents in schizophrenia classification, which promise great poten-
tials of deep-chronnectome-learning and a broad utility on
neuroimaging applications, e.g., the extension to MEG, EEG
learning.
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(network) connectivity calculated by TC correlations as input features
[5,6], though have achieved substantial progress, the sequential tempo-
ral dynamics were generally missed. The field is still striving to under-
stand how to diagnose and discriminate complex mental illness, e.g.,
schizophrenia versus bipolar disorder, while ignoring the temporal in-
formation time-point by time-point is likely missing a critical, but avail-
able, part of the puzzle.

The power of deep learning models lies in enabling automatic dis-
covery of latent or abstract higher-level information from high-
dimensional neuroimaging data, which can be an important step to un-
derstand complex mental disorders [7–14]. Specifically, convolutional
neural network (CNN) which is “deep in space” and recurrent neural
network (RNN) which is “deep in time” are two classic deep learning
branches. It is natural to use CNN as an ‘encoder’ for obtaining correla-
tions between brain regions and simultaneously employ RNN for se-
quence classification. RNN models such as long short-term memory
(LSTM) [15] and gated recurrent unit (GRU) [16] have been firmly
established as state-of-the-art approaches in sequence modeling, such
as identifying autism using fMRI [17], diagnosing brain disorder by ana-
lyzing electroencephalograms [18], detecting temporally dynamic func-
tional state translations [13,14,19].

In particular, GRU is a particular RNN-based model which can ef-
fectively solve the long-term dependency problem by controlling in-
formation flow with several gates, which may fit the fMRI brain
voxel-wise changes along with time series. Moreover, multi-scale con-
volution layers can be complementary for CNN feature extraction, be-
cause it can account for different temporal scales (from seconds to
minutes) of brain activity. Therefore, we combine the strengths of
CNN and RNN models and develop a Multi-scale RNN (MsRNN)
model, which can directly work on fMRI time courses for classifying
brain disorders, thus avoids the second-level calculation (e.g., correla-
tion analysis) of time courses and takes advantage of the high-level
spatiotemporal information of fMRI data. Such a design of classifica-
tion framework relies on two assumptions: 1) underlying dynamics
of fMRI data, i.e., rules by which neural activities involved in time; 2)
brain disorders may have different patterns of temporal changes re-
corded by fMRI.
In this work, based on a large-scale Chinese Han resting-state fMRI
data consisting of 558 schizophrenia patients (SZ) and 542 healthy con-
trols (HC) that were recruited from seven sites with compatible MRI
scanning parameters and imaging quality, we tested the power of the
proposed MsRNN model for deep chronnectome learning on multiple
facets, with comparison of three classic classification algorithms and
eight varietal deep-learning models. Furthermore, to improve the
result's interpretability, which is the most challenging issue of deep
learning in neuroimaging applications, we propose a leave-one-IC-out
strategy for estimating the contribution of each IC on classifying schizo-
phrenia. Subsequently, components of dorsal striatum and cerebellum
contributed the top two group-discriminating time courses. Finally,
the time courses extracted by using seed-based strategies, e.g., using
brain atlases such as AAL [20] or Brainnetome Atlas [21], were com-
pared further with ICA results. To the best of our knowledge, this is
the first attempt to enable CNN + RNN directly to work on time
courses of fMRI components in mental disorder classification, which
promise great potentials of deep-chronnectome-learning and a broad
utility on neuroimaging applications, e.g., the extension to MEG, EEG
learning.

2. Materials and methods

Fig. 1 presents an overview framework of the MsRNN classification
method. Resting-state fMRI data from 1100 Chinese subjects (558 SZs,
542 HCs, from 7 sites) were used, which were preprocessed using the
standard procedure [6]. Details of the demographic information are
shown in Table S1. Time courses were extracted using group ICA [2].
Each subject was then represented with the TC features (No. time
points × No. ICs, Fig. 1a, c). The proposed MsRNN model was directly
applied on TCs of the selected non-artificial ICs to identify SZs from
HCs using two types of classification strategies (Fig. 1b): 1) Multi-site
pooling classification, in which all 1100 subjects from seven sites
were pooled together, which were split into training set, validation
set and testing set. Moreover, the classification performance was mea-
sured using k-fold cross-validation strategy; 2) Leave-one-site-out
transfer classification, in which the subjects of a given site were left
for testing, and the samples of all other sites were used for training
and validation. These two types of classification strategies were inde-
pendent of each other [9].We trained theMsRNN using the TCs in train-
ing and validation sets with their corresponding labels (Fig. 1c). The
learnable parameters of the MsRNN were iteratively adjusted using
the error backpropagation algorithm. The validation samples were si-
multaneously used for monitoring the training process and avoid
overfitting. The performance of the trained MsRNN was finally tested
using held out TCs.

2.1. Participants and demographics

Table S1 lists the demographic and clinical information of all 1100
participants (558 SZs and 542 age and gender-matched HCs) in this
study. The subjects were within the 18–45 age range, right-handed
whowere screened for ethical clearance, with only Chinese Han people
recruited from seven sites in Chinawith the same recruitment criterion,
including Peking University Sixth Hospital (Site 1); BeijingHuilongguan
Hospital (Site 2); Xinxiang Hospital Simens (Site 3); Xinxiang Hospital
GE (Site 4); Xijing Hospital (Site 5); Renmin Hospital ofWuhan Univer-
sity (Site 6); Zhumadian Psychiatric Hospital (Site 7). Each site received
approval from their respective research ethics boards and written in-
formed consents were obtained from all study participants. All the SZ
patients were evaluated based on the Structured Clinical Interview for
DSM disorders (SCID) and diagnosed by experienced psychiatrists ac-
cording to the criteria of DSM-IV-TR. All the HCs were recruited from
the same local geographical areas as the patients cohort through local
advertisement and were free of Axis I or II disorders (SCID-Nonpatient)
Additional exclusion criteria include factors such as current or past



Fig. 1. The framework of the Multi-scale RNN model in distinguishing schizophrenia patients from healthy controls. (a) Data preprocessing and feature selection. All rsfMRI data were
preprocessed using the standard procedure. Time courses were then extracted using group-ICA/AAL/Brainnetome Atlas respectively. (b) The TCs/FNC data were randomly split into
training, validation and testing sets. In multi-site pooling classification, all seven datasets were pooled together, and then k-fold cross-validation strategies were used for evaluating
classification performance. In leave-one-site-out transfer prediction, the samples of a given imaging site were left for testing, and the samples of other sites were used for training. The
performance of conventional methods (including Adaboost, Random Forest and SVM) and various RNN-based models were used for comparison. The most discriminative components
were found by using leave-one-IC-out method. (c) Details of the MsRNN classification model. Three different scales convolutional filters were used for extracting of spatial features
from time courses. The extracted features were then concatenated, pooling, and sent to stacked GRU module.
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neurological illness, substance abuse or dependence, pregnancy, and
prior electroconvulsive therapy or head injury resulting in loss of
consciousness.

2.2. Image acquisition

The resting state fMRI data were collected with the following three
different types of scanners: 3·0 T Siemens Trio Tim Scanner (Siemens;
Site 1, 2 & 5), 3·0 T Siemens Verio Scanner (Siemens; Site 3), and
3·0 T Signa HDx GE Scanner (General Electric; Site 4, 6 & 7). To ensure
equivalent, coincident and high-quality data acquisition, the scanning
protocols for all the seven siteswere set up by the same experienced ex-
perts [6]. Subjects were instructed to relax and lie still in the scanner
while remaining calm and awake. More details of scanning parameters
are listed in Supplementary Table S4.

2.3. Data preprocessing and IC extraction

The rsfMRI data were preprocessed according to the procedures
which were the same as we did in [6] using SPM8 software (http://
www.fil.ion.ucl.ac.uk/spm/). For each participant, the first ten volumes
of each scan time series were discarded to ensure magnetization equi-
librium. The remaining resting state volumes were first corrected by
the acquisition time delay of different slices and then realigned to the
first volume for head-motion correction [22]. For each subject, the
translation of head motion was b3 mm and the rotation of headmotion
did not exceed 3° in all axes through the whole scanning process.
Subsequently, the images were spatially normalized to EPI template
conforming to the Montreal Neurological Institute (MNI) space. The
data (originally collected at 3·44 mm × 3·44 mm × 4·60 mm) were
then resliced to a voxel size of 3 mm × 3 mm × 3 mm, resulting in 53
× 63 × 46 voxels for each image. Subsequently, group ICA toolbox
(GIFT, http://mialab.mrn.org/software/gift) was used to perform GIG-
ICA [23] on the preprocessed fMRI data. 50 ICswere characterized as in-
trinsic connectivity networks (ICNs) after removing those ICs corre-
sponding to physiological, movement-related or imaging artifacts, and
their spatial maps (SMs) are listed in the Supplementary file Fig. S3.
According to previous work [24,25], the control of movement-related
artifacts should be stringent for the analysis of time courses of fMRI
data. We compared the mean of framewise displacement (FD) for
HC and SZ groups. The mean FD for HC and SZ are 0·137±0·071
and 0·142±0·085 respectively, with no significant group differences
(P=.98, two-sample t-tests)existing. Inourpreprocessing, asdid inpre-
vious work, nuisance covariates including six headmotion parameters,
mean FD, white matter signal, cerebrospinal fluid signal, and global
mean signal were all regressed out [24,26,27]. Two covariants (age

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://mialab.mrn.org/software/gift


546 W. Yan et al. / EBioMedicine 47 (2019) 543–552
and gender) which may have potential confounding effects were also
regressed out. Then the time courses were stacked to form a matrix
with dimensions of [No. Subjects] × [No. Time courses] × [No. Indepen-
dentcomponentsorROIs)]whichwas thenusedtocalculate theFNCma-
trix or to train theMsRNNmodel directly.

2.4. Multi-scale CNN-GRU (MsRNN)

As shown in Fig. 1c, MsRNN consists of 3 different scales of 1D
convolutional filters (2TR, 4TR and 8TR, TR = 2 s), one concatenation
layer, one max-pooling layer, a two-layer stacked gated recurrent unit
(GRU) which are densely connected in a feed-forward manner, and an
averaged layer which integrate the whole sequence. The time courses
were fed into the proposed MsRNN model for parameter optimization.
After optimizing the parameters, the model was saved for testing and
comparison. Equations are listed in the Supplementary files for a precise
definition of the MsRNN model.

2.4.1. Multi-scale convolutional layer
Multi-scale convolution layers may be helpful in feature extraction

because it can account for different scales (from seconds to minutes)
of brain activity. Inspired by 1D convolution (Conv1D) layers [28], we
designed an architecture which expands upon simple convolutional
layers by including multiple filters of varying sizes in each Conv1D
layer. This architecture allows the network to extract information over
multiple time scales. The filter lengths used in the Conv1D were
drawn from a logarithmic instead of a linear scale, leading to exponen-
tially varying filter lengths (2TR, 4TR, and 8TR). Therefore, the size of 3
different scales of convolutional filters are 50 (ICs) × 2 × 32 (number of
filters), 50 × 4 × 32, 50 × 8 × 32 in our experiment. A concatenation
layer then concatenates the incoming features among the depth axis,
resulting in featuremaps whose size are 170 (time points) ×96 (feature
dimension). Whereafter, a max-pooling layer performs downsampling
operation along the time dimensions with filter size 3, resulting in fea-
ture such as 57(time points) × 96(feature dimension).The
downsampled features are as the input of the following GRU layers.

2.4.2. Densely connected GRU layer
A two-layer stacked GRU may capture higher-level dynamic infor-

mation than single-layer GRU model. The size of the GRU's hidden
state was set as 32. However, one of the central challenges of training
a deep GRU-based network the gradient exploding/vanishing problem.
It is worthy to note that the densely-connected structure may effec-
tively prohibit the “gradient exploding/vanishing” problem by
connecting each layer to every other layer in a feed-forward manner
[29].

2.4.3. Averaged layer
Even with the best experimental fMRI design, it is infeasible to con-

trol the random thoughts of the subjects during the resting-state fMRI
scanning because they depend on too many subject-specific factors.
Also, it is not possible to label the beginning and the end of brain activ-
ities. Hence combining all fMRI steps by averaging all of theGRUoutputs
is a compromised solution [10]. In this way, all activities of the brain
during scanning may be leveraged for obtaining better classification
performance.

In summary, the proposed MsRNN classification model consists of
multiple-scale Conv1D layers, stacked GRU layers which are densely
connected in a feed-forward manner, an averaged layer which inte-
grates the context of the whole sequence, and fully-connected layers.
More details of the model can be found in Supplementary Fig. S2.

2.5. MsRNN model implementation

The time courses of ICs described above were used as the inputs
for training the Multi-scale RNN model. The model was trained by
minimizing the cross-entropy loss using Adam optimizer. The training
batch size was set as 64. The learning rate started from 0.001 and
decayed after each epoch with the decay rate of 10−210−2. To im-
prove the generalization performance of the model and overcome
overfitting, dropout(dropout = 0.5) and L1,2-norm regularization
(L1 = 0.0005,L2 = 0.0005) were also applied for regulating the
model parameters. The training process was stopped when the vali-
dation loss stopped decreasing for 50 epochs or when the maximum
epochs (1000 epochs) had been executed. In our experiment, the
training time for MsRNN was around five minutes, while the testing
time for a new subject is b0.01 s. The intermediate model which
achieved the highest accuracy on the validation dataset was reserved
for testing. Also, the proposed models were implemented on the
platform of Keras (https://keras.io/) and ScikitLearn (https://scikit-
learn.org/).

The visualization of MsRNN codes was performed by the unsuper-
vised dimensionality reduction technique t-SNE, which embeds high-
dimensional data into a low-dimensional space while preserving the
pairwise distances of the data points, implemented in MATLAB. The ac-
tivation strengths of individual neurons at the last hidden layer by the
training and testing sampleswere used as the rawvariables. The param-
eters for the stochastic optimization for t-SNE [30] were as follows [31]:
The perplexity was 30, and the dimension for initial principal compo-
nents analysis was 30.

2.6. Estimating the discriminative power of independent components
(leave-one-IC-out)

The basic idea is that the feature whose elimination lead to the
most significant damage of classification performance should be
regarded as the top contributing features. More specifically, as
shown in Fig. 3b, each subject is represented with a T × D matrix,
where T is the length of time courses and D is the number of indepen-
dent components (ICs). A specific element in the matrix can be de-
noted by vtd. To quantify the classification contribution of the dth IC,
we replace the time courses of dth IC with its averaged value
1
T
∑T

t¼1vtd while keep other ICs' time courses as they were. This is

equivalent to eliminating the contribution of dth component. All the
testing samples are processed in the same way and subsequently fed
to the trained MsRNN model. The classification performance of the
trained model which is fed with reduced features may decrease com-
pared to that using all features. The variation of the classification per-
formance (i.e., accuracy, sensitivity, specificity) when removing dth
dimension are recorded and sorted. The features which maximize
the decrease of the classification performance are further selected as
the most discriminative features. Specifically, the 1100 samples were
randomly split into five folds. 880 samples (four folds) were used
for optimizing the parameters of MsRNN, and 220 samples (one-
fold) were used for further finding the contribution of each IC during
each cross-validation. The specific procedures are as follow: 1) After
optimizing the trained model with 880 samples, the parameters of
the trained model were saved; 2) The time courses of 220 subjects
without removing any component were fed to the model to obtain a
baseline classification performance; 3) The 220 subjects which have
removed the contribution of one specific IC were fed to the model
to obtain the classification performance repeatedly. The decrease of
sensitivity/specificity when removing a specific component was re-
corded and sorted; 4) Repeat step 3 until each IC has been removed
once.

2.7. Statistics

The performance of identifying schizophrenia from normal controls
was evaluated by five metrics including accuracy (ACC), sensitivity
(SEN), specificity (SPE), F-score (F1) and area under curve (AUC)
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based on the results of cross-validation (k-fold or leave-one-site-out).
They are defined as below:

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

; SEN ¼ TP
TP þ FN

; SPE ¼ TN
TN þ FP

;

PPV ¼ TP
TP þ FP

; F1 ¼ 2
SEN � PPV
SEN þ PPV

where TP, TN, FP, FN, PPV denote true positive, true negative, false pos-
itive, false negative and positive predictive value respectively, e.g., SEN
represents the percentage of SZ are classified as SZ correctly. The full
k-fold cross-validation procedure was repeated ten times to generate
themeans and standard deviations of accuracy, sensitivity, and specific-
ity. We used two-sample t-test to compare classification performances
between different algorithms and hyperparameter settings.

2.8. Data availability

All data needed to evaluate the conclusions are present in the paper
and/or the supplementary materials. Additional data related to this
paper may be requested from the authors.

3. Results

3.1. Multi-site pooling classification

We compared the MsRNN with three traditional popular classifiers
(SVM [32], Adaboost [33], Random Forest [34]), one multi-layer percep-
tion model, and seven RNN-based alternative deep learning models
(Table 1). The detailed hyperparameters and the time complexity of
these methods can be found in Supplementary Table S5. All the above
models were implemented on a desktop computer (Intel(R) Xeon
(R) CPU E5–1650 v4 @ 3.60GHz, 6 CPU cores) with a single GPU
(12GB NVIDIA GTX TITAN 12GB), and can be trained within five mi-
nutes. Note that the three conventional classification methods usually
work on the FNC matrix that was computed using the correlation of
TCs of selected components instead of the TCs themselves. Therefore,
in performance comparison, FNCs were used as the input of conven-
tional methods while TCs were used as the input of MsRNN, multi-
layer perception, and other RNN-based deep learning methods. All
models were trained using the training dataset and tested using testing
dataset, embedded in nested five-fold cross-validation cycles. Fig. 1c
shows the architecture of the proposedMsRNN model.

Table 1 and Fig. 2a listed the averaged accuracy and variance of clas-
sification performance achieved by all 11 methods in multi-site pooling
Table 1
Performance comparison in multi-site pooling classification.

Methods ACC SEN

CON Adaboost 75.6(3.8)** 77.0
CON Random Forest 76.0(3.5)** 81.0
CON SVM 79.4(3.1)* 80.4
RNN GRU_1_last 51.6(3.6)** 52.0
RNN GRU_1_ave 77.8(3.4)** 78.4
RNN GRU_2_ave 78.0(3.9)** 80.8
CMLP Multi_CNN_MLP 77.8(3.4)** 76.2
CRNN Simple_CNN_GRU_2_ave 80.8(3.0)○ 80.2
CRNN Multi_CNN_GRU_1_ave 80.6(3.5)○ 80.8
CRNN Multi_CNN_GRU_2_ave 81.2(3.4)○ 81.4
CRNN Multi_CNN_LSTM_2_ave 81.6(2.9)○ 82.6
CRNN MsRNN(Proposed) 83.2(3.2) 83.1

CON: conventional classification methods; RNN: RNN-based methods; CMLP: CNN linked with
with Gaussian kernel; LSTM: Long short-term memory network; GRU: gated recurrent unit.
GRU step is connected to the next layer. #_ave: the average of the outputs of all GRU steps is con
Convolutional layer has different kernel size;○ denotes that themethods have no significant di
are significantlyworse than the proposedmodelwith P value= .05/0.01. Details of all theseme
method.
condition. In the deep learning classification frameworks (including
MsRNN, multi-layer perception, and other RNN-based architectures),
we used four folds as the training set (10% samples of the training set
were further randomly selected as validation dataset), and one-fold as
the testing dataset. As for conventional classification models
(Adaboost, Random Forest and SVM), four folds were used for training
and one-fold for testing.

The accuracy of 83·2 ± 3·2% was obtained by using the MsRNN
method, which is significantly higher than those obtained by using the
Adaboost, Random Forest and SVM (P = 2·1e-4, 1·9e-4, 1.1e-2, two-
sample t-tests, df = 18). Also, the ROC curves of these methods are
shown in Fig. 2b. The proposed MsRNN achieved an AUC of 0.906,
while the AUC of Adaboost, Random Forest and SVM ranges from
0·840–0·868. To validate the advantage of the proposed model, other
RNN architectures based on GRU and one similar network architecture
based on LSTM were also compared with MsRNN. As shown in Table 1,
a single layer GRUmodel can easily reach a higher classification perfor-
mance than the classic FNC-based methods. The improvement may be
due to the ability of GRU in extracting dynamic information from time
sequences. In addition, the performance of GRU_1_ave is better than
GRU_1_last because the former one made full use of temporal informa-
tion at every time point. Furthermore, combining the GRU layer with
Conv1D layer is a remedy for improving the classification performance
because CNN-GRU model is “double deep” which include both spatial
and temporal layers. Thus it can be jointly trained to learn convolutional
perceptual representations and temporal dynamics simultaneously.

Finally, the proposed multi-scale convolution is even better than a
single-scale convolution layer because it can extract dynamics from a
variety of timescales. In summary, multi-site pooling results indicated
that our proposed MsRNN model achieved the best performance by
smartly integrating the advantages of CNN and RNN, while the LSTM-
based model can reach competitive performance compared with the
GRU-based model.

3.2. Leave-one-site-out transfer classification

In the leave-one-site-out classification,we left each of the seven sites
as the testing data and used the other six sites for training and valida-
tion, in which 10% samples were randomly selected as validation
dataset and the other 90% were used for trainingMsRNN or other deep
learning architectures. In the Adaboost, Random Forest and SVM classifi-
cation frameworks, we used the samples of the given imaging site for
testing and the samples of other sites for training. The leave-one-site-
out transfer classification results are shown in Table 2 and Table S2.
The averaged classification performance of the seven sites was used to
represent the overall performance of cross-site prediction. The accuracy
SPE F1 AUC

(4.4)** 74.2(4.4)** 76.2(3.8)** 84.2(3.6)**
(3.9)o 71.4(5.5)** 77.4(3.5)** 84.0(3.4)**
(3.5)o 78.4(3.9)* 79.6(3.3)* 86.8(3.2)*
(5.3)** 51.2(4.3)** 52.0(3.8)** 51.2(3.6)**
(3.8)** 77.0(3.5)** 78.2(3.4)** 86.8(3.5)*
(5.1)o 76.0(4.2)** 78.8(3.9)* 86.8(4.1)*
(4.0)** 79.2(4.8)○ 77.2(3.4)** 86.4(3.1)**
(4.3)○ 82.0(3.5)○ 80.8(3.1)○ 89.2(2.8)○
(4.1)○ 80.6(4.3)○ 80.8(3.3)○ 88.2(3.6)○
(4.1)○ 81.0(4.9)○ 81.0(3.5)○ 88.6(3.7)○
(3.6)○ 80.4(3.8)○ 82.0(2.7)○ 89.4(2.8)○
(3.7) 83.5(3.7) 83.3(3.2) 90.6(3.0)

multi-layer perception; CRNN: CNN-RNN based methods; SVM: Support vector machine
GRU_1: one layer of GRU; GRU_2: two-layer stacked GRU; #_last: the output of the last
nected to the next layer; SimpleCNN: Convolutional layer has fixed kernel size;Multi_CNN:
fference (two-sample t-test) with the proposed. */** denote respectively that themethods
ntioned architectures are shown in Supplementary file Fig. S2. The last row is our proposed



Fig. 2. Classification results of multi-site pooling and leave-one-site-out transfer classification. (a) 5-fold multi-site pooling classification results. ** P b .01(two-sample t-test), * P b .05
(two-sample t-test). (b) The comparison of receiver operating characteristic curves of different methods. (c) Leave-one-site-out transfer classification results. (d) t-SNE visualization of
the last hidden layer representation in the MsRNN for SZ/HC classification. Here we show the MsRNN's internal representation of SZ and HC by applying t-SNE, a method for visualizing
high-dimensional data, to the last hidden layer in the MsRNN of training (Site 1–6: 951 subjects) and testing (Site 7: 149 subjects) samples.
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of 80·2% was achieved by using theMsRNNmethod, which was signifi-
cantly higher than the accuracies obtained by using the Adaboost, Ran-
dom Forest and SVM (P = 6·2e-4, 7.0e-3, 1.9e-2, two-sample t-test, df
= 12) (Fig. 2c). To visualize the performance of MsRNN classifier, we
used t-Distributed Stochastic Neighbor Embedding (t-SNE) to project
the 32-dimensional representations of subjects extracted from the
Table 2
Performance comparison in leave-one-site-out classification.

Methods ACC SEN

CON Adaboost 72.9(3.0)** 76.6
CON Random Forest 72.6(4.4)** 79.6
CON SVM 76.0(3.1)* 80.0
RNN GRU_1_last 47.7(3.2)** 50.6
RNN GRU_1_ave 78.7(2.8)○ 80.9
RNN GRU_2_ave 77.9(3.9)○ 79.0
CMLP Multi_CNN_MLP 76.1(3.2)* 79.7
CRNN Simple_CNN_GRU_2_ave 79.1(3.7)○ 82.4
CRNN Multi_CNN_GRU_1_ave 80.3(3.0)○ 82.9
CRNN Multi_CNN_GRU_2_ave 79.7(3.0)○ 80.4
CRNN Multi_CNN_LSTM_2_ave 78.7(3.9)○ 83.1
CRNN MsRNN(Proposed) 80.2(3.0) 82.5

CON: conventional classification methods; RNN: RNN-based methods; CMLP: CNN linked with
with Gaussian kernel; LSTM: Long short-term memory network; GRU: gated recurrent unit.
GRU step is connected to the next layer. #_ave: the average of the outputs of all GRU steps is con
Convolutional layer has different kernel size; Details of all thesementioned architectures are sh
methods have no significant difference (two-sample t-test) with the proposed. */** denote res
0.01.
hidden layer of the trained MsRNN model to a 2D plane. As shown in
Fig. 2d, samples from six sites (951 subjects, site 1–6) were used as
the training/validation set, and the samples from site 7 (149 subjects)
were used for testing. The tSNE result indicates that the proposed
MsRNN model can successfully distill features and separate the SZ and
HC apart.
SPE F1 AUC

(7.4)○ 70.1(6.7)* 73.7(2.8)** 81.3(2.4)**
(8.9)○ 66.7(10.7○ 74.3(3.2)** 82.7(3.6)**
(7.5)○ 73.3(9.5)○ 77.4(2.2)* 85.0(2.9)*
(6.8)** 44.7(7.1)** 49.3(3.7)** 46.7(2.4)**
(7.3)○ 77.4(7.4)○ 79.4(1.9)○ 86.9(2.3)*
(9.2)○ 77.9(7.5)○ 78.1(2.7)○ 87.7(3.0)○
(8.2)○ 73.4(9.8)○ 77.0(2.1)** 85.4(2.7)*
(7.9)○ 76.7(10.7)○ 80.1(2.3)○ 89.1(2.3)○
(7.3)○ 79.0(9.4)○ 81.1(1.8)○ 88.7(2.3)○
(7.2)○ 79.6(7.7)○ 79.9(2.7)○ 88.6(2.3)○
(8.3)○ 75.3(9.7)○ 79.7(2.6)○ 89.6(3.0)○
(7.7) 79.0(8.4) 80.8(2.0) 89.4(2.1)

multi-layer perception; CRNN: CNN-RNN based methods; SVM: Support vector machine
GRU_1: one layer of GRU; GRU_2: two-layer stacked GRU; #_last: the output of the last
nected to the next layer; SimpleCNN: Convolutional layer has fixed kernel size;Multi_CNN:
own in Supplementary file Fig. S2. The last row is our proposedmethod.○ denotes that the
pectively that the methods are significantly worse than the proposed model with P =.05/
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3.3. Comparison of TC-extracting strategies

Besides using ICA to extract TCs, we further tested the performance
of the MsRNN by using TCs obtained from brain parcellation using
both AAL template and Brainnetome Atlas, where the TCs of each
brain regions of interests (ROI) were calculated by averaging the
voxel-wise time series within each ROI. The dimension of TCs for AAL
atlas is 170(time points) × 116(ROIs) andª 170(time points) × 273
(ROIs) for Brainnetome Atlas. MsRNN models were separately trained
and evaluated, as shown in Fig. 3a and Table S3, the TCs generated
from ICA achieved the best performance, surpassing the AAL feature ex-
traction strategies by at least 7% on AUC (P = 3·0e-2, two-sample t-
test). This is likely due to the ability of ICA to capture variability in the
components among subjects and is also consistent with earlier work
showing that ICA time courses show better performance than fixed
ROIs for graph theory metrics [35].

3.4. Estimating the most discriminating ICs

The ultimate goal of fMRI classification studies is to identify a collec-
tion of statistical features that can serve as reliable imaging biomarkers
for disease diagnosis and are reproducible across multiple datasets. De-
spite extraordinary classification performance, the lack of interpretabil-
ity often restricts the application of deep learning methods. Some
previouswork tried to open the black box of deep learning by analyzing
the weight matrix of the trained model [9,12]. Generally speaking, the
most important features are those whose removal can cause the most
significant performance decrease compared to other features. Here we
Fig. 3. Comparison of different atlas and Leave-One-IC-Out method. (a) The MsRNN classificat
(b) Leave-one-IC-out method for estimating the contribution of each IC. (c) Top two discrimin
proposed a leave-one-IC-out method to leave one IC's time course out,
and used the remaining 49 ICs' time course to train the model. After
that, we compared the alteration of classification performances by
looping all 50 ICs (shown in Fig. 3b). As a result, TCs from two compo-
nents: 1) putamen and caudate which are parts of striatum; 2) declive
and uvula which are parts of the cerebellum (Fig. 3c), contributed the
top 2 group-discriminating time courses. Table 3 listed the Talairach la-
bels of the two components. Note that similar findings of the most
group-discriminating ROIs were obtained from both AAL and
Brainnetome atlas.

4. Discussion

As known, the current clinical diagnosis of schizophrenia is based
solely on clinical manifestations. In recent years, many studies
attempted to find stable neuroimaging-based biomarkers by machine
learning techniques. To the best of our knowledge, this is the first at-
tempt to apply an RNNmodel directly on fMRI time courses for schizo-
phrenia diagnosis, which avoids second-level correlation analysis and
make full use of time-varying functional network information. Accura-
cies of 83·2% and 80·2% were obtained in the multi-site pooling classi-
fication and leave-one-site-out transfer prediction between
schizophrenia patients and healthy controls respectively, yielding 4%
improvement of accuracy compared to conventional approaches, sug-
gesting a remarkable increase of the discriminative power via deep
learning in neuroimaging predictions. The promising results may bene-
fit from the following two aspects: 1) the proposed MsRNN can learn
both temporal and spatial information simultaneously based on time
ion results using three different feature selection methods. * P b .05 (two-sample t-test).
ative independent components discovered using the leave-one-IC-out method.



Table 3
Talairach labels of the peak activations in spatial maps of selected ICs.

Area Brodmann
area

Volume
(cc)

Random effects: Max Value (x, y, z)

IC_4
Putamen 4.2/4.9 1.4 (−24, 12, 15)/1.4 (29, −8, 14)
Lentiform nucleus 1.6/1.3 1.4 (−28, −17, 13)/1.4 (14, −1, −2)
Parahippocampal
Gyrus

34 0.8/0.8 1.4 (−23, −8, −16)/1.4 (32, −10, −13)

Claustrum 0.8/1.0 1.4 (−36, −13, 2)/1.4 (34, 1, 9)
Inferior Frontal
Gyrus

13, 47 0.6/0.1 1.4 (−32, 10, −15)/1.4 (30, 13, −12)

Caudate 1.7/1.8 1.4 (−11, 17, 7)/1.4 (16, −8, 19)
IC_2

Declive 2.9/3.0 1.9 (−27,−71, −22)/1.9 (21, −71,−22)
Uvula 0.5/0.8 1.6 (−27, −71, −25)/1.8 (24, −71, 24)
Pyramis 0.0/0.1 NA/1.6 (27, −71, −27)

550 W. Yan et al. / EBioMedicine 47 (2019) 543–552
courses rather than the second-level FNC features. Specifically, the
multi-scale CNN module can capture the spatial correlation of compo-
nents fromdifferent time scales (2TR~8TR), and the RNNmodule can le-
verage temporal information; 2) the large-scale dataset (1100 subjects)
provide us the opportunity to train the deep learningmodel sufficiently.
From this view of point, the present studymaymark a significant break-
through for enhancing the capabilities of psychiatrists by bringing RNN-
based deep learning method to the task of diagnosing brain disorders
across sites. Such applications would be critical and useful in clinical
practice to predict for the new imaging sites or subjects.We also noticed
a recently published multi-center study using deep learning method to
diagnose schizophrenia [9]. The deep discriminant autoencoder net-
work proposed by Zeng et al., aiming at learning imaging site-shared
functional connectivity features, achieved desirable discrimination of
schizophrenia across multiple independent imaging sites. To clarify,
the current study used an entirely different deep learning architecture
(AutoEncoder [Zeng et al.] vs. MsRNN [ours]) and different input fea-
tures for classification (functional connectivity [Zeng et al.] vs. time
courses [ours]), which avoid the second-level computation of fMRI data.

As to the identified brain regions, the dominating component is re-
lated to the dorsal striatum in the classification of schizophrenia. The
dorsal striatum, comprising caudate and putamen, primarily mediates
cognition involvingmotor function, certain executive functions (e.g., in-
hibitory control), and stimulus-response learning. It receives input from
cortex, thalamus, hippocampus and amygdala, then projects its output
information to thalamus. The thalamus, which projects back to the cor-
tex, thereby completing the circuit is also a component of the reward
system that may suffer severely in SZ [36–38]. A similar impairment in
SZ was verified inmultiple resting-state fMRI studies [39] and cognitive
studies [40]. For example, Yoon et al. [41] observed a link between im-
paired prefrontal-basal ganglia functional connectivity and the severity
of psychosis, and Sarpal et al. [42] found a negative relationship be-
tween the functional connectivity of striatal regions and reduction in
psychosis.

Another cerebellum component consist of declive, uvula and
pyramis. The cerebellum is engaged in basic cognitive function such as
attention,workingmemory, verbal learning and sensory discrimination,
has led to an emerging interest in the role of the cerebellum in schizo-
phrenia [43]. Structural and functional cerebellar abnormalities have
been observed in schizophrenia, with evidence the impairment in
whitematter integrity in specific cerebellar lobes [44], aswell as the ab-
normal size and a significant decrease in cerebral blood flow during a
broad range of cognitive tasks [43,45]. Besides, researchers have posited
the role of the cerebellum in reinforcement learning, allowing for more
direct convergence between the theories of cognitive dysmetria and im-
paired reinforcement learning in schizophrenia [46].

Across several studies, altered connectivity patterns between the
striatum and cerebellum have been frequently found in schizophrenia.
Abnormalities in the relationship between cortical and sub-cortical re-
gions, in particular, the prefrontal cortex, thalamus, basal ganglia, and
cerebellum, were observed in patients with schizophrenia and corre-
lated primarily with deficits in executive functioning, as well as deficits
in processing speed andworkingmemory [45]. Su et al. [47] and Repovs
et al. [48] provided evidence that the connectivity strength between
cerebellum and caudate is associated with executive functioning loss
in schizophrenia. Also, reduced functional connectivity between the
cerebellum andmedial dorsal nucleus of the thalamus in schizophrenia
providing evidence of abnormalities in this portion of the cortico-
cerebellar-thalamic-cortico circuit [9,12,45,49]. Our results suggest
that the temporal dynamics in the two identified brain regions and
their connectivity are highly different between HC and SZ, which may
serve as potential biomarkers for SZ discrimination.

The proposed model is stable and robust. Fig. S1 shows the learning
curves on training and validation data while optimizing the parameters
of MsRNN. The model convergent quickly during the first 100 epochs
and reached a steady point after around 300 epochs. Since the number
of hidden nodes in GRU layer may directly affect the learning capacity
of a GRU model., we compared the performance of MsRNN model with
a varying number of hidden units (i.e. [21, 22, 23 …, 210]) to validate
the influence of the number of hidden notes in GRU layer. The statistical
results indicate that our proposed model is not sensitive to the number
of hidden units (Fig. S1b). The model can reach an over 80% classifica-
tion accuracy with a range of 23~29 GRU hidden nodes. More
hyperparameters about MsRNN including batch size, number of filters,
scales of filters were analyzed thoroughly (Table S6-S8). The results
show that the proposed MsRNNmodel is quite robust and not sensitive
to these hyperparameters. Moreover, the hyperparameters combina-
tion we used in this work is close to an optimal solution. We also com-
pared the influence ofmultiple training-testing ratios (Table S9), results
show that the higher training-testing ratio is, the better performance
MsRNN model achieves, which is consistent with the previous finding
[9], suggesting further potential improvement of our proposed method
when gathering more samples for modeling. Finally, to study the influ-
ence of the number of ICs, we further compared four different ICA com-
ponent settings (Table S10). The two-sample t-test results show that
only when the number of ICs is 16, the classification accuracy is less at-
tractive than using 50 ICs(proposed), however, usingmore ICs does not
show significant improvement, andmany previous studies use a similar
number of ICs as we did [50,51].

The current study has a few limitations. One is that information on
antipsychotic or mood stabilizing medications for part of the patients
were unavailable, which makes it difficult to assess the medication ef-
fect that may result in specific functional changes [6]. Secondly, the
time courses were filtered within the range of 0·01–0·1HZ during the
preprocessing step. However, the discriminative functional activity in
the human brain may occur in a higher frequency range. Since the pro-
posed MsRNN model can be applied to classify using either
magnetoencephalogram (MEG) or electroencephalography (EEG) data
due to its feasibility to higher temporal resolution data [6], therefore, a
more stable and generative deep learning classification model may be
designed by fusing multi-modalities to extract fused features and
apply them to the RNN classification model in the future [52]. Another
limitation is that even though headmotion effect has been substantially
attenuated through preprocessing procedures, it may not be completely
removed and may remain certain influences. Moreover, the fMRI data
acquisition protocols for all sites were set up by the same experienced
experts and more harmonized in our study. Therefore the classification
performance of the proposed model may be weighted down a bit if the
data acquisition protocols in new sites are very different from each
other. We admit that the proposed MsRNN model is still a preliminary
model which did not give each hidden state a specific weight. One com-
plementary strategy which may enhance GRU's performance is “atten-
tion” mechanism that can learn the weight of each hidden state
automatically [53]. Furthermore, interpretation of deep learning net-
works remains an emerging but key field of research, our future work
will focus more on a better interpretation of deep learning results,
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which would provide us with more clues on identifying potential
biomarkers.

In summary, to the best of our knowledge, this is the first attempt to
enable RNN directly to work on time courses of fMRI components in
schizophrenia classification. The model takes advantage of high-level
spatiotemporal information of fMRI data, and the high classificationper-
formances indicate the advantages of the proposedmodel. Also, thepro-
posed leave-one-IC-out strategy provides a potential solution for
increasing the clinical interpretability of the deep learning-based
methods. Our work promises great potentials of deep-chronnectome-
learning and a broad utility on neuroimaging applications, e.g., the ex-
tension to MEG, EEG learning.
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