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Abstract Recognizing standard medical concepts in the colloquial text is signif-8

icant for kinds of applications such as the medical question answering system.9

Recently, word-level neural network methods, which can learn complex informal10

expression features, achieved remarkable performance on this task. However, they11

have two main limitations: (1) Existing word-level methods cannot learn character12

structure features inside words and suffer from “Out-of-vocabulary” (OOV) word-13

s, which are common in noisy colloquial text. (2) Since these methods handle the14

normalization task as a classification issue, concept phrases are represented by cat-15

egory labels. Hence the word morphological information inside the concept is lost.16

In this work, we present a multi-task character-level attentional network model for17

medical concept normalization. Specifically, the character-level encoding scheme18

of our model can alleviate the OOV word problem. The attention mechanism can19

effectively exploit the word morphological information through multi-task train-20

ing. It generates higher attention weights on domain-related positions in the text21

sequence, helping the downstream convolution focus on the characters that are22

related to medical concepts. To test our model, we first introduce a labeled Chi-23

nese dataset (overall 314991 records) for this task. Other two real-world English24

datasets are also used. Our model outperforms state-of-the-art methods on all25

three datasets. Besides, by adding four types noises to the datasets, we validate26

the robustness of our model against common noises in the colloquial text.27
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Fig. 1 An instance of normalizing medical concepts in social media messages.

1 Introduction30

Normalizing medical concepts, which means mapping informal expressions written31

in layman’s language to refined medical concepts, contributes to many application-32

s. For example, HealthTap1, a community-based healthcare question answering33

website, accumulates large numbers of personalized medical question-answer pairs34

generated by healthy seekers and medical experts. By bridging the lexical gap35

between informal expressions and standard concepts, the normalization operation36

makes it possible to reuse cross-system knowledge and accomplish automatic dis-37

ease inference [25]. Some studies have shown that semantic analysis on data from38

the social media like Twitter2, can have broad implications for both public health39

and drug reactions research [26, 31].40

However, the normalization task is challenging because the difference between41

informal expressions and standard medical concepts is significant. Sometimes the42

text to be processed (e.g., social media messages) even shares no common words43

with target medical concepts. For instance, “moon face and 30 lbs in 6 weeks” to44

the medical concept “Weight Gain”, or map “head spinning a little” to “Dizziness”45

[18]. In these cases, normalization methods that depend on simply text similarity46

calculation perform poorly. Besides, dealing with the noisy text usually suffers47

from the OOV issue, which could be caused by misspellings easily. For example,48

the character combination “upppp” in the phrase “It got me upppp!” is a personal49

expression, which is likely to be an OOV word.50

Recently, Limsopatham et al. [18] introduce a convolutional neural network51

model that achieves state-of-the-art performance on this task. It conspicuously52

outperforms any other previous method on real-world datasets constructed with53

social media data. The method [18] takes advantage of the word-based convolution54

structure [12] and pre-trained word embeddings [19], but it can merely exploit55

word-level features. Different from word-based neural networks, character-level56

neural network methods [28, 40, 7, 39], which encode sentences with character-57

level representations, can exploit local structure features inside words. Methods58

with character-level inputs are particularly suitable for the medical concept nor-59

malization task because they can avoid the OOV issue. However, since most of60

the real-world knowledge is stored in word-level (e.g., entities in knowledge bases),61

the character-level methods might have limitations in utilizing structured knowl-62

edge. Recently, several studies have reported that hybrid word-character language63

models outperformed single word-level or character-level models. For example,64

Miyamoto et al. [20] introduced a gated language model that could adaptively65

1 https://www.healthtap.com/
2 https://twitter.com/
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find the optimal mixture of the character-level and word-level inputs. Yang et al.66

[35] presented a fine-grained gating mechanism to dynamically combine word-level67

and character-level representations based on several properties (e.g., named entity68

tags and part-of-speech tags) of input words. These combination operations belong69

to downstream fusion processes, which means that the final combined representa-70

tion is a hybrid of two level separately generated representations. Because different71

OOV words share the same word-level representation, final representations of OOV72

words actually depend on their character-level representations. Besides, no matter73

using the word-level or character-level representation, once the method handles74

normalization task as a classification issue, the target concept will be represented75

by its category label (e.g., C1971624 to represent “Loss of Appetite”, see Fig. 1).76

The specific words in the concept (i.e., “Loss”, “of” and “Appetite”) cannot be77

used to supervise training. In other words, the word morphological information78

inside the concept is lost.79

In this work, we propose a multi-task character-level attentional network to80

normalize standard medical concepts in the colloquial text. The character-level81

encoding scheme of our network can capture character-level features even in OOV82

words. Besides, the word-level morphological information in the medical concept is83

effectively exploited to supervise the training of an auxiliary network. This network84

aims at generating particular character-level attention weights on domain-related85

words (or character combinations), which is treated as an auxiliary task during the86

training process of the main task (concept normalization). These attention weights87

are then fed into the main network, helping our model particularly focus on the88

domain-related positions in the text sequence. We estimate our model on two89

English real-world datasets constructed from the collection of social media data.90

Furthermore, we introduce a new Chinese medical concept normalization dataset91

(ChMCN ) generated from an online healthcare question answering website. Ex-92

perimental results show that our method outperforms state-of-the-art methods on93

both English and Chinese datasets, no matter in the aspect of the normalization94

accuracy or the robustness against common text noises.95

The main contributions of this work are as follows:96

– To our knowledge, it is the first work that exploits character-level convolu-97

tional neural networks to handle the medical concept normalization task. The98

character-level network structure effectively alleviates the OOV word issue,99

which is a significant challenge in the normalization task.100

– We propose a multi-task learning framework to exploit the morphological in-101

formation in concept words. It generates character-level attention weights on102

domain-related positions in the text sequence, which are validated to help im-103

prove the concept normalization accuracy in experiments.104

– We construct four types of new datasets by adding common noises to original105

datasets. We use these noisy datasets to evaluate the model robustness against106

noises in the colloquial text.107

2 Related Work108

The normalization operation on standard medical documents such as medical109

records and literature is a well-studied area [16, 1]. Nevertheless, normalizing med-110

ical concepts in the colloquial text is a relatively open problem. Recent studies111
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such as Metke-Jimenez and Karimi [11], OConnor et al [26] and Limsopatham [17]112

used weighting techniques to handle colloquial messages, such as TF-IDF, BM25113

[27] and Word2Vec embeddings [19]. These methods can map colloquial texts to114

standard medical concepts. The state-of-the-art method introduced by Nut Lim-115

sopatham et al. [18] is based on the neural network mechanism, which is reported116

to outperform previous methods obviously. Besides, some recent studies try to117

map the colloquial texts to other kinds of healthcare-related targets such as the118

disease category [23, 4], the multi-faced health answer [22], and the mention of119

adverse drug reaction [34].120

Charcter-level Convolution: Recent methods, no matter using weighting121

techniques [11, 26, 17] or neural network approaches [18], encode the original122

input text at word level. Character-level convolutional neural network methods123

have been reported to perform better than word-level models in many classifica-124

tion tasks. For example, Santos et al. [28] proposed a convolutional neural network125

that could use information from character-level to sentence level to perform senti-126

ment analysis. Zhang et al. [40] offered an empirical exploration on several large-127

scale text classification datasets, showing the competitive ability of a nine layers128

character-level CNN model. Most lately, Conneau et al. [7] proposed a deeper con-129

volutional neural network (up to 29 layers) in character-level, reporting significant130

improvements over several text classification tasks.131

Attention Mechanism: An early application of the attention mechanism was132

a Boltzmann machine for the image classification task, which was introduced by133

Larochelle and Hinton [15]. Nowadays, the attention mechanism has been success-134

fully used in kinds of Natural Language Processing (NLP) tasks. For example,135

Bahdanau et al. [8] added the attention structure to improve the performance of136

neural machine translation model. Shin et al. [30] applied the attention mechanism137

in a Convolutional Neural Networks (CNN) model for Sentiment Analysis. Golub138

and He [9] exploited character-level Long Short-Term Memory (LSTM) networks139

to generate attention weights about entities and predicates to handle the question140

answering. Shen and Huang [29] proposed an attention-based convolutional neu-141

ral network architecture for semantic relation extraction. Recently, the attention142

mechanism became particularly compelling for medical-related tasks, because it143

can improve the performance of model while remaining interpretable. For instance,144

Choi et al. [6] propose a reverse time attention model to handle electronic health145

records data, which focuses on specific clinical information like interpretable key146

risk factors. Zhang et al. [41] introduce MDNet to generate diagnostic reports from147

medical images. It contains an attention mechanism to learn the mapping from148

sentence words to image pixels.149

Multi-task Learning: Multi-Task Learning (MTL) can improve the gener-150

alization performance of single or several tasks through jointly training (sharing151

some weights) [2]. The application of pre-trained Word2Vec embeddings [19] could152

be treated as an example of multi-task learning. Besides, there are many other suc-153

cessful attention applications in NLP domain. Yang et al. [36] exploited multi-task154

and cross-lingual joint training to improve the sequence tagging performance. Yu155

et al. [37] proposed a sentiment classifier model training with two related auxil-156

iary tasks. Sgaard and Goldberg [32] reported that an additional auxiliary task157

of POS-tagging supervised at lower layers could improve both syntactic chunking158

and CCG supertagging task. Another interesting result in this study [32] was that159

only auxiliary tasks that are highly related to the main task could bring about160



Multi-task Character-level Attentional Networks... 5

improvements. The effectiveness of MTL has also been established in the medi-161

cal domain. For example, MTL models [38] [42] considering the relatedness among162

multiple tasks show better performance in modeling the disease progression. Then,163

Nie et al. [24] further propose a multi-modal MTL model to handle the disease164

progression exploiting multimedia and multi-modal observations. Besides, MTL165

helps to improve the performance of many other related applications such as med-166

ical image segmentation [5, 21], clinical time series analysis [33], and mental health167

condition monitoring [3].168

3 Preliminaries169

3.1 Text Representation:170

The raw data to handle in this work are colloquial text records. We define the k-th171

record in a dataset as Qk = [word1, word2, ..., wordi, ..., wordn]. The main differ-172

ence between character-level methods and word-level methods (e.g. Limsopatham173

et al. [18]) is the way to represent Qk. In the word-level models, every word in174

Qk is represented by a vector wi ∈ Rd (d denotes the embedding dimension) from175

a word embedding lookup table W ∈ Rd×|V|. Vocabulary V can be constructed176

with the training dataset, or the pre-trained embeddings generated from additional177

corpus data. Thus the input sentence will be represented as an embedding matrix178

Sk
w ∈ Rd×n.179

Sk
w =

 | | | |
w1 w2 ... wi ... wn

| | | |

 (1)180

Number n is the max record length in the training dataset. One sentence will be181

padded with a special padding tag for the same length of n if necessary.182

For character-level methods, every sentence is regarded as a sequence of char-183

acters: Qk = [char1, char2, ..., chari, ..., charm], where m is the largest character184

number of sentences in the training dataset. In our model, a character embedding185

lookup table W̃ ∈ Rd×|Vc| is used to encode the input sequence into Sk
c ∈ Rd×m.186

Sk
c =

 | | | |
c1 c2 ... ci ... cm
| | | |

 (2)187

Initial experimental results on the development set showed that the vocabulary188

ignoring the difference between upper-case and lower-case letters achieved the189

better performance, which is consistent with the result reported by Zhang et al.190

[40]. Thus, the character vocabulary Vc of our model consists of all ignoring case191

English letters and some special characters including the space symbol:192

“˜!@#&$%ˆ*(){}[],.:;“”’? +− =<> |\/193

abcdefghijklmnopqrstuvwxyz0123456789”194
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3.2 Convolution and Pooling Layers:195

The 1-D convolution operation is used to extract high-level features in the charac-196

ter embedding matrix Sk
c , which is based on the filter F ∈ Rd×l with the embedding197

dimension d and the filter length of l. Specifically, the convolution operation with198

the filter F on every character embeddings window ci:i+l−1 generates the feature:199

200

zi = h(F · ci:i+l−1 + b) (3)201

where h is the activation function and b is the bias. Then the sentence matrix202

Sk
c ∈ Rd×m is transformed into a feature map vector z. As shown in Fig. 2, to203

extract various high-level features, filters with different sizes (length of {2,3,4,5,6})204

are applied in the convolution layer in the main task. In the auxiliary task, we205

only use the filter of length 1, whose main contribution is to generate a non-linear206

transformation of original features.207

The pooling operation can reduce representation and improve the robustness208

of convolutional features. Max-pooling takes the maximum of zi as the final output209

of the corresponding filter, which is widely used to find out significant features and210

makes it possible to train deeper neural networks [40]. We apply the max-pooling211

operation after the character-level convolution. Outputs of the pooling process are212

flattened to dense vectors and concatenated as the input of the softmax layer.213

4 Method214

In this section, we introduce the detailed architecture of our proposed Multi-Task215

AttentionalCharacter-levelConvolutionNeuralNetwork (MTA-CharCNN ). The216

notations in the main task and the auxiliary task are given. Then we explain the217

learning of multi-tasks and the role of attention mechanism. Two reduced versions218

of MTA-CharCNN are also introduced. We use a real-world instance to explain219

our model architecture (see Fig. 2). The input phrase is first translated into a220

character embedding matrix. The auxiliary task network takes it as the input and221

generates attention weights for this instance. The attention weights are added to222

corresponding positions of the character embedding matrix. The main task net-223

work takes this weighted matrix as its input.224

4.1 The Main Task225

The input of the main task (medical concept normalization) is a text sequence. The226

output of the task is the corresponding target concept category, which should be227

chosen from a predefined concepts dictionary C = {concept1, ..., conceptj , ..., conceptm}.228

For example, the phrase “lose my appetite” is the original input text sequence. It229

should be mapped to UMLS3 concept C1971624 (Loss of Appetite) for the main230

task. The output of softmax layer in the main task is a probability vector pk =231

[pk1 , ..., p
k
j , ..., p

k
m], where every element pkj = p(ykj = 1|Qk, θmain) denotes the232

probability that the given k-th text sequence should be mapped to conceptj . We233

use θmain to represent all of the model parameters in the main task. The k-th234

3 https://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html
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Fig. 2 Architecture of our proposed MTA-CharCNN (Multi-Task Attentional Character-
level Convolution Neural Network) model. We noted specific network parts for the main task
and the auxiliary task. The character embedding matrix contains the shared parameters for
the two tasks. The auxiliary task network takes it as the input and generates attention weights
on the character embedding matrix. The weighted embedding matrix then becomes the input
of the main task network.

ground truth concept supervised label is yk = [yk1 , ..., y
k
j , ..., y

k
m], which is a one-235

hot encoded vector. We can learn parameters by minimizing the cross-entropy cost236

of the main task as:237

Lossmain(θmain) = −
∑

k

∑m

j
[ykj log pkj + (1− ykj )log(1− pkj )] (4)238

4.2 The Auxiliary Task239

The auxiliary task is learning to generate character-level domain-related impor-240

tance weights of the input text sequence. Given a character sequence Qk, the241

output of the auxiliary task is an attention weights vector ak = [ak1 , ..., a
k
j , ...,242

akm], which is of the same length as the input character sequence. Every elemen-243

t akj denotes the confidence that the character in the corresponding position is244

related to medical domain. This task is instinctively helpful because the model245

could exploit the additional word morphological information in a multi-task man-246

ner. We generated supervised labels by defining the domain-related words set. We247

collected all constituting words of target medical concepts in two English datasets,248

yet stop words are not included. Once a word in input text is found to be in this249

set, positions of characters in this word will be marked with label “1”. Then, we250

will get an attention supervised vector attk = [attk1 , ..., attkj , ..., attkm], where251

attkj ∈ {0, 1}. For the instance in Fig. 2, “appetite” is the only domain-related252

word in the phrase, thus the attention supervised vector for “lose my appetite” is253
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[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1]. These labels may help our model to recognize254

words that are related to standard concepts.255

For English data, because one single character is hard to convey a detailed256

meaning, attention weights in ak are usually locally successive. However, the Chi-257

nese character is ideogram, which means one character may be enough to represent258

lots of information, which makes the potentially related character combinations259

very complex. Thus, we firstly collected words that make up the medical concepts260

in training set to build a basic dictionary. Then we asked medical experts who have261

Bachelor of Medicine for help to enlarge the basic dictionary. Correspondingly we262

define the training loss function of the auxiliary task as:263

Lossauxiliary(θaux) = −
∑

k

∑m

j
[attkj log a

k
j + (1− attkj )log(1− akj )] (5)264

4.3 Joint Learning of Tasks265

We use θaux to represent all of model parameters in the auxiliary task. Parameters266

θmian and θaux share parts of weights (character embedding weights). All of pa-267

rameters are learned jointly by minimizing the overall loss function. respectively,268

using a loss weighting parameter λ ∈ [0, 1], we define the overall loss function as:269

Lossoverall = (1− λ)Lossmain(θmain) + λLossauxiliary(θaux) (6)270

We did grid search of the parameter λ on three datasets. Recommended λ value for271

our neural network model is 0.3, which was chosen from {0.01, 0.05, 0.1, 0.3, 0.5,272

0.7, 0.9}. The recommend λ value performed well in most of initial experiments,273

however choosing highly targeted λ for different datasets may bring about a slight274

extra improvement. For training, the mini-batch size is 100 and we use Adam [14]275

as the optimizer. For regularization, Dropout [10] probability is 0.5 for embedding-276

to-convolution layers.277

4.4 Attention Mechanism and Reduced Models278

The word morphological information is used in the training of the auxiliary task279

network, which also affects the parameters of the character embedding matrix.280

However, it cannot benefit other parts of the main task network. Here we add281

an attention mechanism to our model, which feeds the output of the auxiliary282

task network to the main task network. After adequate training, the output of283

the auxiliary task network will be an interpretable attention weights vector. Every284

weight value in the vector represents the confidence that the corresponding position285

character is domain-related. It is then transformed into an attention weights matrix286

Ak ∈ Rd×m. Every column of Ak is a vector containing d copies of akj . A
k is added287

to the original character embedding matrix. This mechanism helps downstream288

convolutions in main task network focus on significant parts of the text sequence.289

We introduce two reduced version ofMTA-CharCNN to estimate the respective290

contributions of the attention mechanism and the auxiliary task supervision (see291

Fig. 3). Specifically, MT-CharCNN denotes the model that does not add attention292

weights to the character embeddings. The main task only benefits from auxiliary293
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Fig. 3 Architectures of our proposed Multi-Task Attentional Character-level Convolution
Neural Network (MTA-CharCNN ) and its reduced versions (MT-CharCNN and A-
CharCNN ). Specifically, MT-CharCNN does not feed the attention weights into the main
task network. A-CharCNN does not exploit the word morphological information to supervise
the generating of attention. Domain-related characters are colored with green; other characters
are colored with blue. Darker color represents the higher attention weight value.

Table 1 Parameters of our
proposed models.

MTA-CharCNN MT-CharCNN A-CharCNN

attention supervision with with without
loss weighting parameter 0.3 0.3 0

embedding dimension 300
filter length (main task) 2, 3, 4, 5, 6

filter length (auxiliary task) 1
number of filters 100

softmax layer nodes number of output classes
activation function ReLU

task’s regularization effects on shared weights in this reduced model. A-CharCNN294

denotes the model that sets the loss weight parameter λ to be 0, all parameters295

in our model will not be affected by the attention supervision. Other detailed296

parameter settings are shown in Table 1.297

5 Experiments298

5.1 Datasets299

To evaluate the performance of our model on the medical concept normalization300

task, two real-world datasets (i.e. TwADR-L, AskAPatient)4 introduced by Lim-301

sopatham et al. [18] are used. TwADR-L was constructed from the collection of302

tweets, which contains 1,436 Twitter phrases and the corresponding labeled med-303

ical concept chosen from 2,200 standard terms in SIDER 4 database5. AskAPa-304

tient dataset is also a collection of social media messages and their gold-standard305

mapping medical concepts, which are extracted from the ADR annotation from306

Karimi et al. [11]. Specific for, it contains 8,662 phrases6 with their target terms307

selected from 1,036 medical concepts in SNOMED-CT7 and AMT (the Australian308

4 http://dx.doi.org/10.5281/zenodo.55013
5 http://sideeffects.embl.de/
6 http://www.askapatient.com
7 http://www.ihtsdo.org/snomed-ct
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Medicines Terminology). These datasets are divided into ten equal folds like the309

settings in Limsopatham et al. [18], which is for the purpose to compare the average310

accuracy performance of other methods credibly.311

Table 2 An example cho-
sen from datasets added
with four types of noises.

Original Records Records with noises

Type 1 sleeping standing up #sleeping standing up
Type 2 sleeping standing up sleping standing up
Type 3 sleeping standing up sleeeping standing up
Type 4 sleeping standing up sleeipng standing up

In order to evaluate methods’ robustness against common noises in social media312

messages, we further generated four types of challenging noisy datasets based313

on original two datasets. Every record in test sets was added noises: randomly314

choosing one word and then changing the word into a kind of non-standard format315

(see Table 2). These changing operations are designed to simulate typical noises316

in social media messages:317

– Type 1 : adding “#” to the head of the word.318

– Type 2 : deleting one character randomly.319

– Type 3 : doubling one character randomly.320

– Type 4 : randomly choosing one character and changing its position with one321

of its adjacent letters.322

The colloquial messages in TwADR-L and AskAPatient are mostly at phrase323

level. To evaluate the performance of our model on longer text, we construct-324

ed a new Chinese Medical Concepts Normalization dataset (ChMCN ). Sentences325

in ChMCN (overall 314991 records) are sampled from a collection of healthcare326

questions on KuaiSuWenYiSheng8, which is a Chinese online healthcare questions327

answering website. Each question is labeled with one of the predefined medical328

concept (overall 300 classes) by medical experts. ChMCN is randomly divided in-329

to ten equal folds as TwADR-L and AskAPatient. On every dataset, we evaluate330

our model and other models based on the average normalization accuracy over ten331

folds.332

5.2 Alternative Methods333

As reported by Limsopatham et al. [18], the word-level neural network methods334

they proposed distinctly outperformed traditional approaches such as LogisticRe-335

gression, DNorm [16] and BM25 [27]. Our initial experiments showed the similar336

results on ChMCN. Thus we do not report the detailed performance of these tra-337

ditional approaches in this paper. We choose state-of-the-art word-level neural338

network methods as very competitive baselines. Besides, two character-level con-339

volutional neural network models are also evaluated on three datasets.340

– Rand-CNN (Limsopatham et al. 2016) [18]: a word-level convolutional neural341

network model with randomly generated embedding weights.342

8 https://www.120ask.com/
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– Emb-CNN (Limsopatham et al. 2016) [18]: a word-level convolutional neural343

network model with general pre-trained word embedding weights. The English344

pre-trained embedding vectors for TwADR-L and AskAPatient are generated345

from Google News [19] and the Chinese word embedding vectors are trained346

with a corpus collected from history records of KuaiSuWenYiSheng website.347

– Rand-RNN (Limsopatham et al. 2016) [18]: a word-level recurrent neural348

network model with randomly generated embedding weights.349

– Emb-RNN (Limsopatham et al. 2016) [18]: a word-level recurrent neural net-350

work model with the same pre-trained word embeddings as Emb-CNN.351

– CharConvNets (Zhang et al. 2015) [40]: a character-level 9-layers convolu-352

tional neural network with one kind of filter length in convolution layers. We353

choose the selectable model Small Feature, which performed better on datasets354

in this study according to initial experiments.355

– CharCNN-Small (Kim et al. 2016) [13]: a character-level convolutional neu-356

ral network with several kinds of filter lengths in convolution layers and a357

highway network over characters. The long short-term memory network out-358

put layer is replaced by a softmax layer to predict the concept class. There359

are two kinds of network parameter settings (CharCNN-Large and CharCNN-360

Small) for this model. We choose CharCNN-Small to compare with our model361

according to its better performance in initial experiments.362

6 Results and Discussion363

In this section, we first validate whether our proposed mechanism can generate364

effective attention weights for the real-world text example. Then we compare the365

concept normalization accuracy performance of our proposed models versus alter-366

native methods. To analyze the respective contributions of the attention mechanis-367

m and the auxiliary task supervision, we also compare MTA-CharCNN to reduced368

models. Finally, we evaluate the robustness of our model against noises.369

6.1 Case Study about Attention Mechanisms370

To understand the detailed effect of attention mechanisms on the concept nor-371

malization task, we first visualize attention weights over specific input character372

sequences (Fig. 4). In the first two rows of subfigures, the x-axis is the charac-373

ter sequence, and the y-axis is the attention weight value in the corresponding374

character position. The third-row subfigures show the performance of the present375

model (the best-saved model after n epochs) on the test set. We choose two real-376

world records in ChMCN to observe their attention weights transformation. The377

distribution of A-CharCNN attention weights (dashed red line) does not change378

distinctly during the training process. In addition, different input sequences gen-379

erate similar attention weights after adequate training. Without the supervised380

information, the end-to-end attention structure of A-CharCNN could not visibly381

recognize the relatively important parts of different sequences. Conversely, atten-382

tion weights of MTA-CharCNN (solid blue line) are obviously relevant to the383

specific sequence content. We choose two representative instances in the test set384

to visualize their attention weights. The first instance is a sequence that contains385
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Fig. 4 The transformation of attention weights along with the training process. The first two
rows of subfigures show the attention weight distribution on corresponding character sequences.
The third-row subfigures show the present top-n (if the right answer appears in your top-n
predictions) normalization accuracy performance on the tests set.

identifiable domain-related words (marked with ∗). The second instance contain-386

s no identifiable domain-related words, which suggests that it is more colloquial387

than the first instance. Chinese does not use the word divider (like the space in388

English). To help to understand the specific meaning of given cases, we show pos-389

sible word segmentation results (use / as the word divider) and the corresponding390

approximated English sense of every word as follows.391

– 体检/查出/血糖 */高出/参考指标/是/糖尿病 */吗392

– physical examination/ checkup to find out/ blood glucose level*/ higher393

than/ referenced criteria/ is/ diabetes*/ auxiliary word394

– 手脚心/发烫/是/什么/因起的395

– hands palms and feet soles/ feel hot/ is/ what/ reason396

As the first row subfigures show, attention weights on domain-related words397

血糖 (blood glucose level) and 糖尿病 (diabetes) finally become relatively398

high after epochs of training. That is in accordance with the supervised label399

information. Besides, the word 查出 (checkup to find out) also gets higher weights,400

which is not in the predefined domain-related word set. It should be noted that401

查出 is both semantically and morphologically similar to 检查 (checkup), which is402

defined to be a domain-related word. This result suggests that MTA-CharCNN is403

not only able to focus on words in the defined set, but also generate high weights404

on character combinations that is similar to target words. The second instance405

may help further explain this phenomenon.406

The second sequence contains no words in the domain-related words set. How-407

ever, 手脚心 (hands palms and feet soles) and 发烫 (feel hot) which are colloquial408

expressions about the patient’s symptom, get higher attention weights. 因起 is409

a common typing error in Chinese. The original intent of the patient should be410

typing a domain-related word 引起 (give rise to, a word in domain-related words411

set) actually. We observe another attention distribution peak at this wrongly writ-412
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Fig. 5 Attention weights distribution of text with types of noises. Subfigures (c)-(f) show the
performance on four types noises: Type 1 (adding “#” to the head of the word stomach), Type
2 (deleting one character in the word stomach), Type 3 (doubling one character in the word
stomach), Type 4 (changing one character’s position with one of its adjacent letters) in the
word stomach.

ten word, which indicates that our model attention can tolerate some OOV words413

caused by misspellings.414

Detailed investigation of the robustness against attention generating is shown415

in Fig. 5. We chose an instance from the test set of AskAPatient and made several416

adjustments:417

– (a) pit of my stomach is pain. (changing the position of the word stomach)418

– (b) pain in pit of my stomach. (the original record)419

– (c) pain in pit of my #stomach. (adding # to the head of the word stomach,420

Type 1 noise)421

– (d) pain in pit of my stoach. (deleting a character in word stomach, Type 2422

noise)423

– (e) pain in pit of my stooomach. (doubling a character in the word stomach,424

Type 3 noise)425

– (f) pain in pit of my stmoach. (exchanging the positions of two adjacent letters426

in the word stomach, Type 4 noise)427

We visualize the attention weights for given text after enough epochs of training428

(until model convergence). For the curve of A-CharCNN, the result is similar to429

Fig. 4. We mainly focus on results of MTA-CharCNN here. Overall, attention430

weights are relatively low but not zero at word dividers (space). A possible reason431

is that they provide useful words’ boundary information at least. Although the432

sequence padding and the word divider share the same supervised label in training,433

attention weights for paddings in the test set are almost all zero.434

The original text pain in pit of my stomach should be mapped to the standard435

concept Stomach ache, where a key word in this phrase should be stomach. We436

observe a prominent peak of attention weights at the word stomach in Fig. 5-b.437

If we change the position of the word stomach (Fig. 5-a), the attention weights438

distribution still peaks at the word stomach. That indicates our model could gen-439

erate particular focus on domain-related words among the input text sequence,440
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Table 3 The concept normalization accuracy performance of our proposed models (i.e., A-
CharCNN, MT-CharCNN, and MTA-CharCNN) versus alternative methods. The accuracy
performance reported in this table is the average over ten folds of every dataset.

Models

Accuracy Datasets
TwADR-L AskAPatient ChMCN

Rand-RNN 0.3229 0.3791 0.3618
Emb-RNN 0.3529 0.3882 0.3203
Rand-CNN 0.4267 0.8013 0.3611
Emb-CNN 0.4478 0.8141 0.3681

CharConvNets 0.3847 0.7901 0.3434
CharCNN-Small 0.4386 0.8264 0.3618

A-CharCNN 0.4611 0.8422 0.3737
MT-CharCNN 0.4625 0.8417 0.3735
MTA-CharCNN 0.4646 0.8465 0.3742

regardless their position. Then we add character-level noises to the word stomach.441

As Fig. 5-c, 5-d, 5-e and 5-f show, though these noises change the original word442

into kinds of OOV words, MTA-CharCNN still generates higher character-level443

attention weights in the original position. Being robust to common OOV words is444

highly likely to be one of the reasons that MTA-CharCNN performs well in the445

concept normalization task.446

In this subsection, we have shown that the auxiliary network with the attention447

supervision can generate the content-related and robust attention. We will test448

whether feeding these attention weights to the main task network can improve the449

performance of concept normalization in the next subsection.450

6.2 Concept Normalization Accuracy451

We compare our proposed model with alternative methods in the aspect of the con-452

cept normalization accuracy. As illustrated in Table 3, Emb-CNN and CharCNN-453

Small are relatively the best of the first two among alternative methods. Emb-CNN454

takes advantage of the pre-trained word embeddings, which is the additional in-455

formation besides the training data. Noticed that finding a suitable and large em-456

bedding training corpus might be challenging when the task vocabulary contains457

large numbers of technical terms and low-frequency words, medical concept nor-458

malization is an example. CharCNN-Small is a character-level convolutional neural459

network model. The main difference between our model and it is CharCNN-Small460

does not have an attention mechanism. Comparatively, it holds a highway net-461

work structure to learn local features inside words better. CharConvNets performs462

poorly on three concept normalization datasets, though it also has the character-463

level convolution structure. A possible reason is that CharConvNets is initially464

designed to handle the task of relatively long text classification, whose convolu-465

tion layers only have one kind of filter length. Besides, its network is deeper than466

CharCNN-Small and our models. However, the input text in the medical concept467

normalization task is shorter, and the total number of categories is much larger.468

Our models MTA-CharCNN, MT-CharCNN, and A-CharCNN outperform all469

alternative methods on three datasets. Specifically, MTA-CharCNN achieves the470
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Table 4 The robustness evaluation of our proposed models (i.e., A-CharCNN, MT-CharCNN,
and MTA-CharCNN) versus other representative word-level and character-level neural network
models. Four types of noises are added to original datasets to simulate common text noises:
Type 1 (adding “#” to the head), Type 2 (deleting one character), Type 3 (doubling one
character), Type 4 (changing one character’s position with one of its adjacent letters).

Datasets

Accuracy Models
Rand-CNN Emb-CNN CharCNN-Small A-CharCNN MT-CharCNN MTA-CharCNN

TwADR-L 0.4267 0.4478 0.4386 0.4611 0.4624 0.4646
TwADR-L Type 1 0.2123 0.1941 0.4337 0.4400 0.4288 0.4330
TwADR-L Type 2 0.2187 0.2018 0.3728 0.4169 0.4190 0.4331
TwADR-L Type 3 0.2404 0.1716 0.4253 0.4457 0.4510 0.4513
TwADR-L Type 4 0.2221 0.1997 0.3699 0.4155 0.4043 0.4113
Mean Accuracy 0.2233 0.1918 0.4005 0.4295 0.4258 0.4322

Mean Accuracy Drop -0.2034 -0.2560 -0.0381 -0.0316 -0.0366 -0.0324

AskAPatient 0.8013 0.8141 0.8264 0.8422 0.8417 0.8465
AskAPatient Type 1 0.3642 0.3043 0.8218 0.8394 0.8332 0.8381
AskAPatient Type 2 0.3790 0.3045 0.7363 0.7818 0.7825 0.7815
AskAPatient Type 3 0.3678 0.2989 0.8154 0.8321 0.8264 0.8336
AskAPatient Type 4 0.3820 0.3172 0.7347 0.7689 0.7736 0.7808
Mean Accuracy 0.3732 0.3062 0.7771 0.8055 0.8039 0.8085

Mean Accuracy Drop -0.4281 -0.5079 -0.0493 -0.0367 -0.0378 -0.0380

highest concept normalization accuracy of 46.46%, 84.65% and 37.42% on TwADR-471

L, AskAPatient and ChMCN. The performances of reduced models (i.e., MT-472

CharCNN and A-CharCNN ) are similar. Through comparing MTA-CharCNN473

with the reduced models, controlled experiments validate the effectivenesses of the474

attention mechanism and the auxiliary task supervision. This result also suggests475

that the contributions of the two schemes could be incorporated.476

6.3 Robustness against Noises477

Informal expressions such like misspellings in social media messages could easily478

result in the appearance of Out-of-vocabulary words. We artificially added four479

types of noises to test sets of two English datasets for a robustness evaluation (see480

Table 4). It should be noted that the density of added noises is obviously higher481

than the real-world situation. Thus it is an extreme test. We did not construct the482

noisy dataset of ChMCN because Chinese character is ideogram, which makes it483

hard to define the character-level noise properly. The best performing alternative484

methods (i.e., CharCNN-Small and Emb-CNN ) and another additional word-level485

model Rand-CNN are chosen to compare with our models.486

Character-level models (i.e., CharCNN-Small,MTA-CharCNN,MT-CharCNN,487

and A-CharCNN ) show clearly better robustness (the ability of tolerating four488

types noises) than word-level models (Emb-CNN and Rand-CNN ). According to489

results in Table 4, the average accuracy drop (the difference between average ac-490

curacy over four noisy datasets and the original normalization accuracy) of the491

word-level model even reaches ten times of the character-level model’s result. It is492

instinctive to some extent because the locally character-level change (four types493

of noises) easily bring about the OOV word, which is an absolute information494

loss for the word-level model. However, character-level models can still exploit the495

remaining character structure information. Besides, among character-level model-496

s, our models outperform CharCNN-Small on every noisy dataset. The attention497

mechanism and the auxiliary task supervision likely improve models’ robustness498

against character-level noises as well.499



16 Jinghao Niu1,2 et al.

7 Conclusion500

In this paper, we proposed a multi-task character-level attentional neural network501

for the medical concept normalization task. Our model exploits the character-502

level encoding and the attention mechanism to alleviate the OOV word problem.503

The word morphological information inside the medical concept is effectively used504

as the auxiliary task supervision for generating attention weights. The attention505

weights are fed into the main task network, helping the downstream convolution506

focus on the domain-related characters. Experimental results show that our pro-507

posed model outperforms state-of-the-art methods on three real-world datasets.508

Besides, we use two reduced models to validate the effectivenesses of both the509

attention mechanism and the auxiliary task supervision. We further constructed510

four types of datasets added with common noises to validate the robustness of511

our model. In future work, we will investigate the way to generate the properly512

supervised label of character-level attention.513
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